

Quantum Computing in Business

Matthew N. O. Sadiku¹, Janet O. Sadiku²

¹Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX, USA

²Juliana King University, Houston, TX, USA

ABSTRACT

As the name suggests, quantum computing involves the use of several quantum phenomena to perform computations. Quantum computing is an emerging technology that promises to solve complex problems currently intractable for classical computers, creating significant opportunities for businesses in various sectors. It is rapidly advancing, offering businesses new opportunities in AI, security, optimization, and drug discovery. It is already becoming a powerful force for business innovation and transformation. Although quantum computing technology is still an infant, practical and theoretical research is continuing to develop quantum computers for civilian, business, trade, environmental, and national security purposes. This paper explores what quantum computing is and how it can unlock transformative opportunities for business.

KEYWORDS: *technology, quantum computing, QC, business, finance.*

How to cite this paper: Matthew N. O. Sadiku | Janet O. Sadiku "Quantum Computing in Business" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-6, December 2025, pp.613-621, URL: www.ijtsrd.com/papers/ijtsrd99918.pdf

IJTSRD99918

Copyright © 2025 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (<http://creativecommons.org/licenses/by/4.0/>)

INTRODUCTION

Over the last few years, we have encountered various emerging technologies that promise to transform industries. One of the most revolutionary among them is quantum computing. Quantum computing represents one of the most exciting technological frontiers of our time, and its potential to transform industries is immense. It is the application of the principles of quantum mechanics to perform computations and solve problems. It is fast transitioning from a scientific possibility to a technical reality. From finance and healthcare to manufacturing and energy, quantum computing has the power to solve complex problems that were previously unsolvable, offering businesses unprecedented opportunities for innovation and growth.

The utilization of quantum computing in organizations has risen in recent years and has led to remarkable changes in business operations around the world. Quantum technologies are expected to enable innovations in drug and materials discovery, financial portfolio management, climate and weather modeling, fabrication optimization, and behavioral analytics, among many others. Tremendous levels of

investment, private-sector competition, and scientific talent are focused on quantum research. Quantum research today means big business. What was once seen as a scientific curiosity, quantum computing now promises to transform many aspects of everyday life from cybersecurity to drug development and weather forecasting. Scientists and business developers are constantly in the run to make quantum computing possible given the large number of applications that it entails. Technology giants like Google and IBM are in the constant run to achieve quantum supremacy, with each taking steps to ensure the world witnesses a stable quantum computer in the next few years [1].

QUANTUM COMPUTERS

A quantum computer (QC) behaves according to the laws of quantum mechanics. Thus, quantum computers are different from binary digital electronic computers based on transistors. A major difference between classical and quantum computing lies in the way they encode data. While a digital computer requires that the data be encoded into binary digits (0 or 1), quantum computers use quantum bits, which can be in superpositions of states [2]. In other words, instead of storing information in bits as conventional

digital computers do, quantum computers use quantum bits, or qubits, to encode information. (Qubits are the basic units of quantum information.) In addition to ones and zeros, qubits have a third state called “superposition” that allows them to represent a one or a zero at the same time. Figure 1 shows the comparison between the bit and qubit [3]. The computing power of a QC grows exponentially with the number of qubits it uses.

Quantum computers have the potential to perform certain calculations significantly faster than any digital computers. QC consists of a quantum processor which operates at a very low temperature (a few tens of mK) and an electronic controller which reads out and controls the quantum processors, as shown in Figure 2 [4]. Several forms of physical media (optical fibers and free space) can be used to deliver quantum information. Figure 3 shows a representation of quantum computing [5].

In quantum system, the computational space increases with the size of the system. This enables exponential parallelism which leads to faster quantum algorithms. Unlike classical computer, QC offers massive parallelism within a single piece of hardware.

