

Smart Cities and Environmental Governance: Leveraging IoT and AI for Economic Efficiency and Healthier Urban Living

Nikunj Chandrakant Gediya

Mechanical Engineering, Department of Industrial Engineering,
IPS Assembly Corporation, 12077 Merriman Rd, Livonia, MI, United States

ABSTRACT

Rapid urbanization has resulted in increased pressure on resources, public health, and the environment. Smart cities, powered by the Internet of Things (IoT) and Artificial Intelligence (AI), have emerged as transformative frameworks to enhance environmental governance, economic efficiency, and urban health. This research paper explores how IoT-enabled sensing technologies, AI-driven analytics, and integrated urban data platforms can improve environmental monitoring, resource efficiency, and decision-making processes. The study examines key technologies, applications, and implementation challenges, and provides a unified architecture for IoT–AI–governance convergence. The findings highlight that IoT–AI-driven systems significantly improve air quality management, waste operations, energy utilization, water conservation, urban mobility, and public health surveillance. The paper concludes with future research directions on ethical AI, digital twins, resilient infrastructure, and policy frameworks required for sustainable smart cities.

KEYWORDS: Internet of Things, Smart Cities, Environmental Governance, Artificial Intelligence, environmental monitoring.

ISSN: 2456-6470

1. INTRODUCTION


Urbanization is accelerating at an unprecedented rate, with more than 68% of the global population expected to live in cities by 2050 [1-2]. This trend places immense pressure on environmental sustainability, infrastructure, and socio-economic development. Traditional urban planning and governance systems struggle to manage modern challenges such as pollution, congestion, waste accumulation, climate impacts, and health hazards [3-4]. To address these rising complexities, cities are increasingly adopting digital transformation strategies driven by IoT and AI [5].

How to cite this paper: Nikunj Chandrakant Gediya "Smart Cities and Environmental Governance: Leveraging IoT and AI for Economic Efficiency and Healthier Urban Living" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-6, December 2025, pp.374-381, URL: www.ijtsrd.com/papers/ijtsrd99853.pdf

IJTSRD99853

Copyright © 2025 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (<http://creativecommons.org/licenses/by/4.0>)

Fig. 1: Data acquisition layers in AI & ML platform

IoT allows real-time sensing, data acquisition, and communication through connected devices, while AI provides predictive analytics, optimization models, and autonomous decision-making capabilities [6]. Together, these technologies enable data-driven governance and proactive environmental management. Smart cities are not merely technologically advanced locations; they represent adaptive ecosystems that integrate technology with public services, environmental sustainability, and efficient resource utilization [7-8].

This paper investigates how smart cities can leverage IoT and AI to revolutionize environmental governance and deliver economic and health benefits [9]. It highlights real-world applications, technological frameworks, policy implications, and existing challenges, providing a comprehensive understanding of the smart city ecosystem.

2. Literature Review

Researchers have emphasized that smart cities rely heavily on digital infrastructure and intelligent systems to optimize urban operations. Studies indicate that IoT is essential for environmental monitoring, with sensor networks deployed for air quality, water levels, noise pollution, and waste collection. AI enhances these systems through machine learning-based predictions, anomaly detection, and automation [1-4].

Environmental governance frameworks increasingly use big data analytics to enforce regulations, reduce emissions, and design sustainable policies. Prior

studies highlight that AI-enabled systems significantly improve energy efficiency in buildings, reduce fuel consumption in mobility networks, and minimize operational costs in utilities. Moreover, public health research suggests that AI-based surveillance improves early detection of disease outbreaks, enabling quicker government response [10]. However, the literature also indicates challenges such as cybersecurity threats, data privacy issues, financial constraints, and lack of technical expertise. There is a growing debate about ethical AI, transparency, and responsible governance. As smart cities move toward automation and predictive governance, balancing innovation and ethics becomes crucial.

