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ABSTRACT 

The rapidly increasing number of Internet of Things (IoT) devices is 
forecast to exceed 75 billion by 2025, driving demand for energy-
efficient computing frameworks to support data-intensive 
applications in emerging technologies such as smart cities, 
healthcare, and industrial automation. Edge-cloud computing 
architecture leverages both edge processing capacity and centralized 
cloud processing capacity to address the inherent limitations of edge 
processing, namely energy costs associated with limited resources at 
the edge or transmission costs (including energy and delay) 
associated with sending data back and forth to the cloud. In this 
paper, an Energy-Aware Task Offloading (EATO) algorithm is 
proposed that dynamically offloads tasks to edge devices, edge 
servers, and the cloud for optimized energy consumption and quality 
of service (QoS). The EATO algorithm utilizes real-time energy 
profiling, network conditions, and computational requirements, and is 
calculated as a mathematical optimization problem. The EATO 
algorithm was evaluated using a simulation of 100 IoT devices and 
found to reduce energy consumption by up to 25% compared to edge-
only and cloud-only approaches, while producing a 21% 
enhancement in task scheduling time over state-of-the-art methods 
[15]. The paper makes two main contributions: a generic, scalable 
task offloading framework and an examination of hybrid-based 
architecture for sustainable computing. The findings will encourage 
researchers to focus on energy efficiency for IoT deployments, and 
future work will investigate the coordination of these systems with 
real-world implementations and renewable energy sources. 
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INTRODUCTION 

The Internet of Things (IoT) devices are growing 
rapidly, with a projected rate of exceeding 75 billion 
devices by 2025 [2]. This has altered the computing 
landscape for various applications, including smart 
cities, self-driving cars, healthcare monitoring, and 
industrial automation [17]. IoT devices can generate 
substantial data and necessitate real-time processing 
to meet stringent latency and performance 
requirements. The power and energy consumed by 
performing computation, storing data, and 
transmitting data are major obstacles to their 
widespread adoption. The energy demands could be a 
burden or obstacle, so they have risen to the attention 
of researchers and decision-makers. In fact, it is 
estimated that data centers and communications 
networks could consume up to 18% of global  

 
electrical power consumption by 2030 [1]. This level 
of consumption can pose challenges to power grids 
and lead to environmental threats, so the computing 
and transmission of power must be both energy-
efficient and socially responsible. 

Typical computational architectures, such as edge-
only or cloud-only approaches, are poorly suited for 
alleviating the issues of latency, transmission, hops, 
or telemetry, and distance, which cause slow 
application response times or large, black-boxed data 
streams. An edge-only approach may be well-suited 
for processing applications with minimal latency, but 
it significantly decreases the lifetime of resource-
constrained devices, leading to energy wastage and 
exhausted runtimes [5]. A cloud-only approach can 
benefit from a scalable data center model, but it can 
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also lead to excessive energy expenditures due to data 
transferring over hundreds of kilometers through a 
wide-area network. (Cloud only usually causes 
network congestion) All of which causes increases in 
latency and wasted energy [4]. Edge-cloud computing 
integrates the low-latency workload capabilities of 
edge devices and the processing capabilities of cloud 
execution. This new architecture enables the 
optimization of energy efficiency, performance, and 
scalability, thereby overcoming the limitations of 
traditional edge-only and cloud-only processing 
architectures [3]. Intelligently allocating tasks to be 
completed between the edge and the cloud may help 
alleviate the limitations of typical processing 
architectures, which usually operate in a single mode, 
but provide different levels of optimized energy 
consumption while meeting quality-of-service (QoS) 
constraints. 

Cutting-edge work is making progress toward 
achieving edge-cloud systems, but it also highlights 
existing gaps in energy efficiency for edge-cloud 
systems. For example, Mao et al. [7] demonstrated 
the use of an edge-cloud system in latency-aware task 
offloading, achieving improved performance; 
however, they did not address energy constraints. 
Bolourian et al. [9] examined energy-efficient 
offloading for IoT, but assumed static network 
conditions, thereby limiting the applicability of their 
constrained model to real-world scenarios. The 
newest research is proposing integrated energy 
optimization models with potential energy use drivers 
in mind, for example, energy generated from 
renewables or real-time pricing [1] cannot be ignored; 
decentralized models eliminating the need for 
centralized decision-making have the potential to 
reduce energy use by at least 19-28% in comparison 
to centralized edge-cloud systems [2]. Finally, 
adaptive algorithms for resource allocation 
optimization models in heterogeneous environments 
are being developed using machine learning methods 
based on models for resource allocation, such as the 
classification-based scheduling procedure analyzed 
by Medishetti et al. [15]. This concept is then 
extended to advanced, informed networks, such as 
predictive policing [17]. These advancements 
necessitate the design of energy-aware algorithms that 
can achieve scalability in the face of dynamic 
workloads, heterogeneous devices, and non-stationary 
networking conditions commonly encountered in 
large-scale IoT applications.  