A typical quantum computer is shown in Figure 4 [6]. The basic building blocks of quantum computers include quantum gates, quantum memories, quantum CPUs, quantum languages, and quantum languages [7,8]:

- *Quantum Gates:* Quantum computers require quantum gates, which are basically different from classical Boolean gates seen in a conventional computer (AND, XOR and so on). A quantum gate acts on superpositions of different basis states of qubits. The quantum gates perform unitary operations on quantum states and lead to quantum circuits. They are particularly important for quantum error correction and experimental quantum information processing. They can be realized by superconductors, linear optic tools, or quantum dots. Common quantum gates are CNOT and SWAP.
- *Quantum Memories:* Quantum memories store the quantum systems in a quantum register for information processing. Quantum memories are formulated by n stationary quantum states. Quantum computers are expected to have limited memory.
- *Quantum CPUs:* These use a quantum bus for the communication between the functional elements of a quantum computer. From a computing perspective, quantum CPUs can be approached through quantum adders.

➤ *Quantum Languages:* These enable us to create an artificial quantum computer to simulate a quantum computing environment. The programming language should follow a functional programming structure, which can compute the process as a whole entity with a proper bounded structure.

➤ *Quantum Algorithms:* Quantum algorithms are significantly faster than any classical algorithm in solving some problem. Most of the successful quantum algorithms use quantum Fourier transforms in them because they require less hardware. Popular quantum algorithms include Shor’s algorithm (since integer factorization is faster) and Grover’s search algorithm.

In ambitious attempts to realize practical quantum computers, enormous efforts are still being expended both in designing software (quantum algorithms) and hardware development (physical implementation).

QUANTUM COMPUTING IN BUSINESS

Businesses today are navigating a landscape that shifts with unprecedented speed. Forward-looking companies must prepare now for quantum computing that could redefine the boundaries of competitive advantage. They are looking into how quantum can bolster industries and provide new use cases for businesses. Quantum computing is an evolving technology that promises to enhance an array of business operations. It is challenging the realities of technology, security, business, and industry as we know them. By integrating quantum solutions, businesses can enhance efficiency, reduce costs, and create novel products and services that set them apart in the marketplace. Figure 5 shows a representation of quantum computing in business [9].

While quantum computing is still in its early stages of commercial deployment, industries are beginning to see real-world applications. Technology giants, governments, and early-stage startups are investing billions in a race to achieve quantum breakthroughs. Major tech companies such as Amazon, IBM, Google, Honeywell, Hewlett Packard, and Microsoft offer cloud-based access to quantum hardware and simulators. These platforms allow businesses to run small-scale pilot projects and gain hands-on experience without massive capital investment. IBM recently unveiled plans to build commercially-available quantum computer systems for business and science that will be accessed via the IBM Cloud. Figure 6 shows IBM laboratory in Yorktown, NY [10].

APPLICATIONS OF QUANTUM COMPUTING IN BUSINESS

Quantum computing is expected to revolutionize several industries by providing unique computational power for specific tasks. Its applications have the potential to deliver transformative impacts across various industries. Cybersecurity, communications, healthcare, drug discovery, finance, and energy are some of the applications of quantum technologies in business. Key business applications include the following [11,12]:

- **Drug Discovery:** Drug discovery could prove one of the most transformative of the many anticipated quantum applications. It is a lengthy and costly process, often involving years of trial and error to identify effective compounds. Quantum-oriented molecular modeling can help researchers understand potential drug interactions, while also helping to predict whether drugs will prove effective. By accurately simulating complex molecular and chemical interactions, quantum computing can significantly accelerate the R&D process for new drugs, personalized medicines, and advanced materials. Quantum computers could significantly accelerate this process by simulating interactions between drugs and biological systems at the molecular level. This would allow pharmaceutical companies to identify promising compounds more quickly and precisely, leading to faster development of new treatments and cures.
- **Financial Services:** In the financial sector, speed and precision are paramount. The need for speed and precision in finance makes it a prime candidate for quantum adoption. Quantum computing can have a profound impact on risk management, fraud detection, portfolio optimization, and financial modeling. Applications include portfolio optimization, complex risk analysis, high-frequency trading strategies, and improved fraud detection. Financial services, banking, and securities firms are exploring the application of quantum computing to credit scoring, asset valuation, irregular behavior analysis and fraud detection, trading strategies, and investment risk analysis. Today's financial services customers demand personalized products and services that rapidly anticipate their evolving needs and behaviors.
- **Healthcare:** The healthcare industry, particularly pharmaceuticals, can benefit enormously from quantum computing's ability to solve complex optimization problems and model molecular structures. Quantum simulations in healthcare

