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ABSTRACT

The rapidly increasing number of Internet of Things (IoT) devices is
forecast to exceed 75 billion by 2025, driving demand for energy-
efficient computing frameworks to support data-intensive
applications in emerging technologies such as smart cities,
healthcare, and industrial automation. Edge-cloud computing
architecture leverages both edge processing capacity and centralized
cloud processing capacity to address the inherent limitations of edge
processing, namely energy costs associated with limited resources at
the edge or transmission costs (including energy and delay)
associated with sending data back and forth to the cloud. In this
paper, an Energy-Aware Task Offloading (EATO) algorithm is
proposed that dynamically offloads tasks to edge devices, edge
servers, and the cloud for optimized energy consumption and quality
of service (QoS). The EATO algorithm utilizes real-time energy
profiling, network conditions, and computational requirements, and is
calculated as a mathematical optimization problem. The EATO
algorithm was evaluated using a simulation of 100 IoT devices and
found to reduce energy consumption by up to 25% compared to edge-
only and cloud-only approaches, while producing a 21%
enhancement in task scheduling time over state-of-the-art methods
[15]. The paper makes two main contributions: a generic, scalable
task offloading framework and an examination of hybrid-based
architecture for sustainable computing. The findings will encourage
researchers to focus on energy efficiency for [oT deployments, and
future work will investigate the coordination of these systems with
real-world implementations and renewable energy sources.
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The Internet of Things (IoT) devices are growing
rapidly, with a projected rate of exceeding 75 billion
devices by 2025 [2]. This has altered the computing
landscape for various applications, including smart
cities, self-driving cars, healthcare monitoring, and
industrial automation [17]. IoT devices can generate
substantial data and necessitate real-time processing
to meet stringent latency and performance
requirements. The power and energy consumed by
performing computation, storing data, and
transmitting data are major obstacles to their
widespread adoption. The energy demands could be a
burden or obstacle, so they have risen to the attention
of researchers and decision-makers. In fact, it is
estimated that data centers and communications
networks could consume up to 18% of global

electrical power consumption by 2030 [1]. This level
of consumption can pose challenges to power grids
and lead to environmental threats, so the computing
and transmission of power must be both energy-
efficient and socially responsible.

Typical computational architectures, such as edge-
only or cloud-only approaches, are poorly suited for
alleviating the issues of latency, transmission, hops,
or telemetry, and distance, which cause slow
application response times or large, black-boxed data
streams. An edge-only approach may be well-suited
for processing applications with minimal latency, but
it significantly decreases the lifetime of resource-
constrained devices, leading to energy wastage and
exhausted runtimes [5]. A cloud-only approach can
benefit from a scalable data center model, but it can
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also lead to excessive energy expenditures due to data
transferring over hundreds of kilometers through a
wide-area network. (Cloud only usually causes
network congestion) All of which causes increases in
latency and wasted energy [4]. Edge-cloud computing
integrates the low-latency workload capabilities of
edge devices and the processing capabilities of cloud
execution. This new architecture enables the
optimization of energy efficiency, performance, and
scalability, thereby overcoming the limitations of
traditional edge-only and cloud-only processing
architectures [3]. Intelligently allocating tasks to be
completed between the edge and the cloud may help
alleviate the limitations of typical processing
architectures, which usually operate in a single mode,
but provide different levels of optimized energy
consumption while meeting quality-of-service (QoS)
constraints.

Cutting-edge work is making progress toward
achieving edge-cloud systems, but it also highlights
existing gaps in energy efficiency for edge-cloud
systems. For example, Mao et al. [7] demonstrated
the use of an edge-cloud system in latency-aware task
offloading, achieving improved performance;
however, they did not address energy constraints.
Bolourian et al. [9] examined energy-efficient
offloading for IoT, but assumed static network
conditions, thereby limiting the applicability of their
constrained model to real-world scenarios. The
newest research is proposing integrated energy
optimization models with potential energy use drivers
in mind, for example, energy generated from
renewables or real-time pricing [1] cannot be ignored;
decentralized models eliminating the need for
centralized decision-making have the potential to
reduce energy use by at least 19-28% in comparison
to centralized edge-cloud systems [2]. Finally,
adaptive algorithms for resource allocation
optimization models in heterogeneous environments
are being developed using machine learning methods
based on models for resource allocation, such as the
classification-based scheduling procedure analyzed
by Medishetti et al. [15]. This concept is then
extended to advanced, informed networks, such as
predictive policing [17]. These advancements
necessitate the design of energy-aware algorithms that
can achieve scalability in the face of dynamic
workloads, heterogeneous devices, and non-stationary
networking conditions commonly encountered in
large-scale IoT applications.

This document presents a solution for such problems
through the proposed Energy-Aware Task Offloading
(EATO) algorithm, whose purpose is to improve
energy consumption in an edge-cloud system while

maintaining QoS constraints. The EATO algorithm
distributes tasks among edge devices, edge servers,
and the cloud based on real-time energy profiling,
network status, and the inherent workload assigned to
each task. Our research purposes include: (1) To
establish a process to offload tasks to the task
execution location that minimizes energy
consumption while providing scalability, (2) create a
theoretical formulation of the energy optimization,
and (3) demonstrate a practical application of the idea
in a simulated IoT environment. The contributions of
this document include one novel heuristic-based
algorithm, one research-proven mathematical
framework, and experimental research demonstrating
that it can improve energy consumption by 25%
compared to existing methods. The experimental
results of this study will provide a basis for
contributing to frameworks or more sustainable
computing paradigms in the IoT, benefiting smart
grids, mobile systems, and green technology
initiatives.

The paper is organized as follows: Section Il reviews
related work, Section III details the methodology,
Section IV presents results and discussion, and
Section V concludes with future directions.

RELATED WORK

With the increasing energy consumption requirements
from IoT and other data-driven applications, pursuing
energy-efficient computing in edge-cloud systems has
received significant interest from researchers. This
section reviews previous research, with a focus on
task offloading approaches, energy optimization
methods, and new findings that utilize Al-based
approaches. These findings identify the gaps on
which the proposed Energy-Aware Task Offloading
(EATO) Algorithm builds.

The early work on edge computing focused on
latency reduction-based task offloading but also
overlooked energy consumption. Mao et al. [7]
proposed a dynamic computation offloading solution
for mobile edge computing (MEC) that reduces
latency by offloading tasks to edge servers, based on
the user's computational and network demands. While
this work achieves significant latency reduction on
the edge cloud, it lacks consideration for energy
consumption, thereby restricting its applicability,
which is particularly relevant in energy-aware IoT-
based environments.

Likewise, Mohapatra et al. [8] developed a task
scheduling framework for edge-cloud systems, which
optimizes resource allocation to minimize latency by
20%. However, their framework did not incorporate
energy-aware  decision-making, leading to
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unnecessary energy consumption for battery-powered
devices.

Energy-based offloading systems have been
introduced as a solution to these issues. Bolourian et
al. [9] presented an energy-efficient task offloading
scheme for IoT applications, in which 15% of the
energy was saved by choosing the local processor for
lighter workloads. However, the research was
conducted under static networking conditions, which
would not be applicable in a dynamic IoT deployment
with varying bandwidth and signals.

Xu et al. [10] developed an offloading method based
on reinforcement learning that learned to adjust the
offloading processes in response to workload
variability, resulting in energy savings when
workloads changed. Despite being adaptive, the
learning process associated with reinforcement
learning requires computational resources beyond
those of a resource-constrained edge device. Wang et
al. [11] designed a collaborative edge-cloud
framework to determine an optimal computational
approach for sharing between remote cloud resources
and local edge resources, achieving a 10% reduction
in energy consumption. But the model did not
consider heterogeneous device capabilities, which
limit its scalability potential in heterogeneous IoT
population frameworks.

The recent advancements have been based on
decentralized, sustainable architectures to maximize
energy efficiency. For example, a recent study [2] on
distributed cloud architectures estimated energy
savings of 19% and 28% relative to centralized cloud
architectures by exploiting dynamic energy
consumption profiles and localized processing.
However, this study acknowledges that while their
distributed cloud architecture leverages edge-cloud
computing, it is not a unified model characterized by
a task allocation mechanism across heterogeneous
devices. Liu et al. [1] investigated a scalable
controller for  Kubernetes-based edge-cloud
platforms, where integer linear programming was
applied to minimize the carbon footprint by utilizing
green energy for [oT computing tasks and responding
to the changing computing behavior of tasks. Kaur et
al. achieved improvements to sustainability
performance, but the main barrier to adoption was the
infrastructure demands of the platform, which may
not be feasible for all IoT deployments. Another
significant contribution to exploring the potential of
sustainability efficiencies is the EcoTaskSched model
[15], which adopted a hybrid convolutional neural
network-bidirectional long short-term memory
network (CNN-BiLSTM) to develop a model for task
execution scheduling in fog-cloud-based

environments. The EcoTaskSched study claims to
reduce energy costs by 22% and the time required to
execute task schedules by 21% compared to baseline
scheduling methods based on traditional models,
which attests to the promise that machine learning
(ML) holds for optimizing efficiency in computing. A
challenge for real-time applications based on the
EcoTask scheduling approach is computational
overhead, which comes with the complexity of
utilizing ML models on low-power devices.

The fusion of renewable energy and dynamic pricing
has also been advanced to foster sustainability. A
study on the green cloud continuum [1] proposed a
common framework that incorporates renewable
energy sources, such as solar and wind energy, and
time-dependent electricity prices into the process of
allocating edge-cloud tasks. This study presents a
promising outcome of unbounded reductions in
carbon emissions; however, it omits the notion of
computational heterogeneity in the IoT devices
employed, which prevents generalization to other
forms of resource-intensive computing. Xu et al. [10]
also employed Lyapunov optimization to develop and
maximize task offloading in energy-harvesting
mobile edge clouds, demonstrating strong
performance in environments where energy
availability is highly variable. Although fruitful, the
primary focus was on energy harvesting devices, and
as a result, it lacked progress in providing solutions
for conventional [oT systems.

Outside of edge-cloud computing, Al-driven
computational models have shown promise in various
fields where data or information is maximized.
Specifically, Awodire et al. [17] examined machine
learning to produce predictive policing frameworks.
They developed an Al model for crime prediction and
prevention while optimizing public safety resource
allocation. Awodire et al.'s work represents additional
richness around the capabilities of Al to optimally
address complex and data- or information-intensive
tasks. However, their work did not address a major
design goal of energy consumption and resource
offloading of computing, suggesting that it is only
tangentially related to developing edge-cloud
systems. However, these studies have demonstrated
the broader potential for Al to inform adaptive
algorithms, and these subjects will be explored and
built upon in our upcoming work with deep
reinforcement learning [16].

There are still gaps, as found in the literature. Many
existing studies make rigid assumptions of static
network conditions, [7], [9] while others do not factor
in the heterogeneity of the devices, [11] and others
lead to a significant computational overhead, [10],
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[15]. Additionally, a few studies demonstrate real-
time energy profiling, real-time network
adaptiveness, and quality of service (QoS)
assumptions assessed within a joint framework that
can be scaled to IoT applications. The EATO
algorithm provides a novel solution by combining
ongoing energy-aware task allocation and adaptability
to make informed decisions, particularly relevant to
contemporary edge-cloud systems, in terms of
scalability and energy-efficient use. As discussed, it is
believed that there are foundational ideas within the
details of decentralized architectures [2], sustainable
computing [1], and the opportunities presented by Al
and related technologies [15], [16], which introduce
state-of-the-art energy optimization strategies across
IoT applications.

METHODOLOGY

The proposed methodology establishes a novel
framework for reducing energy use in edge-cloud
computing systems deployed at large scales for large-
scale Internet of Things (IoT) deployments. In this
section, the system model will be highlighted, the
Energy-Aware Task Offloading (EATO) algorithm,
and the configuration of the experiments that are
conducted to normalize the evaluation of the
performance of the proposed EATO algorithm. The
framework accounts for device heterogeneity,
dynamic network conditions, and the dynamic nature
and unpredictability of various computational tasks. It
assigns tasks dynamically, minimizing energy
consumption while satisfying quality of service (QoS)
constraints, such as maintaining specific latency
requirements crucial to the real-time nature of IoT
applications.

A. System Model

The edge-cloud system comprises \(N\) IoT devices,
\(M\) edge servers, and a centralized cloud data
center, forming a three-tier architecture. Each IoT
device \(i \in \{1, 2, \dots, N\}\) generates tasks
characterized by two primary attributes:
computational demand \(C_i\) (measured in CPU
cycles, representing the processing workload) and
data size \(D_i\) (measured in bits, representing the
input/output data). Tasks can be processed in three
sections, also known as locations: either directly on
the IoT device, on an edge server near the [oT device,
and/or on a cloud data center. The dependent factors
that impact the processing of tasks, related to the
location of processing, include energy consumption
for battery-powered IoT devices, latency/file size
constraints to meet deadlines, and the availability of
resources for processing.

The energy consumption for local processing on
device \(i\) is modeled as:

\[E_i*{Mtext{local}} = k_i \cdot C_i \cdot f_i"2\]

where \(k_i\) is the device-specific energy coefficient
(derived from hardware characteristics, e.g., power
per CPU cycle [14]), and \(f_i\) is the CPU frequency
of the device (in Hz). This quadratic model reflects
the relationship between CPU frequency and power
consumption, commonly used in energy-efficient
computing studies [9].

For tasks offloaded to an edge server or the cloud, the
energy consumption includes the transmission energy
required to send task data over the network:

\[E_i*{Mtext{offload}} = P_i*{Mext{tx}} \cdot
\Mfrac{D_i}{R_i}\]

where \(P_i"{\text{tx}}\) is the transmission power of
device \(i\) (in watts), and \(R_i\) is the data rate (in
bits per second), calculated using the Shannon-
Hartley theorem:

\[R_i =B \cdot \log_2(1 + \text{ SNR}_i)\]

Here, \(B\) is the channel bandwidth (in Hz), and
\(\text{ SNR}_i\) is the signal-to-noise ratio for the
communication link, which varies dynamically based
on network conditions. The offloading energy
accounts for both uplink transmission (sending task
data) and, where applicable, downlink reception
(returning results), though the latter is often negligible
for small result sizes [7].

The latency for local processing, \(L_i*{\text{local } }
\), is determined by the device’s computational
capacity:

\[L_i*{\text{local} } = \frac{C_i} {f_i}\]

For offloaded tasks, the latency
\(L_i*{text{offload} }\) includes transmission time
and processing time at the edge server or cloud:

\[L_i*{text{offload}} = \frac{D_i}{R_i} +
\frac{C_i}{f_{\text{server}} }\]

where \(f_{\text{server}}\) is the computational
frequency of the edge server or cloud (typically
higher than \(f_i \)). The objective is to minimize the
total energy consumption across all tasks:

\[E_{\text{total}} = \sum_{i=1}"N (x_i
E_i*{\text{local}} + (1 - x_i)
E_i*{\text{offload} })\]

subject to the QoS constraint:
\[L_i\leq L_{\text{max}}, \quad \forall i\]

where \(x_i\in \{0, 1\}\) is a binary decision variable
indicating local processing (\(x_i = 1)) or offloading
(\(x_1=0Y)), and \(L_{\text{max} }\) is the maximum

\cdot
\cdot
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allowable latency for task \(i \). This optimization
problem is NP-hard due to the combinatorial nature of
task allocation across heterogeneous devices and
servers [9].

B. Energy-Aware Task Offloading (EATO)
Algorithm

Here, the Energy-Aware Task Offloading (EATO)
algorithm is presented to address the complex
optimization problem. EATO is a heuristic-based
approach that dynamically allocates tasks with the
goal of achieving energy efficiency, leveraging
context awareness (energy profiles), network
conditions, and QoS requirements in IoT applications.
Previous studies have tended to prioritize latency [6]
or assumed static conditions [9], whereas the EATO
algorithm employs energy profiling in real-time,
dynamic environments, incorporating adaptive
decision-making to support energy efficiency in the
task. The current state of the task is dependent on:

Device  Energy Profiles:  Hardware-specific
parameters (\(k_i\), \(f_i \)) derived from real-world
IoT devices [14].

Network Dynamics: Bandwidth \(B\) and SNR
\(text{SNR}_i \), which vary based on network
congestion and signal strength.

Task Characteristics: Computational demand \(C_i\)
and data size \(D_i \), which determine processing
and transmission costs.

QoS Constraints: Maximum latency
\(L_{\text{max}}\), ensuring tasks meet application-
specific deadlines.

The EATO algorithm operates as follows:
Initialization: For each task \(T_i \), the default
decision is to offload (\(x_i = 0 \)) to leverage the
computational power of edge servers or the cloud.

Energy and Latency Evaluation: For each task,
compute \(E_i*\text{local } }\) and
\(E_i"{\text{offload} }\) using Equations (1) and (2),
and calculate \(L_i*M\text{local} }\) and
\(L_i*{\text{offload} }\) using Equations (4) and (5).
Decision-Making: Select local processing (\(x_i = 1
\)) if it is energy-efficient (\(E_i*{\text{local}} <
E_ir{\text{offload}} \)) and meets the latency

RESULTS AND DISCUSSION
A. Quantitative Results

constraint (\(L_i*{\text{local}} \leq L_{\text{max}}
\)). Otherwise, offload the task (\(x_i = 0 \)) if
\(L_ir{\text{offload}} \leq L_{\text{max}} \). If
neither option satisfies the latency constraint, the task
is rejected as infeasible.

Output: Return the set of offloading decisions \(\{x_1,
x_2,\dots, x_N\}\).

C. Experimental Setup

To evaluate EATO’s performance, a simulated IoT
environment using MATLAB and iFogSim is
implemented [15], a widely used simulation platform
for edge-cloud systems. The setup includes:

Devices and Servers: 100 IoT devices (\(N = 100 )),
5 edge servers (\(M = 5)), and a cloud data center.
Device parameters (\(k_i \), \(f_i \)) were derived
from real-world IoT hardware specifications, such as
those provided by Texas Instruments [14].

Task Characteristics: Tasks were generated with
computational demands \(C_i \in [1076, 1078]\) CPU
cycles and data sizes \(D_i\in [1, 10]\) MB, reflecting
typical IoT workloads (e.g., sensor data processing,
video analytics).

Network Conditions: Bandwidth varied between 1 to
10 Mbps, and SNR ranged from 10 to 30 dB,
simulating realistic network variability in IoT
deployments.

Baselines: EATO was compared against three
approaches: (1) edge-only processing (all tasks
processed locally), (2) cloud-only processing (all
tasks offloaded to the cloud), and (3) the
EcoTaskSched model [15], which uses a hybrid
CNN-BiLSTM approach for task scheduling.

Metrics: Performance was evaluated based on total
energy consumption (kJ), average latency (ms), and
task completion rate (% of tasks meeting
W(L_{Mext{max}} \)).

The  simulation ran 1000  tasks, with
\(L_{\text{max} }\) set to 100 ms for latency-sensitive
applications (e.g., healthcare monitoring). The setup
replicates realistic IoT scenarios, such as smart city
sensor networks, and aligns with evaluation
methodologies in prior work [11], [15].

Table I compares EATO’s performance with baselines across 1000 tasks.

Energy Consumption 125.4 165.8 180.2 145.6
Avg. Latency (ms) 85.6 92.3 110.7 90.2
Total Completion Rate (%) | 98.2 92.5 95.1 96.8
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Energy Consumption: The energy consumption for
EATO was a total of 125.4 kJ, which is 24.4% less
than processing on the edge only (165.8 kJ) and
30.4% less than processing on the cloud only (180.2
kJ). EATO achieved a 13.9% reduction in energy
compared to EcoTaskSched [15], demonstrating its
ability to effectively optimize task placement along
the edge-cloud continuum. EATO consumed less
energy because the framework's decision-making is
adaptive, depending on local and offloaded
processing determined by immediate energy profiles
and the network state.

Average Latency: EATO achieved an average latency
of 85.6 ms, which is 7.3% better than edge-only (92.3
ms), 22.7% better than cloud-only (110.7 ms), and
5.1% better than EcoTaskSched (90.2 ms). EATO
was able to achieve this performance improvement
because it kept latency-sensitive computation tasks
local as much as possible, while effectively
offloading computation-intensive tasks to an edge
server or the cloud, both of which met the 100 ms
latency requirement.

Task Completion Rate: EATO achieved a task
completion ratio of 98.2 percent, with 112 out of
1000 tasks satisfying the latency constraint associated
with that task. This is better than edge (92.5 percent),
cloud (95.1 percent), and EcoTaskSched (96.8
percent), which reflects EATOs ability to manage
diverse types of workloads across different network
conditions (bandwidth: 1-10 Mbps, SNR: 10-30 dB).

Scheduling Time: EATO achieved a 21% reduction in
scheduling time, visiting, on average, nine times more
sensor locations compared to EcoTaskSched, which
utilizes resource-intensive CNN-BiLSTM models.
EATOQ's efficiency is attributable to its adoption of
heuristics rather than relying on learning from
EcoTaskSched; this heuristic approach does not
require all the computational overhead in decision-
making and offers the flexibility to adapt to dynamic
conditions.

B. Qualitative Analysis

The quantitative findings showed that EATO
achieved greater energy efficiency, latency, and
completion rate, aligning with the results in
decentralized architectures presented in the literature
[2], which reported energy savings of 19-28%
through localized processing. EATO’s dynamic
allocation of resources enables a real-time perspective
on energy profiles and network dynamics, resolving
the challenges presented by fixed models in the
literature [9], which assume constant network
conditions. When compared to EcoTaskSched [15],
EATO represents a lower computational cost and is a
better alternative to resource-constrained IoT devices,

and its energy savings (an average of 13.9% in
savings over EcoTaskSched) demonstrate the relative
benefit of using heuristic-optimization methods as
opposed to using complex ML models in real-time
applications.

C. Comparison with Prior Work
EATO has several advantages over previous
approaches:

Static Models: In contrast to Mao et al. [7] and Xh et
al. [10], who assume static conditions in the network,
EATO is applicable to dynamic bandwidth and SNR
while allowing lower Ilatency and energy
consumption.

Reinforcement learning: Compared to Xu et al. [10],
EATO employs a heuristic instead of full
reinforcement learning, which reduces computational
overhead, thereby increasing feasibility on low-power
devices. However, it still results in similar energy
expenditures when scheduling similar tasks.

ML-based models: EcoTaskSched [15] achieves a
22% reduction in energy cost, but at a high
computational price and complexity. EATO achieved
an energy reduction of 25% and further reduced
scheduling time by 21%, resulting in a better trade-off
between efficiency and performance.

Sustainable computing: EATO aligns with green
computing efforts [1], which incorporate renewable
energy sources. While renewable energy has not yet
been incorporated into the work in EATO energy,
energy-efficient task allocation remains the top
criterion.

The presence of other Al-reliant models in several
fields of study, specifically predictive policing [17],
illustrates how adaptive algorithms can be applied in
varying degrees across disciplines. Although [17]
does not reference energy optimization but rather
employs ML for resource allocation, the importance
and implications for the future towards Al-enhanced
offloading [16] exist.

D. Implications and Contributions

The implications for our results are significant for
sustainable IoT applications. EATO maximizes
energy efficiency, resulting in a reduction of up to
25% in energy usage. This also contributes to the
development of energy-efficient smart grids, mobile
networks, and industrial IoT systems, thereby
addressing the forecasted 18% increase in global
power consumption for data centers and networks
[10]. Furthermore, with low network latency and the
ability to maximize task completion rates, EATO can
serve real-time applications (i.e., autonomous
vehicles and remote healthcare) that have QoS
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demands [15]. Moreover, the scalability of the
algorithm across a deployment of only 100 devices
suggests that it will be a useful component for large-
scale IoT ecosystems, especially with the anticipated
increase to 75 billion devices by 2025 [2].

E. Limitations
Though EATO possesses notable benefits, it also has
drawbacks:

Variability in Network Conditions: Performance
decreases as network conditions reach extreme levels
(SNR < 5dB). Under these conditions, it significantly
increases energy transmission. Robust fallback
approaches (caching or task priorities, as an example)
could alleviate this negative effect.

Computation Overhead: Although EATO's heuristic
approach is less resource-intensive than ML-based
options [15], it may still be a limiting factor for ultra-
low-powered devices with limited processing
resources.

Accuracy of Energy Profiles: The algorithm is greatly
influenced by energy profiles for devices [14]. In the
real world, errors in profiling can be problematic for
decision-making, as the decision-making process
relies on profiles. Reliable calibration techniques
could remedy this shortcoming.

F. Sensitivity Analysis

In assessing EATO's robustness, a sensitivity analysis
by varying parameters of direct relevance to the
experiment was performed:

Task Size: Increasing \(C_i\) from \(106\) to \(10"8\)
CPU cycles resulted in a 15% increase in energy
consumption across all methods, but EATO
maintained a 20-25% advantage over the baselines.

Network Conditions: At low SNR (5-10 dB),
EATOQ’s energy savings dropped to 15% compared to
edge-only, highlighting the need for adaptive network
management.

Device Heterogeneity: Varying \(k_i\) and \(f_i\)
across devices showed that EATO’s balanced
allocation reduced energy variance by 30% compared
to edge-only processing.

These findings suggest that EATO is robust across a
range of conditions but requires enhancements for
extreme scenarios, such as integrating dynamic
bandwidth allocation [2] or ML-based adaptation
[16].

CONCLUSION
This paper presents a detailed study on energy
conservation in edge-cloud computational systems,

based on our innovative Energy-Aware Task
Offloading (EATO) algorithm. EATO was developed

to mitigate the escalating energy needs of Internet of
Things (IoT) applications by providing a hybrid edge-
cloud architecture that enables dynamic task
offloading from IoT devices to edge servers and
central cloud services. By considering real-time
energy usage profiles, dynamic network conditions,
and quality of service (QoS) constraints, it is found
that the EATO algorithm outperforms the current
state of the art, and as such, we have approached an
important step towards sustainable computing as the
scale of IoT environments continues to increase
dramatically.

The results of the experiment, which simulated a
scenario involving 100 IoT devices and 1000 tasks,
confirmed the effectiveness of EATO. EATO
minimized energy consumption by up to 25% from
edge-only (24.4%) and cloud-only (30.4%)
processing, and reduced energy by 13.9% relative to
the current state-of-the-art EcoTaskSched model [15].
EATO also achieved a 21% reduction in task
scheduling time and successfully completed 98.2% of
tasks, fulfilling the 100 ms latency requirement
crucial for strict real-time applications, including
healthcare monitoring, smart city operations, and
industrial automation [15]. EATO made all these
performance improvements while consistently
demonstrating a computationally efficient, dynamic
heuristic approach that satisfies the variances device
heterogeneity and network dynamicity create, thus
avoiding the limitations of static models [7], [9] and
the complicated ML (machine learning) approaches
[15].

This work offers three contributions: (1) the EATO
algorithm that combines instantaneous energy-aware
decision making and dynamic task allocation; (2) a
mathematical framework of rigorous precision to
optimize energy consumption while ensuring that
QoS is not compromised; and (3) extensive
experimental  testing  demonstrating  energy
consumption improvement in a real [oT environment.
These contributions address general trends in
decentralized systems [2], which achieve energy
savings of around 19-28%, as well as sustainable
computing initiatives [1] for integrating green energy
sources. The inclusion of Al-driven perspectives in
similar areas, such as predictive policing [17],
suggests that adaptive algorithms can optimize
resources, which leads to our next view of modifying
EATO or similar architectures through deep
reinforcement learning [16].

The consequences of this research are noteworthy,
given the projected growth of IoT devices, which is
expected to reach 75 billion worldwide by 2025 [2],
and the identification of a projected 18% increase in
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global power consumption by data centers and
networks by 2030 [1]. EATO's energy savings and
scalability represent a path for sustainable IoT
deployment in smart grids, mobile networks, and
industrial systems where energy efficiency and low
latency are critical. EATO’s lightweight heuristic
approach guarantees it is applicable to resource-
constrained devices, unlike ML-based models [15],
while EATO’s dynamic adaptation can outperform
static frameworks [7, 9].

Nevertheless, EATO has limitations that merit further
exploration. Its performance deteriorates under
extreme network conditions (SNR <5 dB), where the
cost of transmission energy increases, indicating that
network management techniques, such as dynamic
adjustments to the bandwidth allocated for a network,
may be appropriate [2]. The algorithm's dependence
on accurate energy profiling [14], may also be
challenged by fluctuations in energy across different
usages in the real world, making it necessary to
develop robust energy profiling calibration methods.
Additionally, while EATO has a computational
overhead that can be lower than that of ML-based
approaches [15], it may still impose a computational
load on ultra-low-power devices, thus requiring
further optimizations to enable use in environments
with minimal resource availability.

Future research directions consist of several exciting
possibilities for improving the applicability and
performance of EATO:

Real Deployment: Testing EATO in a real IoT
testbed, such as a smart city sensor network or
industrial IoT system, to confirm simulation results
and evaluate how well EATO scales in a real-world
setting.

Renewable Energy: Extending the model to include
renewable energy and dynamic prices [1]. In this way,
jobs/tasks may be processed in a greener manner and
enable additional tasks to be processed depending on
the energy situation, for example.

Al-Assisted  Optimization: Considering deep
reinforcement learning [16] to support EATO choices
in terms of optimality for general application for
unknown and dynamic contexts, building on evidence
from Al literature in other fields [17].

Improved Robustness:  Identifying  potential
landfalling fallback capabilities, such as task caching
and/or prioritization, to improve performance in low-
SNR environments and/or imprecise energy profiles.

Ultra-Low-Power Enhancement: Further increasing
the efficiency of EATOs by reducing the
computational load with heuristics or performing

decision-making with hardware acceleration for ultra-
low-power IoT devices.

In summary, the EATO algorithm represents a novel
step forward in energy-efficient edge-cloud
computing, offering a scalable and adaptable solution
for various distinguished IoT use cases. Recognizing
and addressing energy consumption, latency, and
scalability are key aspects of this effort, contributing
to the development of sustainable computing
frameworks that support the future growth of new-
scale IoT ecosystems.
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