

Quantum Computing in Material Science

Matthew N. O. Sadiku¹, Janet O. Sadiku²

¹Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX, USA

²Juliana King University, Houston, TX, USA

ABSTRACT

Quantum computers provide depth and accuracy in simulating material behaviors never seen before. Quantum computing is poised to revolutionize material science by enabling simulations of atomic and molecular interactions that are too complex for even the most powerful classical supercomputers. This capability will drastically accelerate the discovery and design of novel materials with specific, desired properties. Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials. When using quantum computers, one is able to simulate systems of interacting electrons exponentially faster than using classical computers. Quantum computing simplifies solving material science problems that were once impossible. It pushes the boundaries of what we can learn about materials at an atomic level. This paper explains how quantum computing is transforming materials science.

KEYWORDS: *technology, quantum computing, QC, materials, material science.*

INTRODUCTION

Computing has revolutionized science. Although classical computers have had a monumental impact on science, there are still many types of computational tasks and problems that remain intractable in terms of scale even for the largest classical machines.

Quantum computing is a cutting-edge technology that leverages the principles of quantum mechanics to perform computations. It is no longer a futuristic concept; it is rapidly becoming a transformative tool across industries. Among its most promising applications is material science, where quantum computing is poised to revolutionize how we design, analyze, and optimize materials.

Significant progress in industry, especially in manufacturing and material science, is expected to be driven by quantum computing. One of the main advantages of quantum computing is its ability to represent and manipulate quantum mechanical systems, which are the fundamental building blocks of materials.

With advances in computing, scientists have started using data and computational models to discover

How to cite this paper: Matthew N. O. Sadiku | Janet O. Sadiku "Quantum Computing in Material Science" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-6, December 2025, pp.579-586, URL: www.ijtsrd.com/papers/ijtsrd99896.pdf

IJTSRD99896

Copyright © 2025 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (<http://creativecommons.org/licenses/by/4.0>)

materials suited for specific applications. In the foreseeable future, quantum computing will undoubtedly become more crucial to material discovery. It would become feasible to replicate materials at an even more granular and precise level as technology develops, leading to the discovery of new and improved materials with a wide range of applications [1].

QUANTUM COMPUTERS

A quantum computer (QC) behaves according to the laws of quantum mechanics. Thus, quantum computers are different from binary digital electronic computers based on transistors. A major difference between classical and quantum computing lies in the way they encode data. While a digital computer requires that the data be encoded into binary digits (0 or 1), quantum computers use quantum bits, which can be in superpositions of states [2]. In other words, instead of storing information in bits as conventional digital computers do, quantum computers use quantum bits, or qubits, to encode information. (Qubits are the basic units of quantum information.) In addition to ones and zeros, qubits have a third state called "superposition" that allows them to represent a

one or a zero at the same time. Figure 1 shows the comparison between the bit and qubit [3]. The computing power of a QC grows exponentially with the number of qubits it uses.

Quantum computers have the potential to perform certain calculations significantly faster than any digital computers. QC consists of a quantum processor which operates at a very low temperature (a few tens of mK) and an electronic controller which reads out and controls the quantum processors, as shown in Figure 2 [4]. Several forms of physical media (optical fibers and free space) can be used to deliver quantum information. Figure 3 shows a representation of quantum computing [5].

In quantum system, the computational space increases with the size of the system. This enables exponential parallelism which leads to faster quantum algorithms. Unlike classical computer, QC offers massive parallelism within a single piece of hardware.