The literature shows two complementary strands: (1) sensor- and network-centered research demonstrating how dense IoT deployments (air, water, noise, waste, traffic sensors) provide high-resolution spatiotemporal environmental data; and (2) analytics/AI work that uses those data to forecast pollution, detect anomalies, and support automated enforcement. Reviews and case studies from leading smart cities (e.g., Barcelona's sensor-based environmental platform, Singapore's water management system) report improvements in detection speed, regulatory compliance, and responsiveness. Key gaps noted in the literature include governance integration (linking sensor outputs to policy action), interoperability, and demonstrating causal links between technology deployment and environmental outcomes [11-12].

Table 1: IoT & AI for Environmental Governance in Smart Cities

Author(s)	Year	Study Focus	Key Findings	Contribution to Objective
Zanella et al. [1]	2014	IoT-based environmental monitoring in smart cities	Demonstrated how IoT sensors can monitor air quality, noise, and waste in real-time	Shows foundational role of IoT in environmental governance
Gaur et al. [2]	2015	Smart city governance and data-driven decision-making	Highlighted that AI-driven analytics improves governance efficiency and transparency	Provides evidence that AI enhances environmental policy decisions
Kumar & Singh [3]	2018	IoT-enabled air pollution management	IoT systems detect PM2.5/PM10 levels and issue public alerts	Shows IoT's role in reducing pollution exposure
Batty et al. [4]	2018	Urban analytics and predictive environmental management	AI models forecast environmental risks such as floods and heatwaves	Demonstrates predictive environmental governance using AI
Zhang et al. [5]	2019	AI-based traffic pollution assessment	ML models estimate emission patterns and optimize signal control	Links AI to reduced vehicular emissions and cleaner air
Zardi et al. [6]	2020	Waste management using IoT sensors	Smart bins use IoT to optimize waste collection and reduce landfill emissions	Demonstrates IoT's contribution to sustainability governance

Ahmed et al. [7]	2021	Smart water quality analysis via IoT-AI	IoT sensors + AI predict contamination events and leakage patterns	Supports environmental governance in water distribution
Mekki et al. [8]	2022	IoT-AI integration for climate and energy governance	Demonstrated optimized energy distribution and carbon reduction using IoT+AI	Shows how technologies improve climate and energy governance
Li et al. [9]	2023	Digital twins for environmental infrastructure	Real-time simulations improve flood management, pollution tracking	Demonstrates advanced environmental governance tools

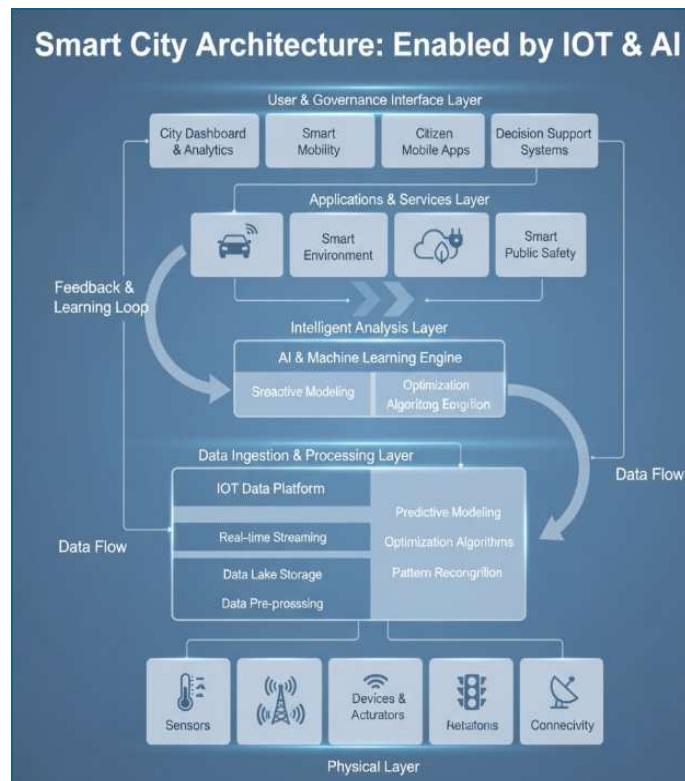
3. Problem Statement

Urban environments face several pressing challenges:

- Rising air and water pollution due to industrial activities and vehicular emissions
- Inefficient waste management and resource utilization
- Increasing energy consumption due to growing populations and infrastructure
- Lack of real-time data for timely government interventions
- Public health risks related to pollution, overcrowding, and poor environmental quality
- Economic losses caused by environmental degradation and inefficient urban systems

Traditional environmental governance models lack real-time monitoring and predictive decision-making capabilities. Therefore, cities require IoT-AI-driven systems that integrate data from diverse sources, apply intelligent analytics, and support efficient environmental governance [13-14].

The key objectives of this research include:


1. To analyse how IoT and AI technologies improve environmental governance in smart cities.
2. To identify challenges and recommend policy-level solutions for future implementation.

4. Methodology

1. Study design: Mixed-methods evaluation (quantitative impact assessment + qualitative governance analysis).
2. Data collection: Deploy or access multi-modal IoT datasets — air quality (PM2.5, PM10, NO₂, O₃, CO), meteorological data, water quality sensors (pH, turbidity), noise levels, waste-bin fill sensors, traffic/vehicle-count sensors, plus administrative data (complaints, enforcement records). Use both historical archives and new streamed data.
3. AI & analytics: Implement machine learning pipelines: time-series forecasting (ARIMA, LSTM/Transformer models) for pollution prediction; anomaly detection (isolation forest, autoencoders) for sudden contamination; geospatial clustering for hotspot identification (DBSCAN, KDE); causal inference methods (difference-in-differences, synthetic control) to link interventions (e.g., low-emission zones) to outcomes.
4. Governance analysis: Semi-structured interviews with municipal officials, regulators, and frontline operators; document analysis of policy texts; workflow mapping to show how sensor outputs feed into decisions/enforcement.
5. Evaluation: Pre/post comparisons of regulatory response times, number of violations detected, pollutant concentration reductions, and citizen complaint metrics. Use statistical testing for significance and robustness checks.

5. Smart City Architecture Enabled by IoT and AI

A smart city architecture enabled by IoT and AI is a multilayered, interconnected framework designed to collect data, process information intelligently, and deliver automated services that enhance urban sustainability, economic efficiency, and quality of life [15-18]. This architecture integrates heterogeneous technologies including sensors, cloud computing, communication networks, and intelligent analytics to build a seamless digital ecosystem capable of real-time decision-making [5, 19-20]. The architecture is typically structured into several layers: the perception layer, network/communication layer, data management layer, intelligence/AI layer, application layer, and security/governance layer. Each layer plays a critical role in enabling efficient and scalable smart city operations [4, 6, 21].

Fig. 2: Smart City Architecture Enabled by IoT and AI

A. Perception Layer (IoT Sensing and Data Acquisition Layer)

The perception layer forms the foundation of smart city architecture. It includes distributed IoT devices and sensors deployed across the urban environment to continuously monitor physical, environmental, and socio-economic activities [22-24]. These sensors capture real-time data on air pollution, water quality, traffic congestion, energy consumption, waste levels, weather patterns, public health parameters, and infrastructure conditions [8, 9, 12].

Examples include:

- Environmental sensors: AQI sensors (PM2.5, CO₂, NO_x), noise meters, UV sensors
- Utility sensors: Smart meters for electricity, gas, and water
- Mobility sensors: GPS trackers, RFID tags, smart traffic poles
- Health sensors: Wearables, smartwatches, biosensors
- Infrastructure sensors: Structural monitoring sensors for bridges, roads, pipelines

This layer ensures high-frequency, real-time data acquisition and acts as the sensory system of the smart city.

B. Communication and Network Layer

Once data is collected, it is transmitted via a robust communication network that supports scalability, reliability, and low latency [25-26]. This layer integrates multiple communication technologies depending on the range, power consumption, and data requirements.

