

Teacher Readiness and Pedagogical Competence for Implementing STEAM Education in Indian Classroom

Zonaira Minhaji¹, Dr. Smita Srivastava², Dr. Asha Pal³

¹Research Scholar, Faculty of Education, Integral University, Lucknow, Uttar Pradesh, India

²Associate Professor, Department of Education, Integral University, Lucknow, Uttar Pradesh, India

³Assistant Professor, Education, Atal Bihari Bajpai Nagar Nigam Degree College, Lucknow, Uttar Pradesh, India

ABSTRACT

In recent years, the educational landscape in India has undergone a paradigm shift toward multidisciplinary, inquiry-based, and competency-driven learning. The integration of Science, Technology, Engineering, Arts, and Mathematics, collectively referred to as **STEAM Education**, has gained prominence as a holistic approach to prepare learners for the challenges of the 21st century. Rooted in the vision of the National Education Policy (NEP) 2020, STEAM education aspires to cultivate creativity, problem-solving, and innovation by blending analytical and artistic thinking. However, the success of STEAM education in Indian classrooms depends significantly on teachers' readiness and pedagogical competence. This paper critically examines the role of teacher preparedness in implementing STEAM pedagogy, explores the challenges faced by Indian educators, and proposes actionable remedies to strengthen instructional capacity. The discussion emphasizes that teacher readiness involves not only the mastery of interdisciplinary content but also the ability to design experiential, student-centered, and culturally relevant learning experiences. The paper concludes that empowering teachers through continuous professional development, curriculum redesign, and assessment reform is indispensable for embedding STEAM education meaningfully into Indian schools.

KEYWORDS: Teacher, Education, Pedagogical Competence, Professional Development, Indian Schools, STEAM Education.

INTRODUCTION

Education in the contemporary era transcends traditional boundaries of memorization and content reproduction. The 21st-century classroom demands learners who can think critically, collaborate creatively, and apply knowledge contextually. The introduction of **STEAM education**, an integrated approach combining science, technology, engineering, arts, and mathematics, has emerged as a response to these evolving needs. By uniting the analytical strength of STEM disciplines with the imaginative depth of the arts, STEAM nurtures both the head and the heart of learners, fostering well-rounded intellectual and emotional growth.

In India, the **National Education Policy (NEP) 2020** has emphasized the need for holistic, multidisciplinary education, experiential learning, and competency-based assessment. It encourages schools

to move beyond rigid subject divisions and adopt cross-curricular integration as a means of promoting creativity, innovation, and ethical awareness. Yet, such reforms can only succeed when teachers, who serve as mediators of change, are adequately prepared to deliver this integrated form of education.

Teacher readiness thus becomes the foundation of effective implementation. It requires not only a conceptual understanding of multiple disciplines but also a shift in pedagogical mindset, from teacher-centered instruction to learner-centered exploration. The present paper explores this intersection between teacher competence and STEAM education in India. It analyzes how teachers can be empowered to adopt integrative pedagogies, identifies barriers that hinder this transition, and proposes solutions for sustainable reform.

How to cite this paper: Zonaira Minhaji | Dr. Smita Srivastava | Dr. Asha Pal "Teacher Readiness and Pedagogical Competence for Implementing STEAM Education in Indian Classroom" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-6, December 2025, pp.587-591, URL: www.ijtsrd.com/papers/ijtsrd99898.pdf

IJTSRD99898

Copyright © 2025 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (<http://creativecommons.org/licenses/by/4.0>)

SHIFT FROM STEM TO STEAM

The concept of **STEM education** was introduced to foster innovation and competitiveness in scientific and technological fields. STEM focuses on inquiry, experimentation, and design-based learning, emphasizing problem-solving through scientific and mathematical reasoning. While the STEM model has proven effective in developing technical proficiency, it has often been criticized for its narrow focus, overlooking the creative, aesthetic, and ethical dimensions of learning.

To address this gap, educators and policymakers introduced **STEAM education**, adding the “A” for **Arts**, not merely as a creative embellishment but as an essential element of critical and divergent thinking. The integration of arts provides opportunities for students to approach scientific problems with empathy, imagination, and cultural understanding. For instance, when students engage in a project on renewable energy, they not only learn about the physics of energy conversion but also design user-friendly and aesthetically appealing models that communicate social messages about sustainability.