allow scientists to model complex molecular interactions, accelerating the discovery of new drugs and materials. The same applies to genomics and personalized medicine, where understanding complex biological data is critical. Drug discovery, population health insights, and genomics are areas where quantum computing is being tapped for healthcare and medical advances.

- **Energy:** The energy sector faces some of the most complex challenges in modern industry, particularly around energy distribution, resource management, and the development of sustainable energy sources. Quantum computing can aid in optimizing power grids, reducing waste, and improving energy efficiency. By analyzing large amounts of data in real-time, quantum algorithms can optimize energy distribution, helping to prevent blackouts and reduce energy waste. Quantum computing can accelerate the discovery of new materials for more efficient batteries or solar panels, significantly impacting the push toward renewable energy. Note that quantum computers require far less energy than classical supercomputers.
- **Cybersecurity:** Cybersecurity is important in business world because it protects all categories of data from theft and damage. Failure to protect valuable data can impact businesses in various ways, including but not limited to financial losses, reputation damage, etc. Quantum computing introduces a major cybersecurity risk. Quantum computers have the potential to break current encryption standards, which could threaten the security of sensitive data and communications. While powerful quantum computers pose a future threat to current encryption standards, they also offer the solution: quantum-resistant cryptography and quantum key distribution (QKD), which provide theoretically unbreakable security for communications.
- **Optimization:** Nearly every industry requires optimization. Some experts believe that quantum optimization can help organizations enjoy select benefits of quantum computing. Optimization algorithms help identify the best solution or process among multiple feasible options. As such, quantum computers are expected to have major implications on industries that rely on optimization to assess multiple potential outcomes, each with numerous dependencies and constraints.
- **Supply Chain:** Quantum algorithms are likely to increase savings and make planning routes and

managing the supply chain much easier in logistics. Quantum computing can help companies streamline operations and manufacturing processes by solving supply chain optimization problems, such as determining the availability and pricing of manufacturing components without interrupting multifaceted supply chains. From accelerating aspects of product development to driving efficiencies throughout supply chain, resource allocation and manufacturing operations, quantum computing is inching past its origins as a highly specialized tool.

BENEFITS

Quantum computers may deliver an economic advantage to business, even on tasks that classical computers can perform. Across industries, businesses will use quantum solutions to boost efficiency and resource allocation while also promoting innovation. Quantum computer can help managers to evaluate many factors at the same time in order to optimize business operation. The major advantage that quantum computers hold is that they are equipped to find optimal solutions to problems that have infinitely many variables. Other benefits include the following [13-15]:

- **Quantum Communication:** Quantum communication is a hardware-based solution leveraging the principles of quantum mechanics to create secure, theoretically tamper-proof communication networks that can detect interception or eavesdropping. While there are different techniques to achieve quantum communication, quantum key distribution (QKD) is one of the most mature. In QKD, parties use quantum-based techniques to exchange encryption keys, which are then used to transmit data across traditional optical networks. Chinese researchers have several QKD initiatives using both in-ground optical fiber and over-the-air satellite links, including a recently completed 2,900-mile network that combines the two transmissions technologies.
- **Quantum Sensing:** Quantum sensors have the potential to replace existing sensors in many applications, including locating and monitoring oil, gas, and mineral deposits; surveying construction sites; and detecting the slightest environmental, seismic, or weather changes. Subatomic particles are sensitive to rotation, acceleration, time, and electric, magnetic, and gravitational fields, among other external effects. This allows them to be used to make very

responsive sensors whose accuracy and performance exceed that of conventional sensors.