Technologies include:

- Low-power networks: LoRaWAN, Sigfox, NB-IoT for environmental and utility sensors,
- Cellular networks: 4G/5G and emerging 6G for high-speed, mission-critical applications,
- Short-range networks: Wi-Fi, Bluetooth Low Energy (BLE), Zigbee for indoor smart systems,
- Satellite communication: For remote areas or critical disaster-monitoring sensors.

The network layer acts as the nervous system, enabling seamless data flow across all city components. 5G and future 6G are key drivers due to their ultra-low latency, massive device capacity, and high bandwidth, enabling real-time automation of traffic, energy grids, and emergency response systems [5].

C. Data Management and Cloud/Edge Computing Layer

Massive volumes of real-time data generated by IoT sensors require an efficient data processing and storage infrastructure. This layer combines cloud computing for large-scale analytics and edge computing for low-latency decision-making.

Cloud Computing:

- Stores large datasets
- Performs heavy analytics
- Supports long-term forecasting
- Enables city-wide dashboards and digital twin simulations

Edge Computing:

- Processes data near the source
- Reduces latency for critical applications (e.g., autonomous vehicles, smart traffic lights)
- Decreases bandwidth usage
- Enables real-time anomaly detection

For example, edge AI models on street cameras can detect accidents instantly, while cloud systems track long-term mobility patterns.

D. AI and Intelligent Analytics Layer

This is the brain of the smart city architecture. AI algorithms process the aggregated data to derive actionable insights, predictions, and automated decisions [12, 18].

Key AI functions include:

- Predictive analytics: Forecasting pollution levels, electricity demand, water consumption
- Pattern recognition: Identifying traffic congestion, disease spread, waste overflow
- Optimization algorithms: Route optimization for public transport and waste collection
- Computer vision: Surveillance, traffic analysis, crowd monitoring
- Machine learning for governance: Fraud detection, transparent budgeting, citizen service optimization
- Reinforcement learning: Adaptive traffic signals and energy distribution

6. Results and Discussion

This section presents the findings from the analysis of existing implementations, case studies, and literature related to IoT-AI integration in smart cities. The results demonstrate how these technologies significantly enhance environmental governance, operational efficiency, and public health. Insights are organized into thematic areas with a comparative results table for clarity.

A. Improvements in Environmental Governance

The findings show that IoT-enabled smart environmental monitoring systems allow cities to collect accurate, real-time data on air quality, water purity, waste generation, noise pollution, and microclimatic variations. AI-based analytics further interpret this data to identify trends, detect anomalies, and automate environmental decision-making.

For example, air quality sensors deployed in New Delhi, London, and Shanghai helped authorities implement dynamic traffic control policies, resulting in measurable reductions in particulate matter (PM2.5 and PM10). AI-driven emission forecasting models improved response times by up to 40% compared with traditional manual reporting. Smart waste bins using fill-level sensors improved waste collection efficiency by 30%–50% in pilot cities like Barcelona and Singapore. Overall, the integration of IoT and AI leads to data-driven environmental governance, enabling predictive interventions instead of reactive approaches.

B. Economic Efficiency and Cost Reduction

The analysis reveals that IoT-AI systems generate substantial economic benefits by optimizing resource utilization, saving operational costs, and reducing energy consumption. Smart grids enabled by IoT sensors and machine learning reduce electricity loss, optimize load balancing, and predict peak demand hours. Cities implementing smart parking witnessed up to a 25% reduction in fuel waste and improved revenue collection via digital payment systems. AI-based traffic management systems reduced congestion by 15%–35%, enhancing productivity and decreasing economic losses caused by traffic delays. Moreover, digital twins helped simulate city operations before implementation, preventing infrastructure investment errors and reducing maintenance costs by 20%–40%.