A typical quantum computer is shown in Figure 4 [6]. The basic building blocks of quantum computers include quantum gates, quantum memories, quantum CPUs, quantum languages, and quantum languages [7,8]:

- *Quantum Gates:* Quantum computers require quantum gates, which are basically different from classical Boolean gates seen in a conventional computer (AND, XOR and so on). A quantum gate acts on superpositions of different basis states of qubits. The quantum gates perform unitary operations on quantum states and lead to quantum circuits. They are particularly important for quantum error correction and experimental quantum information processing. They can be realized by superconductors, linear optic tools, or quantum dots. Common quantum gates are CNOT and SWAP.
- *Quantum Memories:* Quantum memories store the quantum systems in a quantum register for information processing. Quantum memories are formulated by n stationary quantum states. Quantum computers are expected to have limited memory.
- *Quantum CPUs:* These use a quantum bus for the communication between the functional elements of a quantum computer. From a computing perspective, quantum CPUs can be approached through quantum adders.
- *Quantum Languages:* These enable us to create an artificial quantum computer to simulate a quantum computing environment. The programming language should follow a functional programming structure, which can compute the

process as a whole entity with a proper bounded structure.

- *Quantum Algorithms:* Quantum algorithms are significantly faster than any classical algorithm in solving some problem. Most of the successful quantum algorithms use quantum Fourier transforms in them because they require less hardware. Popular quantum algorithms include Shor's algorithm (since integer factorization is faster) and Grover's search algorithm.

In ambitious attempts to realize practical quantum computers, enormous efforts are still being expended both in designing software (quantum algorithms) and hardware development (physical implementation).

QUANTUM COMPUTING IN MATERIAL SCIENCE

Materials science is a cornerstone of modern innovation, underpinning advancements in fields such as construction, manufacturing, energy, and healthcare. Due to the underlying nature of quantum physics, most material science deals with issues that classical computers are too weak to tackle problems in simulation. Exploring complex quantum systems, quantum computers will be a game changer. By enabling more accurate and effective simulations of material characteristics at the quantum level, quantum computing significantly improves material science. For example, quantum magnets can provide insights into their unique magnetic properties at the quantum level, which classical computers struggle to simulate accurately. Quantum mechanical theoretical approaches have played an important role in predicting the properties of materials relevant to quantum information science and functional materials for energy applications, encompassing catalysts and energy storage systems. Figure 5 shows artistic rendering of atomic structure of silicon carbide crystal [9].

Predicting how atoms interact or behave under pressure often requires extensive time and computing power. This is where quantum computing plays a pivotal role. This technology is already demonstrating potential in simulating and understanding material properties on an atomic level. Quantum computing aids in predicting how materials respond to stress by simulating energy states at the atomic level. It is reshaping industries by solving problems that were previously deemed unsolvable. In material science, quantum computing is particularly valuable for simulating atomic and molecular interactions. Traditional computational methods often fall short when dealing with the sheer complexity of quantum systems, but quantum computers can model these interactions with remarkable accuracy [10].

A comprehensive integrated materials science workflow can greatly accelerate the optimization of materials and fabrication processes for quantum devices, as well as discovery and incorporation of new materials. A dedicated, systematic, and comprehensive contribution from materials scientists—spanning synthesis, fabrication, characterization, theory, and modeling, as highlighted in Figure 6—will play an essential role in driving future advancements [11].

APPLICATIONS OF QUANTUM COMPUTING IN MATERIAL SCIENCE

In material science, applications of QC are vast and impactful. One transformative application of quantum computing in material science is its ability to simulate the properties of materials at the atomic and molecular levels. Common applications include the following [12,13]:

- **Drug Discovery:** Quantum computing accelerates drug discovery by simulating molecular interactions and identifying promising compounds. IBM's quantum computing platform has been used to simulate molecular structures, significantly reducing the time required to identify potential drug candidates.
- **Material Discovery:** The process of finding new materials with desirable traits that can be used in a range of applications is known as computational materials discovery. The creation of new materials is a cornerstone of innovation in the manufacturing and material sciences sector. The discovery of new materials begins with defining and identifying the need for a specific material with specific properties, such as high strength, flexibility, or electrical conductivity. Whether you are developing lightweight materials for automotive applications or high-performance alloys for aerospace, the process of discovering new materials has traditionally been slow, costly, and computationally intensive. Quantum computing is believed to be well-suited for material discovery due to its ability to efficiently simulate the behavior of complex systems. Quantum models can predict how different elements interact at the atomic level, leading to the discovery of materials with improved properties, such as greater durability, conductivity, or resistance to corrosion.
- **Variational Quantum Eigensolver (VQE):** An important algorithm designed for NISQ (noisy intermediate-scale quantum) devices is the variational quantum eigensolver (VQE). In order to comprehend the basic characteristics of materials, VQE approximates the ground state

energy of a quantum system. It integrates classical and quantum computing methodologies by employing a quantum computer to assess a quantum state's energy and a classical optimizer to modify the quantum state's parameters.