- **Quantum Supremacy:** Quantum computing is in reach for any developer who wants to start learning and experimenting, but several challenges remain before we can fully harness the potential of this technology. Even with the powerful algorithms and techniques available, the hardware is not yet stable enough to reach “quantum supremacy,” the theoretical moment a quantum algorithm solves a problem that is unfeasible.
- **Competitive Advantage:** Those who apply quantum computing well first will be much ahead of their competition. Working together with the tech companies and research institutions will be important in surmounting the challenges that arise and achieving the full potential of quantum technology.
- **Return on Investment:** ROI for quantum computing will not follow traditional metrics. It will depend on a company’s strategic posture, the relevance of quantum to its business model, and its capacity to absorb and act on early insights. But waiting for perfect visibility on ROI is a high-risk strategy. The cost of delay, in terms of talent readiness, ecosystem positioning and lost innovation opportunities, may be far greater than the cost of early, contained experimentation.
- **Effectiveness:** Quantum computing can help improve the effectiveness and efficiency of complicated business processes. Quantum algorithms can solve complex business problems, such as optimization issues and scheduling and logistics concerns, more efficiently than classical algorithms. They aid organizations in optimizing their supply chains, minimizing costs, and improving their bottom line.
- **Cost Reduction:** Quantum computers can significantly minimize the cost of computation. Businesses need not depend on cloud-based or privately owned computing services because quantum computing can handle more data than traditional computers. The increase in speed and accuracy of business functions results in greater productivity and higher client satisfaction.

CHALLENGES

For most use cases, engineers, mathematicians, and business operators still have trouble justifying quantum over classical for cost, speed, and ease of use. Other challenges include the following [16-18]:

- **Complexity:** Quantum's unique complexity makes it easy to understand, and overestimate. Unlike classical computers, quantum machines can effectively perform complex parallel calculations almost simultaneously. Quantum technology could help cut through the complexity of today's trading environments.
- **Cold Temperatures:** The temperatures required are near absolute zero. To achieve such a cold temperature, the chip is required to be cooled down. This is achieved through liquified helium, which makes the chip very cold. To achieve superconductivity, such low temperatures are essential for quantum computing.
- **Collaboration:** Business leaders should avoid falling into the multibillion-dollar trap by seeking mutually beneficial collaborations. Partnerships with academic institutions, research consortia, and quantum startups can accelerate learning and reduce risk. The collaborations not only extend internal capabilities but also embed companies within the broader quantum ecosystem, where standards, talent pipelines, and breakthroughs will emerge. Business leaders should monitor national quantum strategies and consider participating in public-private partnerships to gain early access to talent, tools and influence. When we see the public sector, academia, and industry getting involved and investing in a technology at this rate, breakthroughs often happen.
- **Risk Profiling:** Financial services institutions are under increasing pressure to balance risk, hedge positions more effectively, and perform a wider range of stress tests to comply with regulatory requirements. Liquidity management, derivatives pricing, and risk measurement can be complex and calculations difficult to perform, making it hard to properly manage the costs of risk on trades. In the face of more sophisticated risk-profiling demands and rising regulatory hurdles, the data-processing capabilities of quantum computers may speed up risk scenario simulations with higher precision.
- **Talent Shortage:** There is a quantum skills shortage. The quantum workforce includes a wide range of skilled employees, such as quantum physicists, computer scientists, engineers, technicians, and people with a business background. Most current jobs in quantum are still highly technical requiring academic specializations and PhDs. The quantum skills shortage will continue over the next five years and companies need to plan accordingly. There are four primary talent needs: data specialists, quantum developers, use-case identifiers who understand both the business needs and the technology, and executive sponsors.
- **Regulation:** As the quantum potential grows, policy makers are creating new policies to enhance this technology and mitigate risks. Regulation includes principles such as "common good," accountability, inclusiveness, equitability, accessibility, and transparency. Companies need to stay up to date with regulatory changes in the industry.
- **Decoherence:** This is caused by a range of factors, including light, heat, sound, vibration, radiation, and even the act of measuring a qubit itself. Quantum computers are powerful but delicate, as qubits can decay and lose coherence when interacting with the environment, hindering their broad usefulness. They are sensitive to disturbances in their surroundings, leading to decoherence. While supercooled fridges and vacuum chambers are used to shield qubits from the outside world, errors still creep into quantum calculations.