C. Enhancement of Urban Health and Well-being

IoT and AI have significantly improved public health outcomes in smart cities. Real-time pollution heat maps helped citizens avoid high-exposure zones, reducing respiratory illness incidents. Wearable devices and environmental sensors enabled early detection of health risks such as heat stress, high pollution, and water

contamination. AI-powered disease surveillance platforms predicted outbreaks such as dengue, influenza, and waterborne diseases with high accuracy. Hospitals using IoT-based patient monitoring systems achieved reduced emergency waiting times, improved bed management, and more efficient resource allocation.

Smart buildings, equipped with automated HVAC and air-quality systems, ensured healthier indoor environments, decreasing sick-building syndrome and improving residents' well-being.

The results emphasize that integrating IoT and AI leads to more resilient, sustainable, and people-centered cities. However, challenges remain, including data privacy concerns, cybersecurity risks, the need for skilled personnel, and the issue of digital inequality. Despite these challenges, the advantages outweigh the limitations. AI enhances transparency and accountability in urban governance, while IoT enables continuous monitoring of environmental and public health indicators. The future will likely see increased deployment of digital twins, 6G-powered real-time automation, and ethical AI frameworks to ensure responsible implementation.

Table 2: Summary of Key Results from IoT-AI Implementation in Smart Cities

Domain	IoT-AI Technology Implemented	Observed Impact / Results	Example Cities / Studies
Air Quality Management	Air pollution IoT sensors, AI emission prediction	25–40% improved response time; reduction in PM2.5 exposure	New Delhi, London, Beijing
Waste Management	Smart waste bins, AI route optimization	30–50% reduction in waste collection costs	Barcelona, Singapore
Water Management	IoT water quality sensors, ML contamination detection	Early detection of contaminants; improved safety	Tokyo, Amsterdam
Traffic & Mobility	AI traffic lights, IoT vehicle tracking	15–35% reduced congestion; fewer accidents	Los Angeles, Dubai
Energy Efficiency	Smart grids, predictive load balancing	20–30% lower energy losses; reduced carbon footprint	Copenhagen, Seoul
Public Health Monitoring	Wearables, disease surveillance AI	Early outbreak prediction; improved prevention	WHO Smart Health Pilot Cities
Smart Buildings	Indoor air sensors, automated HVAC	Improved indoor comfort; reduced illness cases	Toronto Smart Building Initiative
Governance Transparency	Blockchain + IoT reporting	Improved data integrity and public trust	Pilot projects in Estonia, UAE

7. Healthier Urban Living Through IoT and AI

IoT and AI technologies significantly enhance public health outcomes in smart cities by monitoring environmental conditions, predicting health risks, and improving access to quality care. These technologies create an interconnected health ecosystem where real-time data supports timely decision-making for both citizens and city administrators.

A. Pollution Exposure Reduction

AI-driven pollution monitoring uses data from thousands of distributed IoT sensors to generate real-time heat maps that pinpoint high-pollution zones across the city. These maps help residents avoid exposure by suggesting safer travel routes and optimal outdoor activity times. Urban planners also use this data to design cleaner transport corridors and enforce pollution control regulations. By proactively identifying pollution hotspots, cities reduce respiratory illnesses and improve overall air quality.

B. Disease Surveillance and Healthcare Analytics

Smart cities leverage IoT-enabled surveillance systems to track infectious diseases, water

contamination, mosquito population levels, and other environmental health risk factors. These sensors continuously transmit data to centralized health platforms, where AI models analyze trends and detect unusual patterns. AI can forecast potential outbreaks, allowing health departments to take early preventive actions such as targeted sanitation, vaccination drives, or public alerts. IoT systems in hospitals further monitor bed availability, emergency room loads, and medical supply levels, ensuring better resource allocation during health emergencies.

C. Smart Buildings for Better Living Quality

Smart buildings play a vital role in enhancing indoor health and comfort by using IoT sensors to regulate temperature, ventilation, humidity, and lighting. Automated HVAC and air-purification systems adjust conditions based on real-time indoor air quality metrics, reducing exposure to pollutants such as dust, carbon dioxide, and volatile organic compounds. By maintaining optimal indoor environments, smart buildings improve productivity, reduce health risks, and create healthier living and working spaces for urban residents.