- **Quantum Monte Carlo (QMC):** The statistical approach to solving quantum issues provided by quantum Monte Carlo techniques is extremely important to material simulation. This method helps researchers understand the electrical characteristics and interactions inside materials and is especially helpful for systems that are too complicated for deterministic algorithms. QMC is an asset for material behavior prediction due to its precision and adaptability, particularly in the study of semiconductors and superconductors.
- **Quantum Approximate Optimization Algorithm (QAOA):** Material science is full of optimization difficulties, which is why the quantum approximate optimization algorithm was developed. It works especially well for figuring out how to best arrange atoms or molecules in a substance to have the desired qualities. The power of QAOA is in its capacity to solve issues that are too complex for traditional algorithms, making material design and discovery more effective.

BENEFITS

Advancements in material science, driven by sophisticated simulations, play a crucial role in manufacturing innovations, particularly in high-tech industries. Industries like pharmaceuticals, energy, aerospace, and electronics benefit significantly from quantum computing due to its ability to optimize material properties and accelerate innovation. Quantum computing is not just a tool for solving complex problems; it is a catalyst for innovation, shaping the future of materials science and beyond. Other benefits include the following [13,14]:

- **Quantum Advantage:** The potential of quantum computing to transform the manufacturing and material sciences industry is vast. From speeding up material discovery and optimizing supply chains to enhancing product quality and improving sustainability, quantum technology could unlock a wealth of opportunities that were previously unimaginable. By taking steps now to explore quantum's potential, you can position your company at the forefront of innovation and stay ahead in an increasingly competitive market. Many researchers are betting on chemistry and material science as the first areas likely to demonstrate quantum advantage.

- **Accelerated Discovery:** Quantum simulations allow researchers to explore a vast array of potential materials virtually, from new catalysts for battery technology to high-performance electronics and materials for carbon capture, significantly reducing the time and cost associated with traditional R&D and physical trial-and-error.
- **Enhanced Material Properties:** By precisely modeling atomic interactions, scientists can predict how different elements combine to form materials with improved properties like greater durability, conductivity, or resistance to corrosion.
- **Complex System Analysis:** Quantum computers excel at analyzing complex structures like nanomaterials, superconductors, and defective materials, providing insights into their behavior under various conditions (e.g., stress, temperature) that are beyond classical capabilities. The complexity versus time is shown in Figure 7 [15].
- **Optimization:** Quantum computing is highly effective at solving complex optimization problems. Quantum algorithms are well-suited for optimization problems, such as determining the best arrangement of atoms or molecules for a desired quality, or optimizing manufacturing processes to minimize defects and maximize efficiency.
- **Industry Impact:** Various industries are exploring the use of quantum computing in material science. The automotive industry, with companies like Daimler and Volkswagen, is using quantum algorithms for battery simulations to improve efficiency and lifespan for electric vehicles. Chemical companies such as BASF are utilizing the technology to speed up the discovery of new materials.
- **Efficiency Gains:** Quantum computing dramatically accelerates the simulation and analysis of materials. Traditional methods often require years to model complex molecular interactions, but quantum computers can achieve this in hours or days. This efficiency enables faster innovation cycles, allowing researchers to test and refine materials more quickly.
- **Cost-Effectiveness:** While initial investments in quantum hardware and software can be high, the long-term cost savings from efficient research and optimized materials outweigh these expenses. By reducing the time and resources required for material research, quantum computing minimizes operational expenses. By providing faster simulations, quantum computing can drastically cut down on the time and resources required for research and development, allowing companies to bring new products to market more quickly.
- **Energy-efficient Materials:** By discovering materials that conduct electricity or heat more efficiently, quantum computing could lead to the development of products that use less energy during production or operation.