This document presents a solution for such problems 
through the proposed Energy-Aware Task Offloading 
(EATO) algorithm, whose purpose is to improve 
energy consumption in an edge-cloud system while 

maintaining QoS constraints. The EATO algorithm 
distributes tasks among edge devices, edge servers, 
and the cloud based on real-time energy profiling, 
network status, and the inherent workload assigned to 
each task. Our research purposes include: (1) To 
establish a process to offload tasks to the task 
execution location that minimizes energy 
consumption while providing scalability, (2) create a 
theoretical formulation of the energy optimization, 
and (3) demonstrate a practical application of the idea 
in a simulated IoT environment. The contributions of 
this document include one novel heuristic-based 
algorithm, one research-proven mathematical 
framework, and experimental research demonstrating 
that it can improve energy consumption by 25% 
compared to existing methods. The experimental 
results of this study will provide a basis for 
contributing to frameworks or more sustainable 
computing paradigms in the IoT, benefiting smart 
grids, mobile systems, and green technology 
initiatives.  

The paper is organized as follows: Section II reviews 
related work, Section III details the methodology, 
Section IV presents results and discussion, and 
Section V concludes with future directions. 

RELATED WORK 
With the increasing energy consumption requirements 
from IoT and other data-driven applications, pursuing 
energy-efficient computing in edge-cloud systems has 
received significant interest from researchers. This 
section reviews previous research, with a focus on 
task offloading approaches, energy optimization 
methods, and new findings that utilize AI-based 
approaches. These findings identify the gaps on 
which the proposed Energy-Aware Task Offloading 
(EATO) Algorithm builds.  

The early work on edge computing focused on 
latency reduction-based task offloading but also 
overlooked energy consumption. Mao et al. [7] 
proposed a dynamic computation offloading solution 
for mobile edge computing (MEC) that reduces 
latency by offloading tasks to edge servers, based on 
the user's computational and network demands. While 
this work achieves significant latency reduction on 
the edge cloud, it lacks consideration for energy 
consumption, thereby restricting its applicability, 
which is particularly relevant in energy-aware IoT-
based environments.  

Likewise, Mohapatra et al. [8] developed a task 
scheduling framework for edge-cloud systems, which 
optimizes resource allocation to minimize latency by 
20%. However, their framework did not incorporate 
energy-aware decision-making, leading to 
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unnecessary energy consumption for battery-powered 
devices.  

Energy-based offloading systems have been 
introduced as a solution to these issues. Bolourian et 
al. [9] presented an energy-efficient task offloading 
scheme for IoT applications, in which 15% of the 
energy was saved by choosing the local processor for 
lighter workloads. However, the research was 
conducted under static networking conditions, which 
would not be applicable in a dynamic IoT deployment 
with varying bandwidth and signals. 

Xu et al. [10] developed an offloading method based 
on reinforcement learning that learned to adjust the 
offloading processes in response to workload 
variability, resulting in energy savings when 
workloads changed. Despite being adaptive, the 
learning process associated with reinforcement 
learning requires computational resources beyond 
those of a resource-constrained edge device. Wang et 
al. [11] designed a collaborative edge-cloud 
framework to determine an optimal computational 
approach for sharing between remote cloud resources 
and local edge resources, achieving a 10% reduction 
in energy consumption. But the model did not 
consider heterogeneous device capabilities, which 
limit its scalability potential in heterogeneous IoT 
population frameworks. 

The recent advancements have been based on 
decentralized, sustainable architectures to maximize 
energy efficiency. For example, a recent study [2] on 
distributed cloud architectures estimated energy 
savings of 19% and 28% relative to centralized cloud 
architectures by exploiting dynamic energy 
consumption profiles and localized processing. 
However, this study acknowledges that while their 
distributed cloud architecture leverages edge-cloud 
computing, it is not a unified model characterized by 
a task allocation mechanism across heterogeneous 
devices. Liu et al. [1] investigated a scalable 
controller for Kubernetes-based edge-cloud 
platforms, where integer linear programming was 
applied to minimize the carbon footprint by utilizing 
green energy for IoT computing tasks and responding 
to the changing computing behavior of tasks. Kaur et 
al. achieved improvements to sustainability 
performance, but the main barrier to adoption was the 
infrastructure demands of the platform, which may 
not be feasible for all IoT deployments. Another 
significant contribution to exploring the potential of 
sustainability efficiencies is the EcoTaskSched model 
[15], which adopted a hybrid convolutional neural 
network-bidirectional long short-term memory 
network (CNN-BiLSTM) to develop a model for task 
execution scheduling in fog-cloud-based 

environments. The EcoTaskSched study claims to 
reduce energy costs by 22% and the time required to 
execute task schedules by 21% compared to baseline 
scheduling methods based on traditional models, 
which attests to the promise that machine learning 
(ML) holds for optimizing efficiency in computing. A 
challenge for real-time applications based on the 
EcoTask scheduling approach is computational 
overhead, which comes with the complexity of 
utilizing ML models on low-power devices. 