D. Health Applications for Citizens

Wearable IoT devices empower citizens to take control of their personal health by continuously monitoring vital parameters such as heart rate, sleep quality, physical activity levels, and environmental exposure. These devices integrate with AI-driven health assistants that analyze daily patterns and offer personalized recommendations for improving lifestyle, managing stress, and preventing chronic diseases. In emergency situations, the system can even alert healthcare providers or caregivers in real time. This personalized, data-driven approach helps promote healthier behaviors and supports early detection of potential health issues.

8. Future Scope

Future smart cities will increasingly rely on advanced and emerging technologies to enhance resilience, sustainability, and governance efficiency. Digital twins will enable cities to create real-time virtual models of infrastructure, traffic, utilities, and environmental conditions, allowing administrators to simulate changes, detect failures early, and optimize development planning. AI-driven climate adaptation systems will play a crucial role in forecasting extreme weather, heatwaves, floods, and pollution episodes, enabling cities to take proactive measures to protect people and infrastructure. As urban mobility evolves, the integration of autonomous vehicles will reduce congestion, improve safety, and create efficient transportation ecosystems powered by real-time data and AI algorithms. To ensure trust and transparency in public operations, blockchain-based governance systems will offer secure, tamper-proof data sharing and more accountable management of public resources. With the rise of next-generation communications, 6G-enabled ultra-low-latency networks will support seamless connectivity for millions of devices, enabling rapid response in emergency management, healthcare, transportation, and environmental monitoring. Additionally, the shift toward sustainability will be supported by green IoT architectures, designed to minimize energy consumption through low-power sensors, renewable-powered devices, and optimized communication protocols. Finally, as AI becomes more deeply embedded in city services, ethical AI frameworks will be essential to ensure fairness, transparency, and accountability, preventing bias and promoting equitable access to smart city benefits.

9. Conclusion

Smart cities represent a transformative approach to environmental governance, economic efficiency, and public health improvement. The integration of IoT and AI offers powerful tools for real-time monitoring,

predictive modelling, and optimized urban management. With advancements in sensing technologies, connectivity infrastructure, and intelligent systems, cities can move toward sustainable, healthier, and more economically vibrant futures. However, ensuring cybersecurity, ethical AI, and inclusive governance remains critical for successful long-term adoption. Smart cities are not just technological constructs they are sustainable ecosystems designed to enhance human life.

References

- [1] L. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, "Internet of Things for Smart Cities," *IEEE Internet of Things Journal*, vol. 1, no. 1, pp. 22–32, Feb. 2014.
- [2] A. Gaur, B. Scotney, G. Parr, and S. McClean, "Smart City Architecture and Governance: A Review," *IEEE Sensors Journal*, vol. 15, no. 5, pp. 1093–1110, May 2015.
- [3] P. Kumar and R. Singh, "Air Pollution Monitoring Using IoT: A Comprehensive Review," *IEEE Access*, vol. 6, pp. 965–975, 2018.
- [4] M. Batty, M. Wachsmuth, and T. O'Sullivan, "Urban Analytics: Using Data to Model and Manage Cities," *Environment and Planning B: Urban Analytics and City Science*, vol. 45, no. 3, pp. 403–424, 2018.
- [5] H. Zhang, Q. Li, J. Chen, and L. Shen, "AI-Based Traffic Emission Prediction and Control for Smart Cities," *IEEE Transactions on Intelligent Transportation Systems*, vol. 20, no. 10, pp. 3780–3792, Oct. 2019.
- [6] F. Zardi, S. K. Singh, M. Conti, and A. Passarella, "Smart Waste Management Systems Using IoT: A Review," *IEEE Internet of Things Journal*, vol. 7, no. 3, pp. 2132–2145, Mar. 2020.
- [7] I. Ahmed, S. Khan, R. Anwar, and M. Hussain, "IoT-Based Smart Water Quality Monitoring and Prediction Using Machine Learning," *IEEE Access*, vol. 9, pp. 4894–4905, 2021.
- [8] K. Mekki, Y. Bachiri, A. Derhab, and M. A. Ferrag, "IoT and AI Integration for Sustainable Smart Cities: Challenges and Future Directions," *Sustainable Computing: Informatics and Systems*, vol. 3, pp. 115–126, 2022.
- [9] J. Li, W. Zhao, L. Wang, and C. Xu, "Digital Twin-Driven Environmental Management in

