

Characteristics of Construction Waste for Highway Materials

Arsalan Zahoor¹, Er. Ajay Vikram²

¹Research Scholar, Department of Civil Engineering, Rayat Bahra University, Sahauran, Kharar, Punjab, India

²Assistant Professor, Department of Civil Engineering, Rayat Bahra University, Sahauran, Kharar, Punjab, India

ABSTRACT

Construction activities generate a significant volume of waste, much of which possesses properties suitable for reuse in highway infrastructure. This study examines the physical, chemical, and mechanical characteristics of common construction waste materials, including concrete debris, reclaimed asphalt pavement (RAP), bricks, and mixed demolition waste, to evaluate their viability as alternative highway construction materials. Key parameters such as particle size distribution, compressive strength, abrasion resistance, and contaminant levels were analyzed to determine performance and compliance with roadway specifications. Findings indicate that processed concrete and RAP exhibit high structural integrity and can effectively substitute traditional aggregates in base and sub-base layers, contributing to reduce demand for natural resources. Brick and mixed waste materials, while more variable in composition, demonstrate acceptable performance when properly graded and stabilized. The reuse of construction waste offers substantial environmental benefits by lowering landfill volumes, minimizing extraction of virgin aggregates, and reducing carbon emissions. However, challenges remain regarding heterogeneity, contamination, and quality control, which necessitate standardized processing and testing methods. Overall, the study highlights the potential of construction waste as a sustainable resource for highway material applications, promoting circular economy practices in infrastructure development.

How to cite this paper: Arsalan Zahoor | Er. Ajay Vikram "Characteristics of Construction Waste for Highway Materials" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-6, December 2025, pp.496-507, URL: www.ijtsrd.com/papers/ijtsrd99900.pdf

IJTSRD99900

Copyright © 2025 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (<http://creativecommons.org/licenses/by/4.0>)

KEYWORDS: Construction Waste, Highway Materials, Recycled Aggregates, Sustainability, Reclaimed Asphalt Pavement (RAP).

1. Background

The construction industry is a major global economic contributor but generates nearly 35% of the world's solid waste, making it highly resource-intensive. Construction and demolition (C&D) waste includes concrete, asphalt, bricks, metals, wood, plastics, and composites, much of which ends up in landfills, consuming land and harming the environment. Concrete and masonry form the largest share about 40–50% by weight followed by asphalt and smaller fractions of metals and wood.

Landfilling has long been the primary disposal method but is increasingly unsustainable due to limited space, rising costs, stricter regulations, and the loss of reusable materials. Meanwhile, highway construction requires large quantities of aggregates, asphalt, and cement, mostly sourced from virgin materials whose extraction contributes to environmental degradation.

The simultaneous abundance of C&D waste and high material demand in highway projects presents an opportunity to recycle waste as construction inputs. This supports sustainable development and circular-economy goals by conserving natural resources, reducing environmental impacts, and keeping materials in productive use for longer.

1.1. The Circular Economy Paradigm in Construction

The circular economy shifts from the linear “take–make–dispose” model to one that keeps resources in use for as long as possible. In highway construction, applying circular economy principles through the use of C&D waste offers several benefits.

It conserves natural resources by replacing virgin aggregates with recycled materials, reducing the need for quarrying and mining. Recycling also diverts large

waste volumes from landfills, helping manage limited disposal space. Environmental impacts are minimized by lowering resource extraction, reducing landfill pollution, and decreasing energy consumption and greenhouse gas emissions compared to using new materials.

Economically, recycled materials are often cheaper due to lower extraction and transport costs, offering savings for highway projects. This shift also drives innovation in recycling technologies and material processing, creating new industry opportunities and jobs.

1.2. Current State of Construction Waste Utilization in Highways

The use of construction waste in highway projects is growing worldwide, though adoption differs by region. European countries such as the Netherlands, Germany, and Denmark recycle over 90% of certain C&D waste due to strong policies, standards, and advanced recycling systems. In North America, recycled concrete aggregate (RCA) and reclaimed asphalt pavement (RAP) are widely used, though acceptance varies by state. Developing countries face challenges like limited infrastructure, weak specifications, and low awareness, but interest in sustainable practices is increasing.

Despite progress, several barriers hinder broader adoption. Recycled materials can vary in quality depending on their source, affecting performance. Contamination from plastics, wood, or hazardous substances can reduce quality or create environmental risks. Technical challenges arise from the need for specialized processing, while lack of regulations and standards creates uncertainty. Additionally, misconceptions about durability and initial investment costs can discourage use, especially where natural aggregates are readily available and inexpensive.

1.3. Types of Construction Waste Suitable for Highway Applications

Various types of construction waste have demonstrated potential for use in highway construction, each with distinct characteristics and suitable applications:

1.3.1. Recycled Concrete Aggregate (RCA)

Concrete waste from demolished structures, pavement removal, and production overruns can be crushed and processed into recycled concrete aggregate. RCA can replace natural aggregates in various highway applications, including base and subbase layers, granular fill materials, aggregate in new concrete for structural elements, and asphalt concrete mixtures.