CHALLENGES

Risks include hardware limitations, high costs, and the need for specialized expertise. However, these challenges can be mitigated through education, collaboration, and technological advancements. Other challenges and limitations of quantum computing in material science include the following [11]:

- **Hardware Limitations:** Quantum computers are still in their infancy, with limited qubit counts and susceptibility to errors. Current quantum computers have limited qubits and are prone to errors, which can affect the accuracy of simulations. Scaling these systems to handle larger and more complex materials remains a significant technical hurdle.
- **High Costs:** The development and maintenance of quantum systems require significant financial investment. Quantum computing infrastructure is expensive to develop and maintain, making it inaccessible to smaller research institutions and companies. However, researchers do not always think about the costs or environmental impacts of the materials they study.
- **Skill Gap:** The field requires a workforce skilled in both quantum computing and materials science, and there is currently a shortage of such interdisciplinary experts. There is a shortage of professionals skilled in quantum computing and its applications in material science. Investing in quantum computing education will address the skill gap and prepare the workforce for future challenges.
- **Collaboration:** As the technology continues to evolve, collaborations between quantum computing pioneers and materials science leaders will drive progress, addressing global challenges and unlocking new opportunities. For example, the National Quantum Initiative is the umbrella under which Department of Energy, the National Institute of Standards and Technology, and the National Science Foundation are collaborating to create a sustainable environment in the United States for quantum research. A team of scientists at Ames Lab are collaborating to harness the

power of quantum computers to make materials research easier and more efficient.

➤ **Environmental Noise:** Historically, the primary challenge confronting the architects and builders of quantum computers has been how to preserve the delicate and inherently quantum mechanical properties of qubits, such as superposition and entangled states, against the effects of environmental noise that inevitably perturb real-world quantum systems.

CONCLUSION

Quantum computing is changing materials science, manufacturing, and engineering. It accelerates discovery, enhances simulations, and addresses challenges once considered unattainable. As a decision-maker in the manufacturing and material sciences industry, it is crucial to start preparing for the quantum revolution. While the technology is still developing, it is advancing quickly, and early adopters are likely to gain a significant competitive edge. More commercially viable quantum materials could be used for next generation microelectronics, energy harvesting applications, medical diagnostics, and more.

The quantum technologies field is now ripe for a new approach, where materials scientists, chemists, device engineers, and other scientists can productively bring their expertise to bear on the problem. As quantum technology advances, it offers a new perspective on how we create and comprehend materials at every level. To continue to advance in the next decade, we will need advances in materials and fabrication technologies for quantum computing hardware for next-generation technologies. More information about quantum computing in material science can be obtained from the books in [16,17].