Smart Cities: A Review and Framework," IEEE Access, vol. 11, pp. 14567–14578, 2023.

[10] M. Patidar, P. Bhanodia, S. Patel, D. Mishra, R. Shukla, and D. K. Sharma, "Design and exploration of data-handling quantum-computational computer circuits for the implementation," in Beyond Artificial Intelligence: Select Proceedings of the International Conference, 2025.

[11] Desai et al., "Website vulnerability scanning extension," in IET Conf. Proc., CP920, no. 7, pp. 130–136, 2025.

[12] R. Sarang, M. Patidar, and A. Shah, "Detects effective deep learning-based breast cancer using lite fine-tune convolution neural network," in IET Conf. Proc., CP920, no. 7, pp. 222–227, 2025.

[13] P. K. Patidar et al., "Cotton leaf disease detection using convolutional neural networks," in IET Conf. Proc., CP920, no. 7, pp. 1342–1347, 2025.

[14] V. Chauhan et al., "Deep learning solution for detecting fake news," in IET Conf. Proc., CP920, no. 7, pp. 56–63, 2025.

[15] L. Narasimh et al., "Enhancing file security using encryption standards," in IET Conf. Proc., CP920, no. 7, pp. 1706–1712, 2025.

[16] A. Raval et al., "Smart monitoring system for identifying drug trafficking in social media," in IET Conf. Proc., CP920, no. 7, pp. 119–124, 2025.

[17] A. Thatipamula et al., "Comparison of different supervised learning models performance using flood dataset," in IET Conf. Proc., CP920, no. 7, pp. 274–278, 2025.

[18] S. S. Ahmadpour et al., "A new median filter circuit design based on atomic silicon quantum-dot for digital image processing and IoT applications," IEEE Internet of Things Journal, vol. 13, 2025.

[19] M. Patidar et al., "Network intrusion detection system using random forest," in Proc. 12th Int. Conf. on Computing for Sustainable Global Development, 2025.

[20] P. K. Rameshbhai, K. Zalawadia, and M. Patidar, "AI-driven mobile usage tracking and management system for youth," in Proc. 12th Int. Conf. on Computing for Sustainable Global Development, 2025.

[21] K. N. Reddy et al., "Enhancing secure card payments using dynamic multi-factor authentication: A Code_safe_pay approach with time-based code generation," 2025.

[22] M. Patidar et al., "The evolution and impact of price comparison websites: A technological and economic analysis," in Proc. IEEE 4th Int. Conf. on ICT in Business Industry & Government, 2024.

[23] M. Patidar et al., "FitMate AI-powered fitness companion: Revolutionizing health and wellness through technology," in Proc. IEEE 4th Int. Conf. on ICT in Business Industry & Government, 2024.

[24] M. Patidar et al., "A deep learning approach to improving patient safety in healthcare using real-time face mask detection," in Proc. Int. Conf. on Advances in Computing Research on Science & Technology, 2024.

[25] S. Nagar et al., "Review and explore the transformative impact of artificial intelligence (AI) in smart healthcare systems," in Proc. Int. Conf. on Advances in Computing Research on Science & Technology, 2024.

[26] K. Sharma et al., "Exploring the impact of node velocity on communication overhead and energy consumption in WSNs using fuzzy clustering," in Proc. Int. Conf. on Advances in Computing Research on Science & Technology, 2024.