The properties of RCA differ from natural aggregates primarily due to the presence of adhered mortar on the aggregate particles. This affects characteristics such as water absorption, density, and mechanical strength. However, with proper processing and quality control, RCA can meet performance requirements for many highway applications.

1.3.2. Reclaimed Asphalt Pavement (RAP)

When existing asphalt pavements are milled or removed during rehabilitation or reconstruction, the resulting material is known as reclaimed asphalt pavement. RAP is one of the most successfully recycled construction materials, with millions of tons reused annually in new asphalt pavements. RAP contains aged bitumen that can partially substitute for virgin binder and quality aggregates embedded in the asphalt.

Using RAP in new hot-mix asphalt (HMA) reduces the need for virgin aggregates and bitumen, offering substantial material cost savings. Modern technologies enable the use of high RAP percentages (40-50% or more) while maintaining pavement performance.

1.3.3. Crushed Brick and Masonry

Brick and masonry waste from building demolition can be crushed and used in highway construction, particularly in unbound base and subbase layers, fill materials, and low-volume roads and shoulders.

Crushed brick exhibits moderate strength and durability characteristics. Its relatively high porosity results in greater water absorption compared to natural aggregates, which must be considered in design and construction.

1.3.4. Recycled Glass

Glass from construction waste, though less common, can be processed for use in highway applications such as asphalt concrete (glasphalt), aggregate in concrete, and highway marking materials due to its reflectivity.

Glass possesses unique properties including smoothness and angular fracture, which can benefit certain applications but may require specific processing and blending with other materials.

1.3.5. Metal Scraps and By-products

While metals are typically recovered for their scrap value rather than direct use in pavements, certain metal by-products and slags from metal production can serve as highway materials, including steel slag as aggregate substitute, copper slag in asphalt mixtures, and reinforcement applications.

These materials often possess high strength and durability but require careful evaluation for potential environmental impacts.

1.4. Research Objectives

This research focuses on examining the characteristics of construction waste that can be used as materials in highway construction. The specific objectives are:

1. To identify the common types of construction waste suitable for highway construction
2. To analyse the physical and chemical characteristics of construction waste:
3. To evaluate the performance of construction waste in highway applications:
4. To assess the environmental and economic benefits of utilizing construction waste:

1.5. Significance of the Study

This study holds strong environmental and economic importance. Using recycled construction waste in highway materials reduces dependence on natural resources, limits degradation caused by extraction, and helps decrease landfill waste. It also lowers greenhouse gas emissions, contributing to climate change mitigation. Economically, recycled materials are often cheaper than virgin resources, reducing construction and disposal costs.

Technically, the study enhances knowledge on material properties, processing methods, and performance, enabling engineers to make informed decisions. It further supports policy development by providing evidence for sustainable construction guidelines and promoting circular economy practices. Socially, recycling in construction creates employment opportunities and improves public confidence in sustainable infrastructure efforts, aligning with global goals such as SDG 12 and SDG 13.

1.6. Scope and Limitations

The scope of this study is confined to the evaluation of construction waste generated from highway construction and demolition projects. This includes materials such as concrete, asphalt, metals, bricks, and other recyclable materials typically found on construction sites. The study will focus on materials sourced from highways in both urban and rural settings, as well as those recycled directly from old pavement structures.

1.7. Scope of the Study:

Material Types:

The study focuses on recycled concrete aggregate (RCA), reclaimed asphalt pavement (RAP), crushed brick/masonry, and select metal by-products, representing the most commonly available construction waste suitable for highway use.

Testing Program:

Laboratory tests will assess physical properties (gradation, density, absorption, moisture), mechanical performance (compressive strength, abrasion resistance, bearing capacity), and chemical characteristics (composition, contaminants, leaching). Pilot field sections will be used to evaluate in-service performance where possible.

Geographic Context:

Research will be conducted within a defined region, considering local waste generation, recycling facilities, climate, and regulatory conditions.

Application Focus:

Materials will be evaluated for highway uses such as base/subbase layers, embankment fill, and pavement surfaces. Suitability will be judged based on performance needs and current practice.

1.8. Limitations of the Study

This study has several limitations. Construction waste materials vary widely in composition depending on their source and processing, making it difficult to represent all possible conditions. Laboratory testing is limited to selected samples, meaning results may not fully reflect large-scale variability or long-term performance. Geographic constraints may also limit applicability, as results may differ in regions with different climates, construction practices, or regulations.

Economic evaluation is based on current market conditions and technologies, so future changes could affect cost-benefit outcomes. Additionally, only presently available processing methods are considered, excluding emerging technologies that may improve material quality. Regulatory analysis is restricted to the study region and may not apply elsewhere.

Despite these constraints, the research provides valuable insight into the suitability of construction waste for highway use and highlights areas for further investigation.

2. Research Methodology

Research Design and Framework

The overall research framework consists of sequential and interconnected phases, each building upon the findings of previous phases. The research design follows a logical progression from material characterization through performance evaluation to practical recommendations.

Phase 1: Material Collection and Preparation - Identifying sources of construction waste, collecting representative samples, and preparing materials for testing.

Phase 2: Laboratory Testing - Conducting comprehensive physical, chemical, and mechanical characterization of construction waste materials.