CONCLUSION

Quantum computing represents the new era in digital technology, harnessing the power of quantum mechanics to solve problems that were previously out of reach for conventional computers. The future of quantum computing is bright, and the business leaders who embrace its potential today will be the ones leading the industries of tomorrow. As a business leader, now is the perfect time to start exploring how quantum computing can benefit your industry.

While still in its early days, quantum computing is starting to take root in business, helping companies tackle complex optimization and innovation challenges in new ways. Quantum technology is promising because of its potential computational power. Given the computational power of quantum computer is overwhelming, quantum computer could be considered as a disruptive technology that will change the business world in many aspects. Business leaders across sectors should be prepared to capitalize on the advantages that quantum computing can offer their organizations, or risk falling behind and missing out on opportunities for efficiency and growth. More information about quantum computing in business can be obtained from the books in [19-23].

REFERENCES

- [1] "Quantum computing explained," <https://fourweekmba.com/quantum-computing-explained/>

[2] "Quantum computing," *Wikipedia*, the free encyclopedia
https://en.wikipedia.org/wiki/Quantum_computing

[3] <https://www.science.org.au/curious/policy-features/rethinking-cybersecurity-quantum-world>

[4] B. Patra et al., "Cryo-CMOS circuits and systems for quantum computing applications," *IEEE Journal of Solid-State Circuits*, September 2017, pp.1-13.

[5] "Quantum computing and its applications,"
<https://www.batoi.com/blogs/perspective/quantum-computing-applications-6357d329ccbad>

[6] R. Seifman, "Is quantum computing a potential game changer for the health sector?" March 2025,
<https://impakter.com/is-quantum-computing-a-potential-game-changer-for-the-health-sector/>

[7] L. Gyongyosia and S. Imreb, "A survey on quantum computing technology," *Computer Science Review*, vol. 31, 2019, pp. 51-71.

[8] P. S. Menon and M. Ritwik, "Comprehensive but not complicated survey on quantum computing," *IERI Procedia*, vol. 10, 2014, pp. 144 – 152.

[9] "How quantum computing is helping businesses to meet objectives,"
<https://www.information-age.com/how-quantum-computing-is-helping-businesses-to-meet-objectives-19014/>

[10] G. Wheelwright, "IBM plans to deliver 'industry first' quantum computers via the cloud," March 2017,
<https://www.geekwire.com/2017/ibm-plans-deliver-industry-first-quantum-computers-via-cloud/>

[11] "Quantum computing for business leaders,"
<https://www.pasqal.com/quantum-for-business-leaders/#:~:text=In%20the%20financial%20sector%2C%20speed,more%20accurately%20than%20classical%20computers.>

[12] "What is quantum computing and what businesses need to know about this technology,"
<https://www.sectigo.com/blog/what-is-quantum-computing-and-what-businesses-need-to-know-about-this-technology>

[13] A. D. Santos, "BPO and quantum computing: Managing complex operations," June 2025,
<https://unity-connect.com/our-resources/bpo-learning-center/bpo-in-quantum-computing/>

[14] K. Meghana, "Quantum computing: Potential business applications by 2025,"
<https://fortunerhub.com/quantum-computing-potential-business-applications-by-2025/>

[15] "A business leader's guide to quantum technology," April 2021,
<https://www.deloitte.com/us/en/insights/topics/innovation/quantum-computing-business-applications.html>