In the Indian context, where art, craft, music, and storytelling have always been integral to community life, the inclusion of arts enriches learning by connecting modern science with cultural heritage. STEAM encourages children to express their understanding through drawings, dramatizations, models, and digital media, making learning more inclusive and enjoyable. Thus, the shift from **STEM to STEAM** signifies a philosophical transition from knowledge transmission to knowledge creation, from rigid subject silos to fluid, interdisciplinary thinking.

TEACHER READINESS AND IMPLEMENTATION IN INDIAN CLASSROOMS

The successful integration of **STEAM education** in Indian classrooms rests primarily upon the readiness, competence, and adaptability of teachers. Teachers serve as the bridge between curricular vision and classroom reality. While the NEP 2020, NCERT frameworks, and CBSE circulars have provided policy-level impetus toward multidisciplinary and experiential education, the degree of implementation depends upon how well teachers are equipped, both intellectually and emotionally, to translate these pedagogical shifts into practice. Teacher readiness, therefore, extends beyond technical knowledge; it encompasses mindset, motivation, creativity, and institutional support.

1. DIMENSIONS OF TEACHER READINESS

Teacher readiness for STEAM education can be understood through four interrelated dimensions:

content integration, pedagogical adaptability, technological fluency, and attitudinal openness.

A. Content Integration Readiness

Indian teachers are traditionally trained to specialize in single-subject pedagogy, Science, Mathematics, or Social Science, often working in isolation. STEAM, however, demands interdisciplinary integration, where concepts from different subjects converge within real-world contexts. For instance, a lesson on “wind energy” involves principles of physics (motion and energy), mathematics (measurement and data interpretation), technology (windmill design), engineering (construction), and art (model design and visualization). Teachers must therefore possess conceptual fluency across disciplines and the ability to identify natural intersections between them. This requires rethinking curriculum mapping and collaborative lesson planning across subject departments.

B. Pedagogical Adaptability

In STEAM classrooms, the teacher’s role transitions from “knowledge dispenser” to “facilitator of learning.” Readiness in this dimension entails designing inquiry-based, hands-on, and student-centered experiences rather than relying on lectures and rote drills. Pedagogically competent teachers are able to frame driving questions, guide investigations, and support learners through cycles of exploration, reflection, and presentation. They also use differentiated instruction, accommodating varied learning styles and multiple intelligences. However, many teachers in India remain bound by rigid textbook routines and large class sizes, which limit their ability to implement open-ended, project-based pedagogy.

C. Technological and Artistic Fluency

Technology serves as both a tool and a medium of creative expression in STEAM education. Teachers are expected to use digital tools, simulations, and creative software to facilitate design thinking and visualization. Yet, in many schools, digital literacy remains uneven, particularly in rural contexts. Readiness here implies not only familiarity with digital devices but also the ability to blend technological and artistic modalities for effective learning. For example, teachers can use animation tools for illustrating scientific processes or digital drawing platforms to prototype design ideas. Integrating such practices enhances students’ creative and analytical engagement.

D. Attitudinal and Emotional Readiness

Perhaps the most critical yet often overlooked component of readiness is the teacher’s mindset and motivation. The transition to STEAM demands

teachers to embrace uncertainty, experimentation, and even failure as part of the learning process. Many teachers, accustomed to tightly structured syllabi and high-stakes exams, may feel anxious about open-ended inquiry. Cultivating emotional resilience, curiosity, and willingness to learn alongside students is vital. Teachers who perceive themselves as lifelong learners are more likely to adapt to interdisciplinary teaching successfully.

2. PEDAGOGICAL COMPETENCE AND CLASSROOM IMPLEMENTATION

Pedagogical competence is the operational expression of teacher readiness, it reflects how teachers plan, facilitate, and assess STEAM learning. Competence includes a combination of conceptual knowledge, instructional design skills, facilitation techniques, and reflective assessment.

A. Instructional Design and Planning

Effective implementation begins with **lesson design** that links curricular outcomes with real-life problems. Teachers must identify themes that cut across disciplines—such as sustainability, transportation, or community health, and frame project-based learning tasks. A well-designed STEAM lesson follows the structure of design thinking: empathize with a problem, define objectives, ideate solutions, prototype, and test. For instance, in a unit titled *“Clean Water for All,”* students can study water filtration (science), measure flow rates (math), design prototypes (engineering), code sensors (technology), and create awareness posters (arts).

Such design demands collaborative planning among multiple subject teachers, a practice still nascent in most Indian schools. In institutions that have adopted the collaborative planning model, teachers report higher student engagement and deeper conceptual understanding. However, limited co-planning time and lack of administrative support often hinder sustained implementation.