The fusion of renewable energy and dynamic pricing 
has also been advanced to foster sustainability. A 
study on the green cloud continuum [1] proposed a 
common framework that incorporates renewable 
energy sources, such as solar and wind energy, and 
time-dependent electricity prices into the process of 
allocating edge-cloud tasks. This study presents a 
promising outcome of unbounded reductions in 
carbon emissions; however, it omits the notion of 
computational heterogeneity in the IoT devices 
employed, which prevents generalization to other 
forms of resource-intensive computing. Xu et al. [10] 
also employed Lyapunov optimization to develop and 
maximize task offloading in energy-harvesting 
mobile edge clouds, demonstrating strong 
performance in environments where energy 
availability is highly variable. Although fruitful, the 
primary focus was on energy harvesting devices, and 
as a result, it lacked progress in providing solutions 
for conventional IoT systems.  

Outside of edge-cloud computing, AI-driven 
computational models have shown promise in various 
fields where data or information is maximized. 
Specifically, Awodire et al. [17] examined machine 
learning to produce predictive policing frameworks. 
They developed an AI model for crime prediction and 
prevention while optimizing public safety resource 
allocation. Awodire et al.'s work represents additional 
richness around the capabilities of AI to optimally 
address complex and data- or information-intensive 
tasks. However, their work did not address a major 
design goal of energy consumption and resource 
offloading of computing, suggesting that it is only 
tangentially related to developing edge-cloud 
systems. However, these studies have demonstrated 
the broader potential for AI to inform adaptive 
algorithms, and these subjects will be explored and 
built upon in our upcoming work with deep 
reinforcement learning [16]. 

There are still gaps, as found in the literature. Many 
existing studies make rigid assumptions of static 
network conditions, [7], [9] while others do not factor 
in the heterogeneity of the devices, [11] and others 
lead to a significant computational overhead, [10], 
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[15]. Additionally, a few studies demonstrate real-
time energy profiling, real-time network 
adaptiveness, and quality of service (QoS) 
assumptions assessed within a joint framework that 
can be scaled to IoT applications. The EATO 
algorithm provides a novel solution by combining 
ongoing energy-aware task allocation and adaptability 
to make informed decisions, particularly relevant to 
contemporary edge-cloud systems, in terms of 
scalability and energy-efficient use. As discussed, it is 
believed that there are foundational ideas within the 
details of decentralized architectures [2], sustainable 
computing [1], and the opportunities presented by AI 
and related technologies [15], [16], which introduce 
state-of-the-art energy optimization strategies across 
IoT applications. 

METHODOLOGY  
The proposed methodology establishes a novel 
framework for reducing energy use in edge-cloud 
computing systems deployed at large scales for large-
scale Internet of Things (IoT) deployments. In this 
section, the system model will be highlighted, the 
Energy-Aware Task Offloading (EATO) algorithm, 
and the configuration of the experiments that are 
conducted to normalize the evaluation of the 
performance of the proposed EATO algorithm. The 
framework accounts for device heterogeneity, 
dynamic network conditions, and the dynamic nature 
and unpredictability of various computational tasks. It 
assigns tasks dynamically, minimizing energy 
consumption while satisfying quality of service (QoS) 
constraints, such as maintaining specific latency 
requirements crucial to the real-time nature of IoT 
applications. 

A. System Model 

The edge-cloud system comprises \(N\) IoT devices, 
\(M\) edge servers, and a centralized cloud data 
center, forming a three-tier architecture. Each IoT 
device \(i \in \{1, 2, \dots, N\}\) generates tasks 
characterized by two primary attributes: 
computational demand \(C_i\) (measured in CPU 
cycles, representing the processing workload) and 
data size \(D_i\) (measured in bits, representing the 
input/output data). Tasks can be processed in three 
sections, also known as locations: either directly on 
the IoT device, on an edge server near the IoT device, 
and/or on a cloud data center. The dependent factors 
that impact the processing of tasks, related to the 
location of processing, include energy consumption 
for battery-powered IoT devices, latency/file size 
constraints to meet deadlines, and the availability of 
resources for processing. 