REFERENCES


- [1] “Quantum computing in material discovery,” <https://blogs.infosys.com/emerging-technology-solutions/quantum-computing/quantum-computing-in-material-discovery.html#:~:text=How%20is%20Quantum%20Computing%20better,a%20given%20set%20of%20candidates.>
- [2] “Quantum computing,” *Wikipedia*, the free encyclopedia https://en.wikipedia.org/wiki/Quantum_computing
- [3] <https://www.science.org.au/curious/policy-features/rethinking-cybersecurity-quantum-world>
- [4] B. Patra et al., “Cryo-CMOS circuits and systems for quantum computing applications,” *IEEE Journal of Solid-State Circuits*, September 2017, pp.1-13.
- [5] “Quantum computing and its applications,” <https://www.batoi.com/blogs/perspective/quantum-computing-applications-6357d329ccbad>
- [6] R. Seifman, “Is quantum computing a potential game changer for the health sector?” March 2025, <https://impakter.com/is-quantum-computing-a-potential-game-changer-for-the-health-sector/>
- [7] L. Gyongyosia and S. Imreb, “A survey on quantum computing technology,” *Computer Science Review*, vol. 31, 2019, pp. 51-71.
- [8] P. S. Menon and M. Ritwik, “Comprehensive but not complicated survey on quantum computing,” *IERI Procedia*, vol. 10, 2014, pp. 144 – 152.
- [9] J. E. Harmon, “Solving materials problems with a quantum computer,” July 2020, <https://www.anl.gov/article/solving-materials-problems-with-a-quantum-computer>
- [10] “Quantum computing in materials science and engineering,” <https://www.portotheme.com/quantum-computing-in-materials-science-and-engineering/#:~:text=Predicting%20material%20behavior%20under%20stress,an%20efficiently%20across%20research%20environments.>
- [11] V. Lordi and J. M. Nichol, “Advances and opportunities in materials science for scalable quantum computing,” *MRS Bulletin*, vol. 46, 2021, pp. 589–595.
- [12] “Quantum leap in material science,” <https://www.techbriefs.com/component/content/article/50221-quantum-leap-in-material-science#:~:text=By%20enabling%20more%20accurate%20and,efficient%20and%20powerful%20electronic%20devices.>
- [13] “Quantum computing in material science,” October 2025, https://www.meegle.com/en_us/topics/quantum-computing-applications/quantum-computing-in-material-science
- [14] “Innovate in manufacturing & material sciences with quantum computing,” <https://www.pasqal.com/innovate-in-manufacturing-material-sciences-with-quantum-computing/>

[15] “Quantum for materials science,” [17] A. Feynman, Material Science Bascis. Publifye <https://infleqtion.com/materials-science/> AS, 2025.

[16] A. Feynman, Material Science Breakthroughs. Publifye AS, 2025.

TRADITIONAL COMPUTERS

Technology based on ‘bits’

Bits have two states: 0 or 1

QUANTUM COMPUTERS

Technology based on ‘qubits’

Qubits have an infinite number of states between 0 and 1

Figure 1 The bit and the qubit [3].

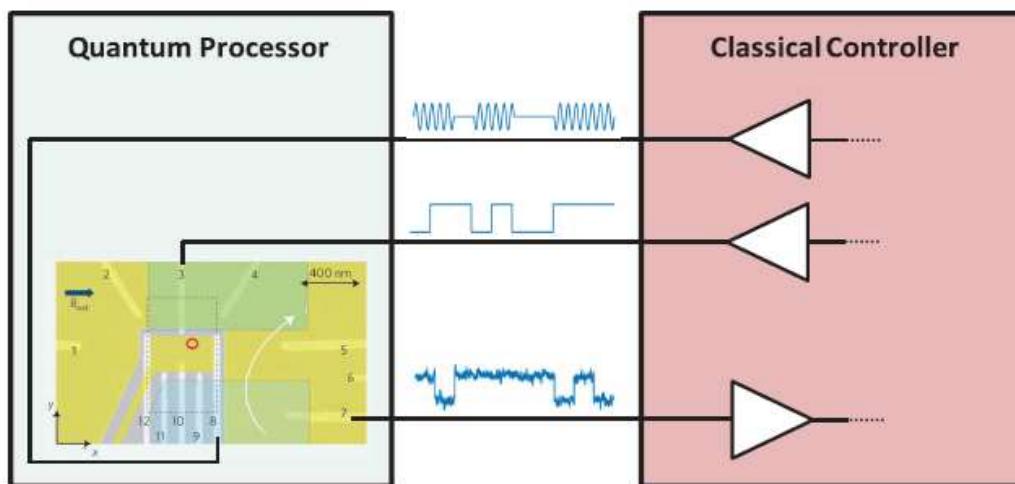


Figure 2 Quantum processor and classical electronic controller [4].

Figure 3 A representation of quantum computing [5].