B. Facilitation and Classroom Practices

Implementation of STEAM is not merely about conducting projects; it is about transforming classroom interactions. A competent teacher facilitates dialogue, inquiry, and reflection. Classroom observations in progressive Indian schools reveal that teachers who ask open-ended questions, “What might happen if we change this material?”, stimulate creative and analytical reasoning. Moreover, facilitative teaching emphasizes peer collaboration, where students learn through group discussions, role assignments, and design reviews.

Teachers also play the role of mentors and co-investigators, guiding students to refine ideas rather

than providing direct answers. They ensure safety in experiments, maintain resource efficiency, and document student learning through observation and portfolios. Such facilitation transforms the classroom into a laboratory of ideas, aligning with NEP 2020’s vision of joyful and meaningful learning.

C. Assessment and Reflection

Traditional examinations fail to capture the multifaceted outcomes of STEAM learning. Competent teachers use rubrics and qualitative assessment tools that evaluate creativity, process, collaboration, and communication along with accuracy of content. For instance, a rubric may allocate marks for design innovation, teamwork, clarity of explanation, and aesthetics. Teachers also encourage students to maintain learning journals to record reflections, challenges, and redesign iterations.

Implementing formative assessments enables teachers to track growth over time and adjust instruction accordingly. In schools where such reflective practices have been adopted, students demonstrate improved self-awareness, confidence, and intrinsic motivation.

3. INSTITUTIONAL AND CONTEXTUAL FACTORS AFFECTING READINESS

Teacher readiness does not develop in isolation; it is deeply influenced by institutional culture, leadership, and resource availability.

A. Leadership and School Climate

A supportive principal or headmaster who values experimentation can significantly influence teacher morale. Schools that allocate dedicated “innovation hours” or “project weeks” encourage teachers to take creative risks without fear of failure. Conversely, in schools where leadership focuses solely on examination results, teachers often resist deviation from traditional teaching.

B. Professional Collaboration

Cross-departmental collaboration is essential for interdisciplinary learning. However, many schools operate within hierarchical silos that discourage joint planning. Establishing **Professional Learning Communities (PLCs)** allows teachers to share lesson plans, co-teach units, and analyze student work collaboratively. When teachers experience success together, readiness naturally strengthens.

C. Infrastructure and Resource Support

Access to basic materials, technological devices, and flexible learning spaces can significantly affect implementation. Yet, several innovative schools in low-resource settings have demonstrated that creativity compensates for material scarcity. Teachers who use recyclable materials and local crafts as

teaching aids exemplify how contextually grounded approaches can achieve the same pedagogical outcomes as high-tech labs.

D. Policy and Administrative Support

Institutional readiness also depends on alignment with broader educational policies. For instance, **CBSE's art-integrated learning mandates and ATL (Atal Tinkering Lab) initiatives** provide frameworks that encourage experimentation. However, without continuous teacher mentoring and monitoring, such initiatives risk remaining superficial.

EXAMPLES OF EMERGING PRACTICES IN INDIAN CLASSROOMS

Several promising practices across Indian schools demonstrate growing teacher readiness for STEAM:

- **Thematic Integration Projects:** In Delhi government schools, thematic units such as “Water Conservation” combine environmental science, mathematics (data charts), and fine arts (posters and installations). Teachers co-plan lessons with support from mentor coordinators.
- **Art-Science Labs:** Some CBSE-affiliated private schools in Bengaluru and Pune have created “art-science studios” where science and art teachers jointly facilitate creative experiments using both lab tools and craft techniques.
- **Low-Cost Innovation Hubs:** In rural Maharashtra, teachers trained under NGO-led programs use locally available materials like clay, sticks, and bottles to teach engineering concepts, demonstrating that resource constraints need not limit innovation.
- **Digital STEAM Projects:** Schools with access to ICT tools use coding and animation software to simulate physical phenomena, integrating computer literacy with artistic design.

These emerging practices reflect a gradual yet perceptible shift in teacher agency, from passive curriculum delivery to active curriculum creation.

REFLECTION AND COLLABORATION: TWIN PILLARS OF EFFECTIVE TEACHING

To institutionalize STEAM education effectively, India's schools must nurture a culture of reflective practice among teachers. Reflection allows educators to evaluate not only what students learn but also how teaching methods impact engagement and creativity. Teachers can maintain teaching portfolios documenting lesson designs, student work, and reflections on improvement areas.

Furthermore, promoting collaborative inquiry among teachers through demonstration classes, lesson study models, and peer mentoring can accelerate readiness.