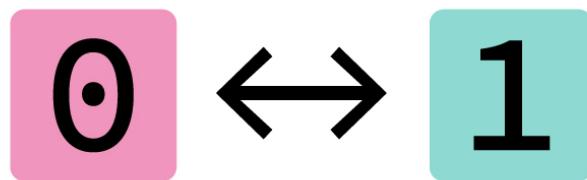
[16] C. Dukatz and L. Converso, "Are businesses ready for practical quantum computing?"
<https://cmr.berkeley.edu/2025/07/are-businesses-ready-for-practical-quantum-computing/>

[17] "Exploring quantum computing use cases for financial services,"
<https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/exploring-quantum-financial>

[18] J. M. Munoz, R. García-Castro, and S. Mugel, "Quantum computing and the business transformation journey,"
<https://cmr.berkeley.edu/2023/12/quantum-computing-and-the-business-transformation-journey/>

[19] A. Krishnakumar, *Quantum Computing and Blockchain in Business: Exploring the Applications, Challenges, and Collision of Quantum Computing and Blockchain*. Packt Publishing, 2020.

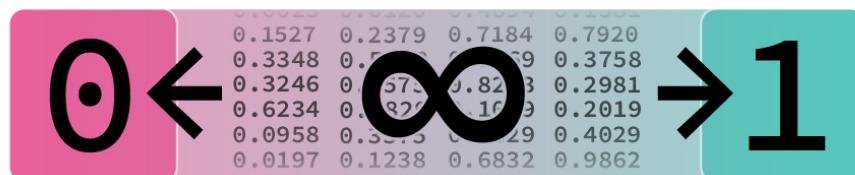
[20] D. King, *Quantum Computing for Non-Technical Business Leaders: 2025 Case Studies, ROI Analysis, and 18-Month Implementation Roadmap*. Kindle edition, 2025.


[21] K. Groenland, *Introduction to Quantum Computing for Business*. Amsterdam University Press, 2025.

[22] E. Yndurain, *Getting Started with Quantum Computing for Business*. Boca Raton, FL: CRC Press, 2025.

[23] D. La Torre and F. S. Khan (eds.), *Unlocking Quantum Information Technology Opportunities for Business and Management*. Taylor & Francis, 2024.

TRADITIONAL COMPUTERS


Technology based on ‘bits’

Bits have two states: 0 or 1

QUANTUM COMPUTERS

Technology based on ‘qubits’

Qubits have an infinite number
of states between 0 and 1

Figure 1 The bit and the qubit [3].