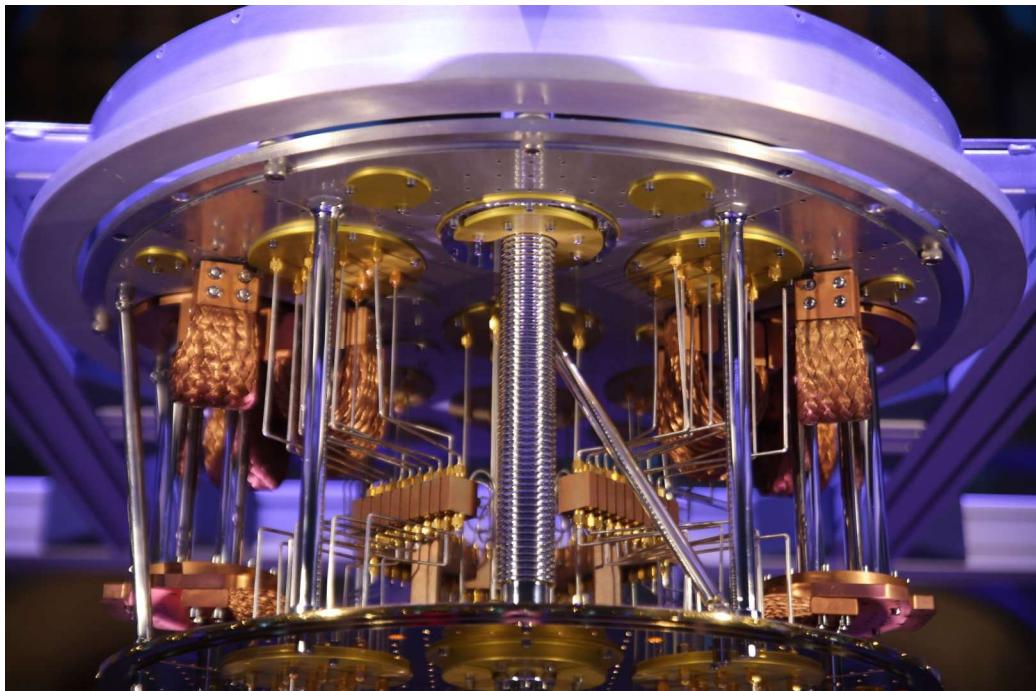


Figure 4 A typical quantum computer [6].