When teachers collectively design a STEAM lesson, observe implementation, and discuss outcomes, they engage in professional growth that transcends individual experience.

Finally, teacher motivation and identity play a pivotal role. Teachers who perceive themselves as innovators and mentors rather than mere exam instructors develop a deeper sense of purpose. Recognizing and celebrating teacher creativity through awards, media features, and institutional appreciation builds morale and sustains reform efforts.

CONCLUSION

In conclusion, teacher readiness for STEAM implementation in Indian classrooms is an evolving construct shaped by personal competence, institutional culture, and systemic support. It involves mastering content integration, adopting flexible pedagogies, using technology creatively, and nurturing a reflective mindset. While challenges persist ranging from training deficits to rigid assessment structures, numerous schools across India are pioneering innovative practices that showcase the transformative potential of STEAM. Across India, many educators are beginning to embrace integrated and project-based approaches that connect science, technology, engineering, arts, and mathematics meaningfully. These emerging practices demonstrate that when teachers are empowered with the right training, autonomy, and collaboration, STEAM education can move from policy discourse to classroom reality.

Building readiness, therefore, is not a one-time training exercise but a continuous process of learning, collaboration, and experimentation. When teachers are empowered intellectually and emotionally, STEAM education ceases to be a curricular directive and becomes a living culture of curiosity, creativity, and interdisciplinary exploration.

REFERENCES

- [1] Akram, W. (n.d.). *A study of attitude of secondary school teachers towards smart classroom in relation to their computer competence and computer anxiety*. Integral University. <http://hdl.handle.net/10603/660454>
- [2] Chaudhary, M. (2020). *The effect of STEM technology program on academic achievement of elementary school students: An experimental research*. [Doctoral dissertation, University]. *Shodhganga*.<https://shodhganga.inflibnet.ac.in:8443/jspui/handle/10603/415791>
- [3] English, L. D. (2016). *STEM education K-12: Perspectives on integration*. *International Journal of STEM Education*.

[4] Ginsburg, D. J. (2017). *Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education*. *International Journal of STEM Education*.

[5] Golden, B. (2023). *Enabling critical thinking development in higher education through the use of a structured planning tool*. *Irish Educational Studies*, 42(6), 949–969.

[6] Government of India. (2020). *National Education Policy 2020*. Ministry of Education, New Delhi.

[7] Inam, A. (2024). *Fostering critical thinking in Indian students through interdisciplinary STEAM pedagogies*, 14, 23–30. <https://doi.org/10.35629/2895-14022330>

[8] Johnston, K., Kervin, L., & Wyeth, P. (2022). *STEM, STEAM and makerspaces in early childhood: A scoping review*. *Sustainability*, 14(9), 1–22.

[9] Kim, R. (2021). *The development of STEAM teaching model and program based on smart device for connection of kindergarten-elementary school*. *İlköğretim Online*, 20(3), 1124–1138.

[10] Lee, S., & Lee, H. (2013). *The effects of science lessons applying STEAM education on the creativity and science-related attitudes of elementary school students*. *Journal of Science Education*, 27(4), 45–58.

[11] National Council of Educational Research and Training (NCERT). (2023). *National Curriculum Framework for School Education (NCF 2023)*. New Delhi: NCERT Publication Division.

[12] National Curriculum Framework Foundational Stage. (2022). *National Curriculum Framework for Foundational Stage 2022*. New Delhi: NCERT.

[13] Pant, S. K., Luitel, B. C., & Pant, B. P. (2020). *STEAM pedagogy as an approach for teacher professional development*. *Mathematics Education Forum Chitwan*, 5(5), 28–33. <https://doi.org/10.3126/mefc.v5i5.34760>

[14] Ratnam, T. (2024). *STEAM education to unleash students' creativity and knowledge-building capacity: An Indian perspective*. In *Sociocultural Approaches to STEM Education* (pp. 201–218). Springer.

[15] Salvador, Z. G. (2022). *Instructional preparations and the learning skills of the 21st century students*. *International Journal of Educational Management and Development Studies*, 3(2), 48–64.

[16] Tyagi, T. K., Gupta, P., & Singh, V. (2023). *Examining teachers' self-efficacy towards STEAM approach in education*. *Journal of Educational Planning and Administration*, 37(4), 345–360.

[17] Grewal, S. (2021). *Exploring the challenges of implementing STEAM education in rural low-income schools*. *International Journal for Research Publication and Seminar*, 12(1), 197–200. <https://jrps.shodhsagar.com/index.php/j/article/view/1616>