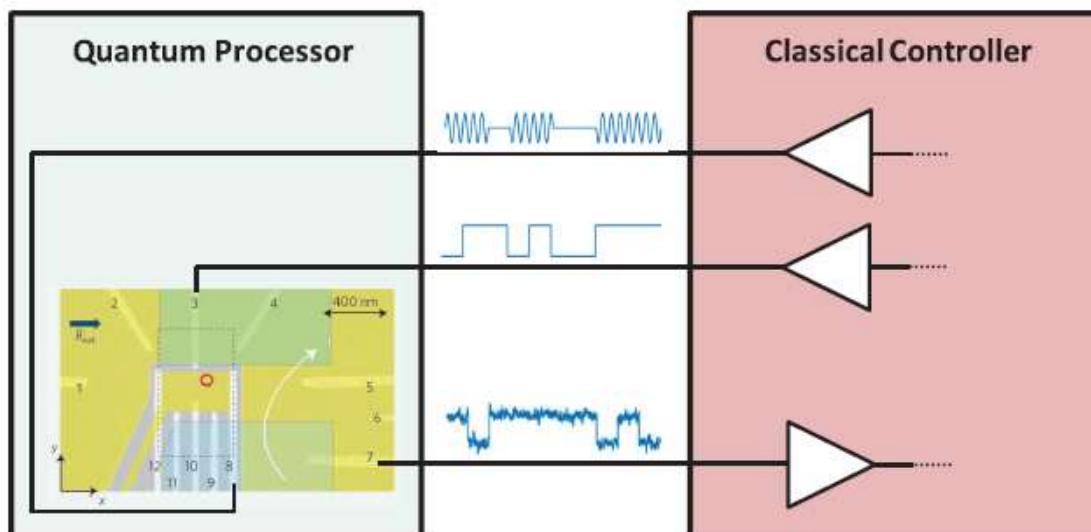
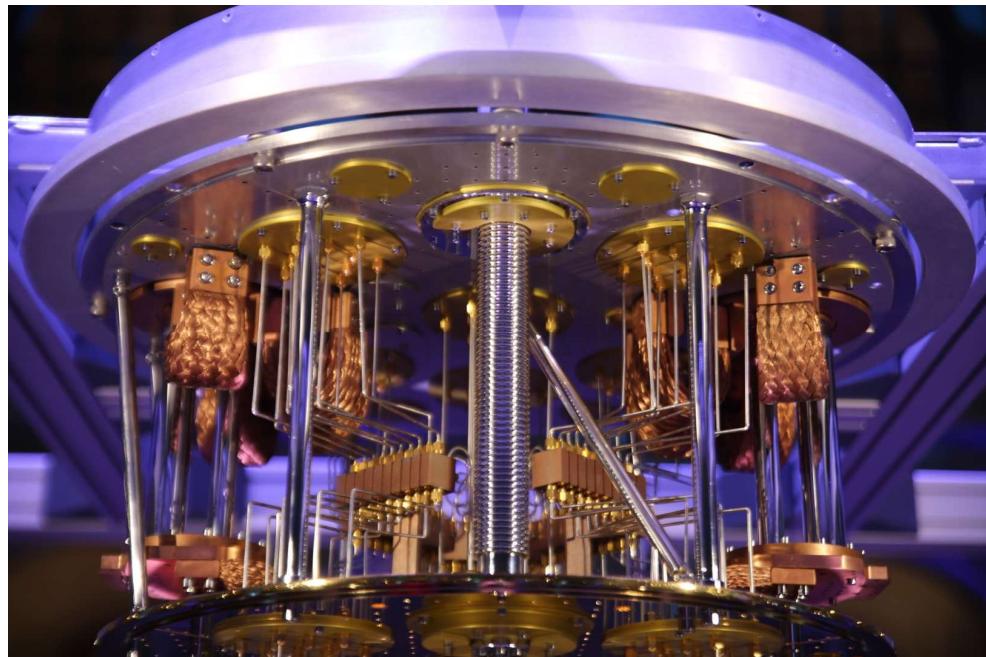



Figure 2 Quantum processor and classical electronic controller [4].

Figure 3 A representation of quantum computing [5].

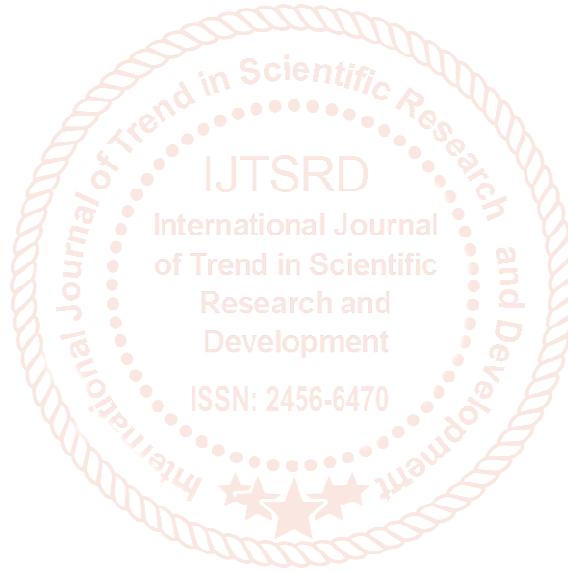

Figure 4 A typical quantum computer [6].

Figure 5 A representation of quantum computing in business [9].

Figure 6 IBM laboratory in Yorktown, NY [10].