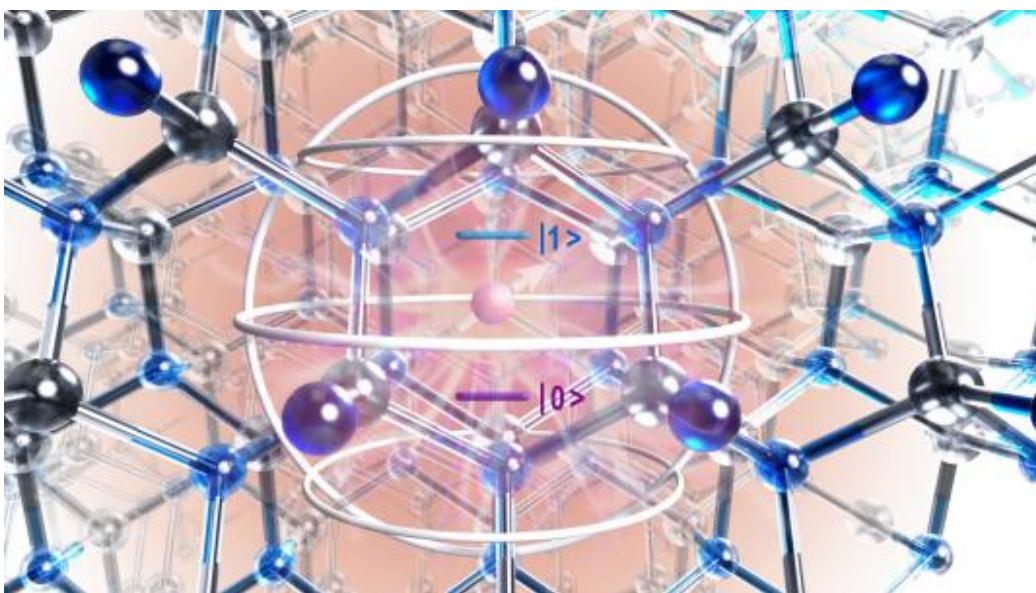
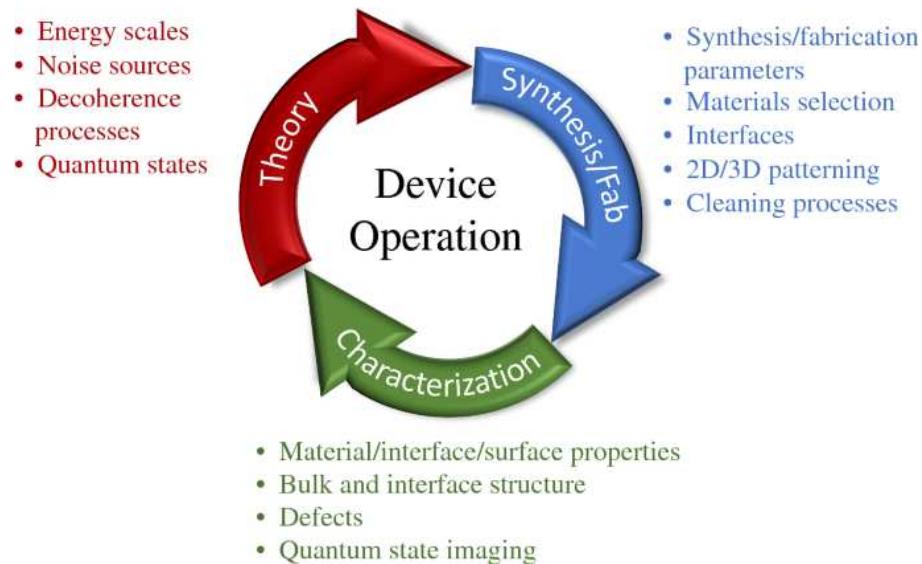
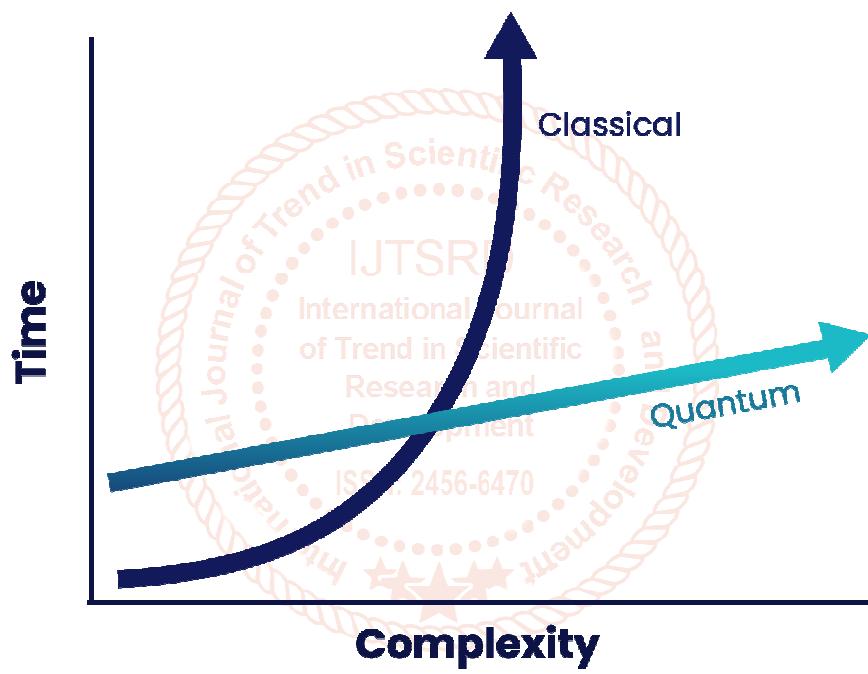




Figure 5 Artistic rendering of atomic structure of silicon carbide crystal [9].

Figure 6 A comprehensive integrated materials science workflow [11].

Figure 7 Complexity versus time [15].