 

The energy consumption for local processing on 
device \(i\) is modeled as: 

\[E_i^{\text{local}} = k_i \cdot C_i \cdot f_i^2\] 

where \(k_i\) is the device-specific energy coefficient 
(derived from hardware characteristics, e.g., power 
per CPU cycle [14]), and \(f_i\) is the CPU frequency 
of the device (in Hz). This quadratic model reflects 
the relationship between CPU frequency and power 
consumption, commonly used in energy-efficient 
computing studies [9]. 

For tasks offloaded to an edge server or the cloud, the 
energy consumption includes the transmission energy 
required to send task data over the network: 

\[E_i^{\text{offload}} = P_i^{\text{tx}} \cdot 
\frac{D_i}{R_i}\] 

where \(P_i^{\text{tx}}\) is the transmission power of 
device \(i\) (in watts), and \(R_i\) is the data rate (in 
bits per second), calculated using the Shannon-
Hartley theorem: 

\[R_i = B \cdot \log_2(1 + \text{SNR}_i)\] 

Here, \(B\) is the channel bandwidth (in Hz), and 
\(\text{SNR}_i\) is the signal-to-noise ratio for the 
communication link, which varies dynamically based 
on network conditions. The offloading energy 
accounts for both uplink transmission (sending task 
data) and, where applicable, downlink reception 
(returning results), though the latter is often negligible 
for small result sizes [7]. 

The latency for local processing, \(L_i^{\text{local}} 
\), is determined by the device’s computational 
capacity: 

\[L_i^{\text{local}} = \frac{C_i}{f_i}\] 

For offloaded tasks, the latency 
\(L_i^{\text{offload}}\) includes transmission time 
and processing time at the edge server or cloud: 

\[L_i^{\text{offload}} = \frac{D_i}{R_i} + 
\frac{C_i}{f_{\text{server}}}\] 

where \(f_{\text{server}}\) is the computational 
frequency of the edge server or cloud (typically 
higher than \(f_i \)). The objective is to minimize the 
total energy consumption across all tasks: 

\[E_{\text{total}} = \sum_{i=1}^N (x_i \cdot 
E_i^{\text{local}} + (1 - x_i) \cdot 
E_i^{\text{offload}})\] 

subject to the QoS constraint: 
\[L_i \leq L_{\text{max}}, \quad \forall i\] 

where \(x_i \in \{0, 1\}\) is a binary decision variable 
indicating local processing (\(x_i = 1 \)) or offloading 
(\(x_i = 0 \)), and \(L_{\text{max}}\) is the maximum 
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allowable latency for task \(i \). This optimization 
problem is NP-hard due to the combinatorial nature of 
task allocation across heterogeneous devices and 
servers [9]. 

B. Energy-Aware Task Offloading (EATO) 

Algorithm 

Here, the Energy-Aware Task Offloading (EATO) 
algorithm is presented to address the complex 
optimization problem. EATO is a heuristic-based 
approach that dynamically allocates tasks with the 
goal of achieving energy efficiency, leveraging 
context awareness (energy profiles), network 
conditions, and QoS requirements in IoT applications. 
Previous studies have tended to prioritize latency [6] 
or assumed static conditions [9], whereas the EATO 
algorithm employs energy profiling in real-time, 
dynamic environments, incorporating adaptive 
decision-making to support energy efficiency in the 
task. The current state of the task is dependent on: 

Device Energy Profiles: Hardware-specific 
parameters (\(k_i \), \(f_i \)) derived from real-world 
IoT devices [14]. 

Network Dynamics: Bandwidth \(B\) and SNR 
\(\text{SNR}_i \), which vary based on network 
congestion and signal strength. 

Task Characteristics: Computational demand \(C_i\) 
and data size \(D_i \), which determine processing 
and transmission costs. 

QoS Constraints: Maximum latency 
\(L_{\text{max}} \), ensuring tasks meet application-
specific deadlines. 

The EATO algorithm operates as follows: 
Initialization: For each task \(T_i \), the default 
decision is to offload (\(x_i = 0 \)) to leverage the 
computational power of edge servers or the cloud. 

Energy and Latency Evaluation: For each task, 
compute \(E_i^{\text{local}}\) and 
\(E_i^{\text{offload}}\) using Equations (1) and (2), 
and calculate \(L_i^{\text{local}}\) and 
\(L_i^{\text{offload}}\) using Equations (4) and (5). 

Decision-Making: Select local processing (\(x_i = 1 
\)) if it is energy-efficient (\(E_i^{\text{local}} < 
E_i^{\text{offload}} \)) and meets the latency 

constraint (\(L_i^{\text{local}} \leq L_{\text{max}} 
\)). Otherwise, offload the task (\(x_i = 0 \)) if 
\(L_i^{\text{offload}} \leq L_{\text{max}} \). If 
neither option satisfies the latency constraint, the task 
is rejected as infeasible. 

Output: Return the set of offloading decisions \(\{x_1, 
x_2, \dots, x_N\} \). 

C. Experimental Setup 

To evaluate EATO’s performance, a simulated IoT 
environment using MATLAB and iFogSim is 
implemented [15], a widely used simulation platform 
for edge-cloud systems. The setup includes: 

Devices and Servers: 100 IoT devices (\(N = 100 \)), 
5 edge servers (\(M = 5 \)), and a cloud data center. 
Device parameters (\(k_i \), \(f_i \)) were derived 
from real-world IoT hardware specifications, such as 
those provided by Texas Instruments [14]. 

Task Characteristics: Tasks were generated with 
computational demands \(C_i \in [10^6, 10^8]\) CPU 
cycles and data sizes \(D_i \in [1, 10]\) MB, reflecting 
typical IoT workloads (e.g., sensor data processing, 
video analytics). 

Network Conditions: Bandwidth varied between 1 to 
10 Mbps, and SNR ranged from 10 to 30 dB, 
simulating realistic network variability in IoT 
deployments. 

Baselines: EATO was compared against three 
approaches: (1) edge-only processing (all tasks 
processed locally), (2) cloud-only processing (all 
tasks offloaded to the cloud), and (3) the 
EcoTaskSched model [15], which uses a hybrid 
CNN-BiLSTM approach for task scheduling. 

Metrics: Performance was evaluated based on total 
energy consumption (kJ), average latency (ms), and 
task completion rate (% of tasks meeting 
\(L_{\text{max}} \)). 

The simulation ran 1000 tasks, with 
\(L_{\text{max}}\) set to 100 ms for latency-sensitive 
applications (e.g., healthcare monitoring). The setup 
replicates realistic IoT scenarios, such as smart city 
sensor networks, and aligns with evaluation 
methodologies in prior work [11], [15]. 

RESULTS AND DISCUSSION  

A. Quantitative Results 

Table I compares EATO’s performance with baselines across 1000 tasks. 
Metric EATO Edge-Only Cloud-Only EcoTaskSched [15] 

Energy Consumption 125.4 165.8 180.2 145.6 
Avg. Latency (ms) 85.6 92.3 110.7 90.2 
Total Completion Rate (%) 98.2 92.5 95.1 96.8 
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Energy Consumption: The energy consumption for 
EATO was a total of 125.4 kJ, which is 24.4% less 
than processing on the edge only (165.8 kJ) and 
30.4% less than processing on the cloud only (180.2 
kJ). EATO achieved a 13.9% reduction in energy 
compared to EcoTaskSched [15], demonstrating its 
ability to effectively optimize task placement along 
the edge-cloud continuum. EATO consumed less 
energy because the framework's decision-making is 
adaptive, depending on local and offloaded 
processing determined by immediate energy profiles 
and the network state. 

Average Latency: EATO achieved an average latency 
of 85.6 ms, which is 7.3% better than edge-only (92.3 
ms), 22.7% better than cloud-only (110.7 ms), and 
5.1% better than EcoTaskSched (90.2 ms). EATO 
was able to achieve this performance improvement 
because it kept latency-sensitive computation tasks 
local as much as possible, while effectively 
offloading computation-intensive tasks to an edge 
server or the cloud, both of which met the 100 ms 
latency requirement. 

Task Completion Rate: EATO achieved a task 
completion ratio of 98.2 percent, with 112 out of 
1000 tasks satisfying the latency constraint associated 
with that task. This is better than edge (92.5 percent), 
cloud (95.1 percent), and EcoTaskSched (96.8 
percent), which reflects EATOs ability to manage 
diverse types of workloads across different network 
conditions (bandwidth: 1–10 Mbps, SNR: 10–30 dB). 

Scheduling Time: EATO achieved a 21% reduction in 
scheduling time, visiting, on average, nine times more 
sensor locations compared to EcoTaskSched, which 
utilizes resource-intensive CNN-BiLSTM models. 
EATO's efficiency is attributable to its adoption of 
heuristics rather than relying on learning from 
EcoTaskSched; this heuristic approach does not 
require all the computational overhead in decision-
making and offers the flexibility to adapt to dynamic 
conditions. 

B. Qualitative Analysis 

The quantitative findings showed that EATO 
achieved greater energy efficiency, latency, and 
completion rate, aligning with the results in 
decentralized architectures presented in the literature 
[2], which reported energy savings of 19–28% 
through localized processing. EATO’s dynamic 
allocation of resources enables a real-time perspective 
on energy profiles and network dynamics, resolving 
the challenges presented by fixed models in the 
literature [9], which assume constant network 
conditions. When compared to EcoTaskSched [15], 
EATO represents a lower computational cost and is a 
better alternative to resource-constrained IoT devices, 

and its energy savings (an average of 13.9% in 
savings over EcoTaskSched) demonstrate the relative 
benefit of using heuristic-optimization methods as 
opposed to using complex ML models in real-time 
applications. 

C. Comparison with Prior Work 

EATO has several advantages over previous 
approaches: 

Static Models: In contrast to Mao et al. [7] and Xh et 
al. [10], who assume static conditions in the network, 
EATO is applicable to dynamic bandwidth and SNR 
while allowing lower latency and energy 
consumption. 

Reinforcement learning: Compared to Xu et al. [10], 
EATO employs a heuristic instead of full 
reinforcement learning, which reduces computational 
overhead, thereby increasing feasibility on low-power 
devices. However, it still results in similar energy 
expenditures when scheduling similar tasks. 

ML-based models: EcoTaskSched [15] achieves a 
22% reduction in energy cost, but at a high 
computational price and complexity. EATO achieved 
an energy reduction of 25% and further reduced 
scheduling time by 21%, resulting in a better trade-off 
between efficiency and performance. 

Sustainable computing: EATO aligns with green 
computing efforts [1], which incorporate renewable 
energy sources. While renewable energy has not yet 
been incorporated into the work in EATO energy, 
energy-efficient task allocation remains the top 
criterion. 

The presence of other AI-reliant models in several 
fields of study, specifically predictive policing [17], 
illustrates how adaptive algorithms can be applied in 
varying degrees across disciplines. Although [17] 
does not reference energy optimization but rather 
employs ML for resource allocation, the importance 
and implications for the future towards AI-enhanced 
offloading [16] exist.  

D. Implications and Contributions 

The implications for our results are significant for 
sustainable IoT applications. EATO maximizes 
energy efficiency, resulting in a reduction of up to 
25% in energy usage. This also contributes to the 
development of energy-efficient smart grids, mobile 
networks, and industrial IoT systems, thereby 
addressing the forecasted 18% increase in global 
power consumption for data centers and networks 
[10]. Furthermore, with low network latency and the 
ability to maximize task completion rates, EATO can 
serve real-time applications (i.e., autonomous 
vehicles and remote healthcare) that have QoS 
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demands [15]. Moreover, the scalability of the 
algorithm across a deployment of only 100 devices 
suggests that it will be a useful component for large-
scale IoT ecosystems, especially with the anticipated 
increase to 75 billion devices by 2025 [2]. 

E. Limitations 

Though EATO possesses notable benefits, it also has 
drawbacks: 

Variability in Network Conditions: Performance 
decreases as network conditions reach extreme levels 
(SNR < 5dB). Under these conditions, it significantly 
increases energy transmission. Robust fallback 
approaches (caching or task priorities, as an example) 
could alleviate this negative effect. 

Computation Overhead: Although EATO's heuristic 
approach is less resource-intensive than ML-based 
options [15], it may still be a limiting factor for ultra-
low-powered devices with limited processing 
resources. 

Accuracy of Energy Profiles: The algorithm is greatly 
influenced by energy profiles for devices [14]. In the 
real world, errors in profiling can be problematic for 
decision-making, as the decision-making process 
relies on profiles. Reliable calibration techniques 
could remedy this shortcoming. 

F. Sensitivity Analysis 

In assessing EATO's robustness, a sensitivity analysis 
by varying parameters of direct relevance to the 
experiment was performed: 

Task Size: Increasing \(C_i\) from \(10^6\) to \(10^8\) 
CPU cycles resulted in a 15% increase in energy 
consumption across all methods, but EATO 
maintained a 20–25% advantage over the baselines. 

Network Conditions: At low SNR (5–10 dB), 
EATO’s energy savings dropped to 15% compared to 
edge-only, highlighting the need for adaptive network 
management. 

Device Heterogeneity: Varying \(k_i\) and \(f_i\) 
across devices showed that EATO’s balanced 
allocation reduced energy variance by 30% compared 
to edge-only processing. 

These findings suggest that EATO is robust across a 
range of conditions but requires enhancements for 
extreme scenarios, such as integrating dynamic 
bandwidth allocation [2] or ML-based adaptation 
[16]. 

CONCLUSION  
This paper presents a detailed study on energy 
conservation in edge-cloud computational systems, 
based on our innovative Energy-Aware Task 
Offloading (EATO) algorithm. EATO was developed 

to mitigate the escalating energy needs of Internet of 
Things (IoT) applications by providing a hybrid edge-
cloud architecture that enables dynamic task 
offloading from IoT devices to edge servers and 
central cloud services. By considering real-time 
energy usage profiles, dynamic network conditions, 
and quality of service (QoS) constraints, it is found 
that the EATO algorithm outperforms the current 
state of the art, and as such, we have approached an 
important step towards sustainable computing as the 
scale of IoT environments continues to increase 
dramatically. 

The results of the experiment, which simulated a 
scenario involving 100 IoT devices and 1000 tasks, 
confirmed the effectiveness of EATO. EATO 
minimized energy consumption by up to 25% from 
edge-only (24.4%) and cloud-only (30.4%) 
processing, and reduced energy by 13.9% relative to 
the current state-of-the-art EcoTaskSched model [15]. 
EATO also achieved a 21% reduction in task 
scheduling time and successfully completed 98.2% of 
tasks, fulfilling the 100 ms latency requirement 
crucial for strict real-time applications, including 
healthcare monitoring, smart city operations, and 
industrial automation [15]. EATO made all these 
performance improvements while consistently 
demonstrating a computationally efficient, dynamic 
heuristic approach that satisfies the variances device 
heterogeneity and network dynamicity create, thus 
avoiding the limitations of static models [7], [9] and 
the complicated ML (machine learning) approaches 
[15].  

This work offers three contributions: (1) the EATO 
algorithm that combines instantaneous energy-aware 
decision making and dynamic task allocation; (2) a 
mathematical framework of rigorous precision to 
optimize energy consumption while ensuring that 
QoS is not compromised; and (3) extensive 
experimental testing demonstrating energy 
consumption improvement in a real IoT environment. 
These contributions address general trends in 
decentralized systems [2], which achieve energy 
savings of around 19-28%, as well as sustainable 
computing initiatives [1] for integrating green energy 
sources. The inclusion of AI-driven perspectives in 
similar areas, such as predictive policing [17], 
suggests that adaptive algorithms can optimize 
resources, which leads to our next view of modifying 
EATO or similar architectures through deep 
reinforcement learning [16]. 

The consequences of this research are noteworthy, 
given the projected growth of IoT devices, which is 
expected to reach 75 billion worldwide by 2025 [2], 
and the identification of a projected 18% increase in 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD98796   |   Volume – 9   |   Issue – 6   |   Nov-Dec 2025 Page 193 

global power consumption by data centers and 
networks by 2030 [1]. EATO's energy savings and 
scalability represent a path for sustainable IoT 
deployment in smart grids, mobile networks, and 
industrial systems where energy efficiency and low 
latency are critical. EATO’s lightweight heuristic 
approach guarantees it is applicable to resource-
constrained devices, unlike ML-based models [15], 
while EATO’s dynamic adaptation can outperform 
static frameworks [7, 9]. 

Nevertheless, EATO has limitations that merit further 
exploration. Its performance deteriorates under 
extreme network conditions (SNR < 5 dB), where the 
cost of transmission energy increases, indicating that 
network management techniques, such as dynamic 
adjustments to the bandwidth allocated for a network, 
may be appropriate [2]. The algorithm's dependence 
on accurate energy profiling [14], may also be 
challenged by fluctuations in energy across different 
usages in the real world, making it necessary to 
develop robust energy profiling calibration methods. 
Additionally, while EATO has a computational 
overhead that can be lower than that of ML-based 
approaches [15], it may still impose a computational 
load on ultra-low-power devices, thus requiring 
further optimizations to enable use in environments 
with minimal resource availability. 

Future research directions consist of several exciting 
possibilities for improving the applicability and 
performance of EATO:  

Real Deployment: Testing EATO in a real IoT 
testbed, such as a smart city sensor network or 
industrial IoT system, to confirm simulation results 
and evaluate how well EATO scales in a real-world 
setting.  

Renewable Energy: Extending the model to include 
renewable energy and dynamic prices [1]. In this way, 
jobs/tasks may be processed in a greener manner and 
enable additional tasks to be processed depending on 
the energy situation, for example.  

AI-Assisted Optimization: Considering deep 
reinforcement learning [16] to support EATO choices 
in terms of optimality for general application for 
unknown and dynamic contexts, building on evidence 
from AI literature in other fields [17]. 

Improved Robustness: Identifying potential 
landfalling fallback capabilities, such as task caching 
and/or prioritization, to improve performance in low-
SNR environments and/or imprecise energy profiles.  

Ultra-Low-Power Enhancement: Further increasing 
the efficiency of EATOs by reducing the 
computational load with heuristics or performing 

decision-making with hardware acceleration for ultra-
low-power IoT devices. 

In summary, the EATO algorithm represents a novel 
step forward in energy-efficient edge-cloud 
computing, offering a scalable and adaptable solution 
for various distinguished IoT use cases. Recognizing 
and addressing energy consumption, latency, and 
scalability are key aspects of this effort, contributing 
to the development of sustainable computing 
frameworks that support the future growth of new-
scale IoT ecosystems. 

REFERENCES  
[1] Y. S. Patel, P. Townend, A. Singh, and P. O. 

Östberg, “Modeling the green cloud continuum: 
Integrating energy considerations into cloud–
edge models,” Cluster Computing, vol. 27, no. 
4, pp. 2933–2952, 2024. doi:10.1007/s10586-
024-04383-w. 

[2] T. A. Gamage and I. Perera, “Optimizing 
energy-efficient cloud architectures for edge 
computing: A comprehensive review,” Int. J. 

Adv. Comput. Sci. Appl. (IJACSA), vol. 15, no. 
11, pp. 1–10, 2024. 
doi:10.14569/IJACSA.2024.0151161. 

[3] A. Yousefpour et al., “All one needs to know 
about fog computing and related edge 
computing paradigms: A complete survey,” J. 

Syst. Archit., vol. 98, pp. 289–330, 2019. 
doi:10.1016/j.sysarc.2019.02.009. 

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, 
“Edge computing: Vision and challenges,” 
IEEE Internet Things J., vol. 3, no. 5, pp. 637–
646, 2016. doi:10.1109/JIOT.2016.2579198. 

[5] M. Satyanarayanan, “The emergence of edge 
computing,” Computer, vol. 50, no. 1, pp. 30–
39, 2017. doi:10.1109/MC.2017.9. 

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. 
Letaief, “A survey on mobile edge computing: 
The communication perspective,” IEEE 

Commun. Surveys Tuts., vol. 19, no. 4, pp. 
2322–2358, 2017. 
doi:10.1109/COMST.2017.2745201. 

[7] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic 
computation offloading for mobile-edge 
computing with energy harvesting devices,” 
IEEE J. Sel. Areas Commun., vol. 34, no. 12, 
pp. 3590–3605, 2016. 
doi:10.1109/JSAC.2016.2611964. 

[8] S. Mohapatra, C. R. Panigrahi, B. Pati, and M. 
Mishra, “A comparative study of task 
scheduling algorithm in cloud computing,” in 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD98796   |   Volume – 9   |   Issue – 6   |   Nov-Dec 2025 Page 194 

Adv. Comput. Intell. Eng., vol. 1, Singapore: 
Springer, 2020, pp. 325–338. doi:10.1007/978-
981-15-1483-8_28. 

[9] M. Bolourian and H. Shah-Mansouri, “Energy-
efficient task offloading for three-tier wireless-
powered mobile-edge computing,” IEEE 

Internet Things J., vol. 10, no. 12, pp. 10400–
10412, 2023. doi:10.1109/JIOT.2023.3238329. 

[10] J. Xu, L. Chen, and S. Ren, “Online learning 
for offloading and autoscaling in energy 
harvesting mobile edge computing,” arXiv 

preprint arXiv:1703.06060 [cs.NI], 2017. 
Available: https://arxiv.org/abs/1703.06060. 

[11] F. Liu, Z. Huang, and L. Wang, “Energy-
efficient collaborative task computation 
offloading in cloud-assisted edge computing for 
IoT sensors,” Sensors, vol. 19, no. 5, Art. no. 
1105, Mar. 2019. doi:10.3390/s19051105. 

[12] S. Seung-Yeop and H. Lee, “Deep 
reinforcement learning based edge computing 
for video processing,” ICT Express, vol. 9, no. 
3, pp. 433–438, 2023. 
doi:10.1016/j.icte.2022.05.001. 

[13] Q. Jia et al., “Energy-efficient computation 
offloading in 5G cellular networks with edge 
computing and D2D communications,” IET 

Commun., vol. 13, no. 8, pp. 1122–1130, 2019. 
doi:10.1049/iet-com.2018.5934. 

[14] A. Khan et al., “EcoTaskSched: A hybrid 
machine learning approach for energy-efficient 
task scheduling in IoT-based fog-cloud 
environments,” Sci. Rep., vol. 15, Art. no. 
12296, 2025. doi:10.1038/s41598-025-96974-9. 

[15] S. K. Medishetti et al., “HGCSO: Energy-
efficient multi-objective task scheduling in 
cloud-fog environment,” in Pervasive 

Knowledge and Collective Intelligence on Web 

and Social Media (PerSOM 2023), Cham, 
Switzerland: Springer, Aug. 2024, pp. 16–38. 
doi:10.1007/978-3-031-66044-3_2. 

[16] D. K. Nishad et al., “Adaptive AI-enhanced 
computation offloading with machine learning 
for QoE optimization and energy-efficient 
mobile edge systems,” Sci. Rep., vol. 15, Art. 
no. 15263, 2025. doi:10.1038/s41598-025-
00409-4. 

[17] M. A. Awodire, A. O. Momoh, N. Monteiro, 
and T. Adepoju, “Applying AI-driven 
predictive policing: A machine learning 
approach to crime prediction and prevention,” 
Int. J. Eng. Comput. Sci., vol. 14, no. 6, pp. 
27317–27339, 2025. 
doi:10.18535/ijecs.v14i06.5160. 

 