Phase 3: Field Performance Evaluation - Implementing recycled materials in pilot highway sections and monitoring performance under actual service conditions.

Phase 4: Environmental and Economic Assessment - Evaluating lifecycle environmental impacts and conducting cost-benefit analysis.

Phase 5: Data Analysis and Synthesis - Analyzing collected data, validating findings, and developing practical recommendations.

The research timeline spans approximately eighteen to twenty-four months, allowing sufficient time for material collection, comprehensive testing, field monitoring, and thorough analysis of results.

2.1. Phase 1: Collection of Construction Waste Samples

2.1.1. Site Selection Criteria

The selection of construction and demolition sites for sample collection is critical to ensuring that the collected materials are representative of typical construction waste streams. Site selection is based on the following criteria:

Project Type Diversity: Sites are selected to represent different types of construction activities, including building demolition, highway reconstruction, bridge replacement, and new construction projects. This diversity ensures that the waste samples encompass the range of materials typically generated in the construction industry.

Geographic Distribution: Sites are selected from both urban and rural locations within the study region to account for potential variations in construction practices, material types, and waste composition related to geographic factors.

Age of Structures: For demolition sites, structures of varying ages are included to capture differences in construction materials and methods used in different eras. Older structures may contain different material types and qualities compared to more recent construction.

Scale of Projects: Both large-scale infrastructure projects and smaller-scale building projects are included to ensure representation of waste streams from projects of varying sizes.

Waste Management Practices: Sites with different waste management approaches, including those with source separation and those with mixed waste

streams, are included to understand how management practices affect material quality and recyclability.

Accessibility and Cooperation: Practical considerations including site accessibility, willingness of project owners or contractors to participate, and availability of documentation about the demolished structures are factored into site selection.

2.1.2. Sampling Protocols and Procedures

Systematic sampling techniques are employed to ensure that collected samples are representative and sufficient for comprehensive testing.

Bulk Sampling: For each major material type (concrete, asphalt, brick, etc.), bulk samples of at least five hundred to one thousand kilograms are collected to provide adequate material for all planned laboratory tests. Bulk samples are collected from multiple locations within each site to account for potential spatial variability.

Random Sampling: Within each bulk sample, random sampling techniques are used to select test specimens, minimizing selection bias and ensuring representativeness.

Composite Sampling: For materials exhibiting significant heterogeneity, composite samples combining material from multiple sources or locations are prepared to represent average conditions.

Targeted Sampling: In addition to bulk and composite samples, targeted samples of specific material types or conditions of interest (e.g., concrete with different strengths, asphalt with varying ages) are collected for comparative analysis.

Documentation: Comprehensive documentation accompanies each sample, including photographs, location information, source structure details (age, type, original materials), visible contaminants, and estimated volume or mass. Chain of custody procedures is followed to maintain sample integrity and traceability.

2.1.3. Preliminary Screening and Segregation

On-site preliminary screening is conducted to assess waste composition and remove obvious contaminants before transportation to the laboratory.

Visual Inspection: Trained personnel conduct visual inspections to identify material types, estimate proportions of different components, and identify contaminants such as wood, plastic, gypsum, insulation, or hazardous materials.

Manual Segregation: Large, easily identifiable contaminants are manually removed from the waste stream. This includes wood pieces, plastic sheets,

reinforcing steel (if not part of the study focus), and other non-target materials.

Volume and Mass Recording: The volume and mass of collected samples are recorded both before and after preliminary cleaning to document the proportion of contaminants and provide data on waste composition.

Safety Precautions: Appropriate personal protective equipment is used during sample collection, and safety protocols are followed to protect workers from potential hazards including sharp objects, dust, and potentially hazardous materials.

Sample Labelling and Storage: Samples are placed in appropriate containers, clearly labeled with identification codes, collection date, source information, and material type. Storage conditions are controlled to prevent degradation or contamination during transportation and storage before testing.

2.2. Phase 2: Laboratory Testing

2.2.1. Physical Property Testing

Physical property characterization provides fundamental information about the nature of construction waste materials and their suitability for highway applications.

Particle Size Distribution Analysis

Sieve analysis is conducted according to ASTM C136 and AASHTO T27 standards to determine the gradation of recycled aggregate materials. The procedure involves:

Sample Preparation: Samples are dried to constant mass at 110 degrees Celsius and cooled to room temperature. Representative test specimens of appropriate mass (typically 5 to 20 kilograms depending on maximum particle size) are selected using splitting or quartering methods.

Sieving Procedure: Samples are passed through a nested series of sieves with standard opening sizes ranging from 75 millimeters down to 0.075 millimeters (No. 200 sieve). Sieves are arranged in descending order of opening size, and the sample is agitated either manually or using a mechanical sieve shaker for a sufficient duration to achieve complete separation.

Mass Determination: The mass of material retained on each sieve is determined using calibrated balances. The percent retained on each sieve and cumulative percent passing are calculated. Results are presented in tabular form and graphically as gradation curves.

Quality Control: Duplicate tests are performed on representative samples to verify reproducibility. The sum of masses retained on all sieves and the pan

should equal the original sample mass within acceptable tolerance limits (typically 0.3 percent).

Analysis: Gradation results are compared to specification requirements for the intended application (e.g., base course, asphalt aggregate) to assess conformance. Gradation parameters such as fineness modulus, coefficient of uniformity, and coefficient of curvature are calculated where applicable.

Specific Gravity and Absorption Testing

Specific gravity and water absorption are fundamental properties affecting material behavior and mixture design. Testing is conducted according to ASTM C127 (coarse aggregate) and ASTM C128 (fine aggregate) standards.

Sample Preparation: Aggregate samples are washed to remove dust and fine particles, then saturated by immersion in water for a specified period (typically 24 hours) to achieve the saturated surface-dry condition.

Procedure for Coarse Aggregate: The saturated surface-dry mass is determined first. The sample is then weighed while suspended in water to determine the submerged mass. Finally, the sample is dried to constant mass in an oven at 110 degrees Celsius and the oven-dry mass is recorded.

Procedure for Fine Aggregate: Fine aggregate in the saturated surface-dry condition is placed in a conical mold and tamped. When the cone slumps upon mold removal, the sample is considered to be in the saturated surface-dry condition. The saturated surface-dry mass, mass in water (using a pycnometer), and oven-dry mass are determined.

Calculations: Bulk specific gravity (dry basis), bulk specific gravity (saturated surface-dry basis), apparent specific gravity, and absorption are calculated using standard formulas. For construction waste materials, particularly recycled concrete aggregate, absorption values typically exceed those of natural aggregates due to adhered mortar porosity.

Bulk Density and Unit Weight

Bulk density measurements are conducted according to ASTM C29 to determine the mass per unit volume of aggregate in a specified compaction condition.

Procedure: A cylindrical metal measure of known volume is filled with aggregate in three layers, each layer compacted by rodding or vibrating according to the specified procedure. The net mass of aggregate in the container is determined, and bulk density is calculated by dividing mass by volume.

Compaction Conditions: Tests are performed in both loose and compacted conditions to determine the

range of achievable densities, which is relevant for estimating material quantities and assessing compaction characteristics.

Voids Content: The percent voids in the aggregate mass is calculated based on bulk density and specific gravity values, providing information about particle packing characteristics.

Moisture Content Determination

Moisture content testing follows ASTM D2216 procedures and is essential for quality control during construction and for correcting test results to standard moisture conditions.

Procedure: A representative sample is weighed in its natural (moist) condition, then dried in an oven at 110 degrees Celsius until constant mass is achieved (typically 24 hours). The moisture content is calculated as the ratio of water mass to dry solid mass, expressed as a percentage.

Application: Moisture content data are used to adjust material quantities in mixture designs, correct density measurements, and control compaction during construction.

2.2.2. Mechanical Property Testing

Mechanical property tests evaluate the structural performance characteristics of construction waste materials.

Compressive Strength Testing

For recycled concrete aggregates and stabilized materials, compressive strength is a critical performance indicator. Testing follows ASTM C39 for concrete cylinders or ASTM D1633 for stabilized soil-aggregate mixtures.

Specimen Preparation: For testing recycled concrete aggregate as a cementitious material, cylindrical specimens (typically 150 millimeters diameter by 300 millimeters height) are prepared by mixing RCA with cement and water at specified proportions, molding in standard cylinders, and curing under controlled conditions (typically 23 degrees Celsius and high humidity) for specified periods (7, 28, and 90 days).

Testing Procedure: Specimens are placed in a compression testing machine and loaded continuously at a controlled rate until failure occurs. The maximum load sustained is recorded, and compressive strength is calculated by dividing the maximum load by the cross-sectional area of the specimen.

Variations: Tests are conducted on specimens with varying cement contents, curing times, and RCA properties to establish relationships between these variables and strength development.

Analysis: Compressive strength results are statistically analyzed to determine mean values,

standard deviations, and coefficients of variation. Results are compared to strength requirements for the intended application and to strength values typical of conventional materials.

Los Angeles Abrasion Test

The Los Angeles abrasion test, conducted according to ASTM C131 or AASHTO T96, evaluates the resistance of aggregate to degradation by abrasion and impact.

Procedure: A specified mass of aggregate (typically 5 kilograms) within a defined size range is placed in a rotating steel drum along with steel balls (the charge). The drum is rotated for a specified number of revolutions (typically 500). After testing, the aggregate is removed and sieved on the No. 12 sieve (1.70 millimeters).

Calculation: The LA abrasion loss is calculated as the percentage of original sample mass that passes the No. 12 sieve after testing. Lower values indicate greater resistance to degradation.

Significance: LA abrasion values are indicators of aggregate toughness and durability. Specifications typically establish maximum allowable values (commonly 40 to 50 percent) depending on the application. Construction waste materials, particularly recycled concrete aggregate, may exhibit higher abrasion losses than high-quality natural aggregates due to adhered mortar.

California Bearing Ratio (CBR) Testing

CBR testing, performed according to ASTM D1883, evaluates the strength and load-bearing capacity of materials for use in base and subbase layers.

Sample Preparation: Aggregate samples are compacted in standard cylindrical molds at specified moisture contents and compaction energies that simulate field conditions. Samples are typically compacted to 95 or 100 percent of maximum dry density as determined by standard Proctor compaction tests.

Soaking Procedure: Compacted specimens are soaked in water for a specified period (typically 96 hours) while swell measurements are recorded. Soaking simulates worst-case moisture conditions and tests the material's susceptibility to weakening when saturated.

Penetration Testing: After soaking, specimens are subjected to penetration by a standard plunger at a controlled rate. The load required to achieve specified penetrations (2.5 and 5.0 millimeters) is measured.

Calculation: CBR values are calculated as the ratio of measured load to standard load for the same penetration, expressed as a percentage. The higher of

the values at 2.5 or 5.0 millimeters penetration is typically reported as the CBR.

Analysis: CBR values indicate the structural capacity of materials for pavement foundation layers. Minimum CBR values are specified based on expected traffic levels and pavement design procedures. Recycled materials are evaluated to determine whether they meet these minimum requirements.

Resilient Modulus Testing

Resilient modulus testing, following AASHTO T307 or ASTM D7369, provides a fundamental characterization of material stiffness under repeated loading, which is directly applicable to mechanistic pavement design methods.

Principle: The test measures the elastic (recoverable) deformation response of materials to repeated load pulses that simulate traffic loading. The resilient modulus is calculated as the ratio of applied cyclic stress to recoverable strain.

Specimen Preparation: Cylindrical specimens are prepared by compacting material to field density at optimum moisture content. Specimens are typically 150 millimeters in diameter and 300 millimeters in height for unbound materials.

Testing Procedure: Specimens are subjected to a haversine-shaped load pulse (typically 0.1 seconds duration with 0.9 seconds rest period) under confining pressure conditions. Multiple stress states representing different pavement depths are applied in sequence. Axial deformation is measured using linear variable differential transformers (LVDTs).

Data Analysis: Resilient modulus values are calculated for each stress state and plotted against stress level. Constitutive models (such as the k-theta model or universal model) are fitted to the data to characterize material behavior for use in pavement design software.

Comparison: Resilient modulus values of recycled materials are compared to those of conventional base and subbase materials to assess their relative structural contribution in pavement systems.

Triaxial Shear Strength Testing

Triaxial testing, conducted according to ASTM D7181, determines the shear strength parameters of materials, which are important for stability analysis in embankments and structural layers.

Specimen Preparation: Cylindrical specimens are prepared at the density and moisture content representative of field conditions.

Testing Procedure: Specimens are subjected to confining pressure while axial load is increased until

failure occurs. Tests are conducted at multiple confining pressures to develop failure envelopes.

Analysis: Mohr-Coulomb strength parameters (cohesion and friction angle) are determined from the failure envelope. These parameters characterize the material's resistance to shear failure and are used in stability analyses.

2.2.3. Chemical Property Testing

Chemical characterization is essential to assess potential environmental impacts and material compatibility.

X-Ray Fluorescence (XRF) Analysis

XRF analysis provides rapid, non-destructive determination of elemental composition.

Procedure: Prepared samples (either pressed pellets or fused glass discs) are exposed to X-rays, causing elements in the sample to emit characteristic fluorescent X-rays. The energy and intensity of fluorescent X-rays are measured to identify and quantify elements present.

Application: XRF analysis determines the major and minor elemental composition of construction waste materials, including silicon, calcium, aluminum, iron, and other elements. This information helps characterize material chemistry and identify potential contaminants.

2.3. X-Ray Diffraction (XRD) Analysis

XRD identifies crystalline mineral phases present in materials.

Procedure: Powdered samples are exposed to X-rays at varying angles. The diffraction pattern produced is characteristic of the crystalline phases present. Computer software matches observed patterns to reference databases to identify minerals.

Application: For construction waste materials, XRD can identify cement phases, aggregate mineralogy, and potentially problematic minerals such as expansive clays or reactive silica phases.

pH Testing

pH measurements assess the acidity or alkalinity of materials and leachates.

Procedure: Material samples are mixed with distilled water at a specified ratio, agitated, and allowed to equilibrate. The pH of the supernatant or extract is measured using a calibrated pH meter.

Significance: pH affects chemical reactivity, corrosion potential, and environmental impacts. Concrete-based materials typically exhibit high pH due to cement content, which can be beneficial for stabilizing certain materials but may raise environmental concerns in some applications.

Sulfate Content Determination

Sulfate content is measured according to ASTM C1580 or similar methods to assess potential for sulfate attack or expansion problems.

Procedure: Soluble sulfates are extracted from material samples using water or acid extraction, then quantified using gravimetric, turbidimetric, or ion chromatography methods.

Significance: Elevated sulfate levels, potentially from gypsum contamination in construction waste, can cause expansion and deterioration in cementitious materials. Specifications typically limit sulfate content to prevent such problems.

Heavy Metal and Contaminant Testing

Testing for potentially hazardous substances is critical for environmental safety.

Metals Analysis: Samples are digested using appropriate methods (e.g., EPA Method 3050B), then analyzed for heavy metals including lead, cadmium, chromium, mercury, and arsenic using inductively coupled plasma spectrometry (ICP) or atomic absorption spectrometry (AAS).

Organic Contaminants: Where there is potential for organic contamination (e.g., from asphalt or coatings), testing for polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), or other organics may be conducted using gas chromatography-mass spectrometry (GC-MS) or other appropriate methods.

Leaching Tests

Environmental leaching tests assess the potential for harmful substances to be released from recycled materials into the environment.

Procedure: Standardized leaching tests such as the Toxicity Characteristic Leaching Procedure (TCLP - EPA Method 1311) or the Synthetic Precipitation Leaching Procedure (SPLP - EPA Method 1312) are conducted. These tests involve extracting samples with specified leaching fluids under controlled conditions, then analyzing the leachate for contaminants of concern.

Analysis: Leachate concentrations are compared to regulatory limits to determine whether materials pose environmental risks. Materials that fail to meet criteria may require additional treatment or may be deemed unsuitable for certain applications.

Total Organic Content

For materials intended for use in engineered fills or where organic content could affect performance, total organic content is determined by loss on ignition testing.

Procedure: Samples are dried, weighed, and then heated to high temperature (typically 440 degrees Celsius) to combust organic matter. The mass loss represents organic content.

Significance: Excessive organic content can cause compressibility problems in fills and may affect the setting and strength development of stabilized materials.

2.4. Phase 3: Field Performance Evaluation

2.4.1. Pilot Test Section Design and Construction

To evaluate the real-world performance of construction waste materials in highway applications, pilot test sections are designed and constructed in collaboration with highway authorities.

Site Selection: Test sections are located on highway projects where construction is planned, allowing integration with actual construction activities. Sites are selected to represent typical conditions for the intended application, including soil conditions, climate, and anticipated traffic levels.

Section Layout: Multiple test sections are established, typically including sections with recycled materials at different incorporation rates or processing levels, as well as control sections with conventional materials for comparison. Each section is typically 100 to 500 meters in length, sufficient to allow meaningful testing while being economical to construct.

Design Considerations: Pavement or layer designs for test sections are developed using applicable design methods, with recycled material properties determined from laboratory testing used as input parameters. Designs may be developed to provide equivalent structural capacity to control sections or may be experimental designs to evaluate performance limits.

Construction Documentation: Detailed construction records are maintained, including material delivery tickets, placement procedures, compaction methods and results, weather conditions, and any issues or deviations from planned procedures. This documentation is essential for interpreting performance results.

Quality Control Testing: During construction, quality control testing is performed to verify that materials meet specifications and that construction procedures achieve target densities and other quality parameters. Tests include density measurements using nuclear gauges or other methods, moisture content determination, and in some cases, strength testing of cores or samples.

As-Built Documentation: Upon completion, comprehensive as-built documentation is prepared, including accurate locations and extents of test sections, final layer thicknesses, test results, and any deviations from original plans.

3. Results and Interpretations

3.1. Waste Source Characteristics

Construction waste samples were collected from twelve different sites representing diverse project types and locations over a period of eight months. The sites included four building demolition projects (two commercial buildings and two residential complexes), three highway reconstruction projects, two bridge replacement projects, and three new construction sites with waste from production overruns and quality control rejections.

The total quantity of waste materials collected and processed for the study was approximately 18,500 kilograms, comprising 8,200 kilograms of concrete waste, 5,800 kilograms of asphalt pavement waste, 2,100 kilograms of brick and masonry waste, 1,800 kilograms of mixed materials, and 600 kilograms of other materials including glass and metal by-products.

Table 3.1: Construction Waste Collection Summary

Parameter	Value
Total waste collected	18,500 kg
Concrete waste	8,200 kg
Asphalt pavement waste	5,800 kg
Brick and masonry waste	2,100 kg
Mixed materials	1,800 kg
Other materials	600 kg
Number of collection sites	12 sites
Collection period	8 months

The contamination level, defined as the percentage of non-target materials requiring removal, averaged 7.4 percent across all sites but varied from 3.2 percent at well-managed sites with source separation to 14.6 percent at sites with mixed waste streams. This finding emphasizes the importance of waste management practices at the source in determining the quality and ease of processing recycled materials.

Age characterization of demolished structures showed that buildings constructed before 1980 yielded concrete with lower compressive strength characteristics (average estimated original strength of 20-25 MPa) compared to more recent construction (average estimated original strength of 30-40 MPa). This age-related variation in source material quality has implications for the properties of recycled aggregates derived from these sources.

3.2. Processing and Material Preparation

The collected waste materials were processed using a combination of manual sorting, mechanical crushing, and screening to produce recycled aggregates meeting specified gradations. Processing yield, defined as the percentage of input material converted to usable recycled aggregate, averaged 86.3 percent for concrete waste, 91.7 percent for asphalt waste, and 79.2 percent for brick and masonry waste. The lower yield for brick and masonry was attributed to higher generation of fines during crushing due to the more friable nature of these materials.

Three gradations of recycled concrete aggregate were produced: coarse RCA (retained on 4.75 mm sieve), fine RCA (passing 4.75 mm sieve), and a combined gradation matching typical specifications for base course aggregate. Similarly, reclaimed asphalt pavement was processed and fractionated into multiple size fractions for use in different applications.

Quality control testing during processing revealed that maintaining consistent gradation was more challenging for recycled materials compared to virgin aggregates due to variations in source material properties and the presence of different material components. The coefficient of variation for gradation parameters was 8.2 percent for RCA compared to 3.6 percent for virgin aggregates from the same processing facility, indicating greater inherent variability in recycled materials.

Table 3.2: Processing Yield for Different Waste Materials

Material Type	Processing Yield (%)
Concrete waste (RCA)	86.3
Asphalt waste (RAP)	91.7
Brick and masonry waste	79.2

3.3. Physical Properties of Construction Waste Materials

3.3.1. Particle Size Distribution and Gradation

Sieve analysis results for the processed recycled materials showed that gradations could be controlled to meet standard specifications through appropriate crushing and screening procedures.

For recycled concrete aggregate in base course gradation, the gradation curves fell within the specification limits, though closer to the coarse side of the envelope compared to typical natural aggregates. The fineness modulus of RCA averaged 3.24, compared to 2.87 for natural aggregate of similar nominal gradation, indicating a coarser gradation tendency for RCA. This characteristic is attributed to the crushing process producing angular

particles with less generation of fine material compared to some natural aggregate sources.

Reclaimed asphalt pavement gradations varied depending on the source pavement characteristics. RAP from dense-graded asphalt concrete pavements exhibited well-graded characteristics suitable for use in new asphalt mixtures, while RAP from open-graded or gap-graded pavements required blending with other materials to achieve target gradations.

Crushed brick and masonry materials showed greater generation of fines during processing, with 18.6 percent passing the 0.075 mm sieve compared to 8.2 percent for RCA and 6.4 percent for natural aggregates. This higher fines content has implications for moisture sensitivity and compaction characteristics.

The coefficient of uniformity (Cu) and coefficient of curvature (Cc) were calculated for recycled aggregates intended for base course applications. RCA exhibited Cu values ranging from 12.4 to 28.6 with an average of 18.7, and Cc values ranging from 0.86 to 1.82 with an average of 1.24, indicating well-graded characteristics suitable for base course use. These values met typical specification requirements for base course aggregates (Cu greater than 6 and Cc between 1 and 3).

Table 3.3: Gradation Characteristics Comparison

Material Type	Fineness Modulus
RCA (base course gradation)	3.24
Natural aggregate (similar gradation)	2.87

3.3.2. Specific Gravity and Absorption

Specific gravity and water absorption tests revealed significant differences between recycled and natural aggregates, primarily due to the presence of adhered mortar on RCA particles and the porous nature of brick materials.

Table 3.4: Specific Gravity and Absorption – RCA

Property	Range	Average
Bulk specific gravity (dry basis)	2.24 – 2.51	2.38
Bulk specific gravity (SSD basis)	2.41 – 2.62	2.51
Apparent specific gravity	2.65 – 2.77	2.71
Water absorption (%)	3.2 – 8.9	5.8

Table 3.5: Specific Gravity and Absorption - Natural Aggregates

Property	Range	Average
Bulk specific gravity (dry basis)	2.61 – 2.67	2.64
Bulk specific gravity (SSD basis)	2.63 – 2.69	2.67
Apparent specific gravity	2.70 – 2.76	2.73
Water absorption (%)	0.8 – 1.9	1.3

The approximately 10 percent lower bulk specific gravity of RCA compared to natural aggregates is attributed to the lower density of adhered mortar compared to the original aggregate particles. The significantly higher water absorption of RCA (averaging 4.5 times that of natural aggregates) reflects the porosity of adhered mortar and any micro-cracking induced during crushing.

Statistical analysis using t-tests confirmed that these differences in specific gravity (p less than 0.001) and absorption (p less than 0.001) between RCA and natural aggregates were highly significant, indicating that mixture designs and construction specifications must account for these property differences.

For reclaimed asphalt pavement, apparent specific gravity of the aggregate fraction (after extraction of asphalt binder) averaged 2.61, similar to that of virgin aggregates, as expected since RAP aggregates are simply aged versions of the original virgin aggregates used in pavement construction.

4. Conclusions

Beyond the specific findings related to each research objective, several overarching conclusions emerged from this comprehensive investigation:

4.1. Technical Feasibility

Construction waste materials, particularly recycled concrete aggregate and reclaimed asphalt pavement are technically feasible alternatives to conventional materials for a wide range of highway applications. While property differences exist compared to virgin materials, these differences can be successfully accommodated through appropriate material specifications, mixture design adjustments, and construction practices. The 24-month field performance results provide evidence that recycled materials perform satisfactorily under actual service conditions, though longer-term monitoring is needed for full validation.

4.2. Importance of Quality Control

Successful utilization of construction waste requires robust quality control throughout the recycling and

construction process. Source separation, contamination removal, processing control, and construction verification testing are critical to ensuring consistent material quality and performance. Variability in construction waste properties necessitates more frequent testing and potentially tighter construction control compared to conventional materials from established quarry sources.

4.3. Application-Specific Suitability

Different construction waste materials exhibit varying degrees of suitability for different highway applications. RCA performs well in structural applications including high-quality base courses, while crushed brick is better suited for lower-stress applications such as subbase layers or embankments. Matching material properties to application requirements is essential for successful implementation. Performance-based specifications that focus on required outcomes rather than prescriptive material requirements can facilitate appropriate use of recycled materials.

4.4. Environmental and Economic Synergies

The research confirmed that environmental and economic objectives align in the case of construction waste recycling. Materials that provide environmental benefits through waste diversion and resource conservation also offer economic advantages through lower costs. This synergy creates favorable conditions for widespread adoption without requiring trade-offs between sustainability and economic efficiency.

4.5. System-Level Considerations

Successful recycling of construction waste for highway applications requires consideration of the entire material flow system, from waste generation through processing, construction, and eventual end-of-life. Factors including waste management practices at source, recycling facility locations, transportation logistics, market development, and regulatory frameworks all influence the viability and optimization of recycling programs. A systems perspective is needed to maximize the benefits of construction waste utilization.

4.6. Regional and Contextual Factors

The feasibility and optimal approaches for using construction waste in highways depend significantly on regional factors including climate, geology, construction practices, regulatory environment, and economic conditions. While the fundamental conclusions of this research are broadly applicable, implementation strategies should be tailored to local contexts. Regions with high construction activity, limited natural aggregate resources, expensive disposal options, and supportive policies offer the

most favorable conditions for construction waste recycling.

REFERENCES

- [1] American Association of State Highway and Transportation Officials. (2020). Standard Specifications for Transportation Materials and Methods of Sampling and Testing. AASHTO, Washington, DC.
- [2] American Society for Testing and Materials. (2020). Annual Book of ASTM Standards, Volume 04.03: Road and Paving Materials. ASTM International, West Conshohocken, PA.
- [3] Arm, M. (2001). Self-cementing properties of crushed demolished concrete in unbound layers: Results from triaxial tests and field tests. *Waste Management*, 21(3), 235-239. [https://doi.org/10.1016/S0956-053X\(00\)00095-7](https://doi.org/10.1016/S0956-053X(00)00095-7)
- [4] Arulrajah, A., Piratheepan, J., Disfani, M. M., & Bo, M. W. (2013). Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. *Journal of Materials in Civil Engineering*, 25(8), 1077-1088. [https://doi.org/10.1061/\(ASCE\)MT.1943-5533.0000652](https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652)
- [5] Bianchini, G., Marrocchino, E., Tassinari, R., & Vaccaro, C. (2005). Recycling of construction and demolition waste materials: A chemical-mineralogical appraisal. *Waste Management*, 25(2), 149-159. <https://doi.org/10.1016/j.wasman.2004.09.005>
- [6] Bloom, E., & Maher, A. (2004). Recycled materials in New Jersey roadway construction. *Proceedings of the 2004 International Symposium on Pavement Recycling*, FHWA-SA-05-002, Federal Highway Administration, Washington, DC.
- [7] Chen, M., Lin, J., Wu, S., & Liu, C. (2011). Utilization of recycled brick powder as alternative filler in asphalt mixture. *Construction and Building Materials*, 25(4), 1532-1536. <https://doi.org/10.1016/j.conbuildmat.2010.08.005>
- [8] Chen, Y., & Zhao, X. (2019). Investigating the performance of recycled concrete aggregates for highway pavements. In *Proceedings of the International Conference on Sustainable Construction and Civil Engineering* (pp. 149-157). International Association for Structural Engineering.

[9] Danielsen, U., & Kuznetsova, E. (2016). Comparison of different quality assessment and improvement methods for recycled aggregates. *Waste Management*, 49, 374-382. <https://doi.org/10.1016/j.wasman.2016.01.025>

[10] Ding, Z., Zhang, L., & Yang, Y. (2020). Recycling of construction and demolition waste for highway materials: A review of properties and potential applications. *Waste Management*, 104, 1-14. <https://doi.org/10.1016/j.wasman.2020.01.027>

[11] European Union. (2008). Directive 2008/98/EC on Waste (Waste Framework Directive). European Parliament and Council, Brussels, Belgium.

[12] Federal Highway Administration. (2021). Use of Recycled Materials in Highway Construction. U.S. Department of Transportation, Washington, DC. Retrieved from <https://www.fhwa.dot.gov/environment/recycling/>

[13] Galbusera, M. M., de Brito, J., & Silva, R. V. (2014). Application of recycled aggregates from construction and demolition waste with binding properties. *Journal of Cleaner Production*, 94, 230-237. <https://doi.org/10.1016/j.jclepro.2015.01.056>

[14] Ghaffar, S. H., & Ahmad, S. (2018). Sustainable Construction Materials and Technologies: A Review of Concrete and Aggregates Recycling. Springer International Publishing, Cham, Switzerland.

[15] Huang, B., Shu, X., & Burdette, E. G. (2006). Mechanical properties of concrete containing recycled asphalt pavements. *Magazine of Concrete Research*, 58(5), 313-320. <https://doi.org/10.1680/macr.2006.58.5.313>

