Home > Computer Science > Other > Volume-4 > Issue-5 > Satellite and Land Cover Image Classification using Deep Learning

Satellite and Land Cover Image Classification using Deep Learning

Call for Papers

Volume-8 | Advancing Multidisciplinary Research and Analysis - Exploring Innovations

Last date : 28-Mar-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Satellite and Land Cover Image Classification using Deep Learning


Roshni Rajendran | Liji Samuel



Roshni Rajendran | Liji Samuel "Satellite and Land Cover Image Classification using Deep Learning" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-5, August 2020, pp.651-655, URL: https://www.ijtsrd.com/papers/ijtsrd32912.pdf

Satellite imagery is very significant for many applications including disaster response, law enforcement and environmental monitoring. These applications require the manual identification of objects and facilities in the imagery. Because the geographic area to be covered are great and the analysts available to conduct the searches are few, automation is required. The traditional object detection and classification algorithms are too inaccurate, takes a lot of time and unreliable to solve the problem. Deep learning is a family of machine learning algorithms that can be used for the automation of such tasks. It has achieved success in image classification by using convolutional neural networks. The problem of object and facility classification in satellite imagery is considered. The system is developed by using various facilities like Tensor Flow, XAMPP, FLASK and other various deep learning libraries.

Deep Learning, Convolutional neural network, VGG, GPU, Tensor Flow, Random forest algorithm


IJTSRD32912
Volume-4 | Issue-5, August 2020
651-655
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin