

Machine Learning in Media and Entertainment

Matthew N. O. Sadiku¹, Samuel A. Ajayi², Janet O. Sadiku³

¹Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX, USA

²Texas Southern University, Houston, TX, USA

³Juliana King University, Houston, TX, USA

ABSTRACT

Machine learning (ML) is a branch of artificial intelligence (AI) that uses statistical algorithms to automatically learn from data without being explicitly programmed. It allows computers to learn from data and make decisions without being directly programmed. It is revolutionizing media and entertainment by personalizing content, creating and enhancing media, and automating operational tasks. The AI/ML revolution in media and entertainment has caused a dramatic upheaval in the sector, from audience engagement to content development. With the help of machine learning algorithms, it is easier to find trends and preferences, assisting content producers in making decisions about what appeals to their target audience. This paper explains how machine learning is transforming the media and entertainment industry.

KEYWORDS: *machine learning, artificial intelligence, deep learning, media and entertainment, M&E industry.*

How to cite this paper: Matthew N. O. Sadiku | Samuel A. Ajayi | Janet O. Sadiku "Machine Learning in Media and Entertainment" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-6, December 2025, pp.163-171, URL: www.ijtsrd.com/papers/ijtsrd98743.pdf

IJTSRD98743

Copyright © 2025 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (<http://creativecommons.org/licenses/by/4.0>)

INTRODUCTION

Media and entertainment encompass a broad spectrum of creative and communication-based fields that aim to entertain, inform, and inspire audiences. This industry includes television, film, radio, music, gaming, advertising, digital media, social media, live events, and much more. The entertainment industry has been through several waves of digitalization – file-sharing, streaming, social and mobile – driven platforms for the consumers to access any content from anywhere in the world at any time. This digitalization is compelled by changing consumer behavior and expectations, and consumers who demand instant access to content, anytime, anywhere. The industry is being transformed by applied artificial intelligence and machine learning. It has always been in the forefront of adopting innovation for business [1]. As consumers stream music, movies and TV shows, their data is being captured to inform a new age of personalized entertainment.

Using machine learning, computers can learn from data and improve their performance over time. ML applications use machine learning algorithms to

process large volumes of training data, develop their own problem-solving models, make predictions, measure the accuracy of those predictions, and adjust their modeling to improve predictive performance over time. ML also improves content security by detecting piracy and automates the moderation of inappropriate content.

WHAT IS MACHINE LEARNING?

Machine learning is a subfield of artificial intelligence that uses algorithms trained on data sets to create models capable of performing tasks that would otherwise only be possible for humans, such as categorizing images, analyzing data, or predicting price fluctuations. It uses algorithms (essentially lists of rules) trained on data sets to create self-learning models capable of predicting outcomes and classifying information without human intervention. It focuses on algorithms that can “learn” the patterns of training data and, subsequently, make accurate inferences about new data. This pattern recognition ability enables machine learning models to make decisions or predictions without explicit, hard-coded

International Journal
of Trend in Scientific
Research and
Development

ISSN: 2456-6470

instructions. To ensure such algorithms work effectively, however, they must typically be refined many times until they accumulate a comprehensive list of instructions that allow them to function correctly [2]. A symbol of machine learning is shown in Figure 1 [3].

Generally speaking, a learning problem considers a set of samples of data and then tries to predict properties of unknown data. ML builds heavily on statistics because when we train a machine to learn, we have to give it a statistically significant random sample as training data. Intelligent machines are increasing doing incredible things: Facebook recognizes faces in photos, Siri understands voices, and Google translates websites [4].

Machine learning techniques are transforming many fields including computer science, engineering, mathematics, physics, neuroscience, and cognitive science. We are surrounded by ML-based technologies: search engines learn how to bring us the best results, digital cameras learn to detect faces, credit card transactions are secured by a software that detects frauds, and cars are equipped with accident prevention systems that are built using ML algorithms [5]. In ML, data plays an indispensable role, and the learning algorithm is used to learn from the data. ML algorithms are now easy to use. One can download packages in Python. Programming languages used in ML include C++, Java, Python.

As its name indicates, machine learning works by creating computer-based statistical models that are refined for a given purpose by evaluating training data, rather than by the classical approach where programmers develop a static algorithm that attempts to solve a problem. Because the algorithm adjusts as it evaluates training data, the process of exposure and calculation around new data trains the algorithm to become better at what it does. Algorithms are the computational part of a machine learning project. Once trained, algorithms produce models with a statistical probability of answering a question or achieving a goal. Unlike in expert systems, the logic by which a machine learning model operates is not explicitly programmed; it is learned through experience. Machine learning has come to dominate the field of AI: it provides the backbone of most modern AI systems, from forecasting models to autonomous vehicles to large language models (LLMs) and other generative AI tools. Machine learning has become a household term in recent years as the concept moved from science fiction to a key driver of how businesses and organizations process information [6].

As shown in Figure 2 [7], there are different types of machine learning. The four major types of machine learning are supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning, each suited to different kinds of data and outcomes. Different types of machine learning include the following [8]:

- *Supervised Learning*: The program is “trained” on a pre-defined set of “training examples” from a “teacher,” which then facilitate its ability to reach an accurate conclusion when given new data. In this case, the data comes with additional attributes that we want to predict. A common case of supervised learning is to use historical data to predict statistically likely future events. Under supervised ML, we have regression ML and classification ML.
- *Unsupervised Learning*: As their name suggests, unsupervised learning algorithms can be broadly understood as somewhat “optimizing themselves.” Unsupervised algorithms do not need to be trained with desired outcome data. The program is given a bunch of data and must find patterns and relationships therein. A typical goal of unsupervised learning may be as straightforward as discovering hidden patterns within a dataset. Without being told a “correct” answer, unsupervised learning methods can look at complex data and organize it in potentially meaningful ways.
- *Reinforcement Learning*: Reinforcement learning models are trained holistically through trial and error. Reinforcement learning is a method with reward values attached to the different steps that the algorithm must go through. So, the model’s goal is to accumulate as many reward points as possible and eventually reach an end goal. Reinforcement learning is an area of machine learning concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward.
- *Deep Learning*: Deep learning (DL) is a specialized form of machine learning that uses artificial neural networks to mimic the human brain. It is a type of machine learning technique that is modeled on the human brain. It is an advanced technique for handling complex tasks like image and speech recognition. The way in which neural networks are trained can be described as deep learning. It is called deep because the network of neurons is arranged in several hierarchical levels. Deep learning laid the foundation for advances in generative artificial intelligence.

MACHINE LEARNING IN MEDIA AND ENTERTAINMENT

Media and entertainment companies are facing increased competition and market uncertainty. Figure 3 shows a representation of entertainment [9]. The entertainment industry has undergone a profound transformation in recent years, partly due to advancements in machine learning (ML) and artificial intelligence (AI). This has accelerated the demand for data-driven technologies that use artificial intelligence and machine learning to optimize customer experiences and generate more revenue from content while lowering operating costs. AI has broadened its influence across all the major industries, and AI in entertainment industry is no exception. AI is democratizing intuitive interfaces through smarter tools and exuberant technologies. The purpose of AI is not to replace human capital but rather to enable creators and thinkers to better envision dream projects [9]. ML algorithms can assist in image and video editing, content tagging, and automated data movement, allowing for more efficient post-production workflows. ML models are able to estimate demand, customer sentiment, and revenue under a variety of conditions, enhancing the data available to inform the decision-making process for business leaders.

Figure 4 represents the integration of AI and ML [10]. Both ML and AI-driven applications use algorithms to solve problems. While AI-driven apps follow rules-based algorithms written by software developers, ML-driven applications develop their own problem-solving models by imitating the human process of learning. By leveraging these AI/ML technologies strategically, media organizations can unlock new possibilities, drive workflow efficiency, and deliver more personalized and engaging content experiences to their audience [11].

APPLICATIONS OF MACHINE LEARNING IN MEDIA AND ENTERTAINMENT

Machine learning (ML) is used in media and entertainment for personalized recommendations, content creation and editing, audience analytics, and content moderation. Machine learning has ushered in a new era of entertainment, from personalized recommendations to AI-generated content. By harnessing the power of artificial intelligence and machine learning, you can transform your content creation, distribution, and audience-targeting strategies like never before. Whether it is the next song on Spotify or a movie recommendation on Netflix, machine learning is the secret behind it. Common areas of application of ML in media and entertainment include the following [10-13]:

➤ *Personalized Recommendations:* One of the most impactful applications of AI in media is personalized content recommendations. A recommendation system is an algorithm that offers personalized products to online consumers. When applied to media and entertainment, recommendation engines can provide tailor-made customer experiences that would not be feasible with a manual process. ML algorithms analyze viewing history, ratings, time of day, and other user data to suggest content, as seen with Netflix and Spotify. This not only enhances user satisfaction but also contributes to increased engagement and longer viewing sessions. Personalized content recommendations based on user preferences and activity are improving user experiences. One of the most important benefits of content recommendation systems is that they enable users to discover new content that aligns with their interests even before they think of making such decision.

➤ *Content Creation:* Traditional approaches to content creation and distribution are no longer enough to stand out in this crowded market. ML-driven tools enable content creators to generate, edit, and enhance media more efficiently. For example, AI can assist in writing scripts, composing music, and creating visual art. Tools can automate parts of video editing, generate metadata, and create special effects, speeding up post-production workflows. Entertainment production exceeds all bounds with the latest AI tools like generative AI for content creation entering this space.

➤ *Film Production:* The integration of machine learning in film production has been nothing short of remarkable. As artificial intelligence continues to evolve, filmmakers are discovering innovative ways to leverage this technology throughout the production process. From script analysis to visual effects, machine learning algorithms are revolutionizing every aspect of moviemaking. These advancements are not only saving time and resources but also opening up new creative possibilities for filmmakers of all levels. By leveraging machine learning algorithms, producers and directors can optimize their planning process, potentially saving millions in production costs and increasing the chances of success. During filming, machine learning in film production continues to prove its worth. From intelligent camera systems to real-time visual effects previews, AI is transforming the on-set experience for cast and crew alike.

- **Video Production:** Artificial intelligence (AI) and machine learning (ML) are transforming the video production industry, introducing tools and techniques that streamline workflows, enhance creativity, and improve efficiency. Machine learning algorithms can analyze viewer data to create personalized videos tailored to individual preferences. This technology is particularly effective in marketing, where dynamic videos can adapt to different audiences based on demographics, behavior, or purchase history. AI tools improve video quality through automated color correction, noise reduction, and upscaling. AI and machine learning are reshaping the video production landscape, offering tools that improve efficiency, creativity, and personalization.
- **Music and Art Generation:** AI has even ventured into creative domains such as music and art generation. Using deep learning algorithms, AI can compose music or create visual art that mimics the style of renowned artists. There are now new opportunities for both artists and customers as a result of the confluence of technology and creativity. AI supports music composition, beat creation, and mixing, offering innovative tools for musical creativity. Recommendation systems on music streaming platforms deliver personalized content, increasing user satisfaction and engagement. Copyright protection is bolstered by AI, safeguarding musicians' and composers' intellectual property.
- **Social Media:** From just a means of communication, social media has become an essential part of commerce and community building. With the use of ML algorithms, social media can provide personalized experiences, predict what users are likely to do and present content and services more smartly and quickly. The key ways ML is improving how we engage with social platforms are depicted in Figure 5 [12]. ML for social media is critical for detecting harmful content like hate speech, spam, deepfakes, and misinformation. ML algorithms are key to creating good social media experiences by working with large volumes of data and automating some aspects of the platform.

BENEFITS

AI and ML technologies have revolutionized how content is created, distributed, and consumed, enhancing user experiences and opening up new possibilities for entertainment companies. These game-changing technologies empower you to unlock limitless creativity, drive engagement, and stay ahead of your competitors. ML algorithms analyze user

behavior, preferences, and viewing history to provide tailored content recommendations. Digitally sophisticated media and entertainment companies (Netflix, Amazon, and Disney) are already leveraging ML algorithms in their data analysis. Other benefits include the following [14,15]:

- **Automation:** AI/ML technologies have revolutionized content creation by automating certain aspects of the workflow process. Machine learning is used in tools that automate tasks like animation, character modeling, and rotoscoping, accelerating production and enhancing visual effects in films and video games. It handles mundane tasks such as color correction, object removal, or generating visual effects, freeing up artists to focus on more creative aspects of their work. Speech-to-text technology powered by ML automatically generates closed captions for video content, making it more accessible to a wider audience. Automating time-consuming tasks like editing, color correction, and rendering frees up creative professionals to focus on storytelling and innovation.
- **Content Generation:** AI can be used to generate elements like music, scripts, or entire videos based on specified criteria, offering new creative possibilities and tools for creators. Natural Language Processing (NLP) algorithms can analyze vast amounts of data to generate engaging and relevant content.
- **Predictive Analytics:** The predictive power of machine learning can enable executives to make informed choices and allow a much shorter turnaround time than traditional forecasting. ML models analyze big data to predict audience preferences and market trends. ML can analyze market trends and audience data to predict which content is likely to be a hit, helping studios make better decisions on what to produce. Predictive analytics plays a crucial role in optimizing revenue generation and enables revenue forecasting. It helps businesses to make strategic decisions in terms of resource allocation, pricing strategies, and overall business planning. Audience profiling is major thing that predictive analysis can help businesses in the media and entertainment industry do.
- **Audience Analytics:** ML models process large datasets from social media and viewing habits to provide insights into audience behavior and preferences. This helps companies make data-driven decisions about content strategy, marketing, and release schedules.

- **Informed Decisions:** We make decisions all the time, ranging from trivial to life-altering. For the first time in human history, science is mitigating the challenges of the decision process. AI-powered analytics tools can process large amounts of data, extracting valuable insights into audience behavior, demographics, and content consumption patterns. This data-driven approach enables media companies to make informed decisions on content strategy, advertising, and overall user experience. ML models analyze viewer data to provide actionable insights, helping producers understand what content resonates most and refine future projects accordingly.
- **Market Segmentation:** Effective market segmentation can empower M&E companies to effectively manage customer relationships and drive satisfaction and retention by delivering value to customer groups along the dimensions that matter most. The traditional approach to marketing segmentation has marketing analysts reviewing customer data and grouping customers in terms of their demographics and behavioral analytics (i.e. engagement patterns, and content preferences), but this process is time-consuming.
- **Engagement:** AI-ML revolution in media and entertainment has greatly impacted the way we consume and interact with digital content. Machine learning algorithms can precisely forecast what forms of media or entertainment a person would find enjoyable by analyzing user data, which increases engagement and consumer happiness. Through the creation of new opportunities for storytelling and audience engagement, these technologies are boosting the immersive experiences provided by the media and entertainment sector. The speed of engagement relies on connectivity and infrastructure.
- **Personalization:** Personalized user interfaces are another aspect of content recommendation systems. These interfaces are designed to showcase the recommended content prominently based on the user's viewing preferences. It is a form of content personalization with AI and ML that ensures that users have easy access to the content they are most likely to enjoy, enhancing their overall experience.
- **Cost:** Machine learning drives down operational costs in media and entertainment industry. Employing machine learning methods on social networks often costs a significant amount. Some of these costs involve storing data, developing infrastructure, finding skilled personnel, continuously upgrading systems and maintenance. Some AI tools and software solutions require significant initial investments in technology, training, and infrastructure. Small businesses and independent creators might find these costs prohibitive. Many platforms offer flexible pricing or free trials to test the technology before fully committing.
- **Data Privacy:** As social media platforms are relying more on machine learning, concerns about privacy and security have increased. If personal information is leaked as a result of security breaches or inappropriate handling, it can endanger users' personal information. AI systems that use personal data for video personalization must comply with data protection laws such as GDPR and CCPA. Improper data handling can lead to legal issues and damage brand reputation.
- **Ethical Concerns:** Ethics is a major problem when it comes to using machine learning. AI/ML solutions present ethical issues with relation to data privacy, algorithmic prejudice, employment displacement, and copyright infringement. Ethical guidelines are necessary to prevent misuse. Deepfakes have the potential for misuse, such as spreading false information or manipulating public perception by creating realistic but fabricated content. We have singled out these few ethical considerations to highlight the need for careful regulation, transparency, and accountability when implementing AI and ML in content enrichment.
- **Biases:** AI/ML algorithms employ machine learning methods on social networks often costs a significant amount. Some of these costs involve storing data, developing infrastructure, finding skilled personnel, continuously upgrading systems. ML algorithms can be biased by nature. Usually, these biases develop because of the training data the models rely on. If the training data is not fair or correct, the outcomes produced could be untrue or dangerous which could cause big ethical issues. AI/ML systems learn from existing data, which can sometimes introduce biases into video content, such as biased

CHALLENGES

Since artificial intelligence in media and entertainment is trained on pre-existing creative models, the attribution of ownership remains elusive. While AI brings significant advantages to video production, it also presents several challenges that

require careful consideration to ensure effective and ethical use. Other challenges include the following [11,15]:

- **Cost:** Machine learning drives down operational costs in media and entertainment industry. Employing machine learning methods on social networks often costs a significant amount. Some of these costs involve storing data, developing infrastructure, finding skilled personnel, continuously upgrading systems and maintenance. Some AI tools and software solutions require significant initial investments in technology, training, and infrastructure. Small businesses and independent creators might find these costs prohibitive. Many platforms offer flexible pricing or free trials to test the technology before fully committing.
- **Data Privacy:** As social media platforms are relying more on machine learning, concerns about privacy and security have increased. If personal information is leaked as a result of security breaches or inappropriate handling, it can endanger users' personal information. AI systems that use personal data for video personalization must comply with data protection laws such as GDPR and CCPA. Improper data handling can lead to legal issues and damage brand reputation.
- **Ethical Concerns:** Ethics is a major problem when it comes to using machine learning. AI/ML solutions present ethical issues with relation to data privacy, algorithmic prejudice, employment displacement, and copyright infringement. Ethical guidelines are necessary to prevent misuse. Deepfakes have the potential for misuse, such as spreading false information or manipulating public perception by creating realistic but fabricated content. We have singled out these few ethical considerations to highlight the need for careful regulation, transparency, and accountability when implementing AI and ML in content enrichment.
- **Biases:** AI/ML algorithms employ machine learning methods on social networks often costs a significant amount. Some of these costs involve storing data, developing infrastructure, finding skilled personnel, continuously upgrading systems. ML algorithms can be biased by nature. Usually, these biases develop because of the training data the models rely on. If the training data is not fair or correct, the outcomes produced could be untrue or dangerous which could cause big ethical issues. AI/ML systems learn from existing data, which can sometimes introduce biases into video content, such as biased

representation in video generation or automated editing choices. One must select training data carefully and involve diverse teams in the review process to avoid perpetuating stereotypes or biases.

- **Learning Curve:** Adopting AI tools involves a learning curve. Production teams may need training and skill development to fully leverage these technologies. This process requires time and resources. Partnering with AI vendors who offer training support can also ease this transition.
- **Technical Limitations:** While AI can automate repetitive tasks, it might not fully replicate human intuition and creative insight. Relying solely on AI could limit artistic expression and result in generic or formulaic content. One should encourage creative professionals to use AI-generated suggestions as a starting point while adding a personalized, human touch.
- **Skill Shortage:** To use ML for social media analysis successfully, a group of highly skilled experts is necessary. The experts need a strong understanding of algorithms, data processing, and programming. Not having enough skilled workers stops organizations from using machine learning effectively, highlighting one of the key machine learning challenges in the industry.

FUTURE OF MACHINE LEARNING IN MEDIA AND ENTERTAINMENT

Machine learning is quickly shaping media and entertainment and it will play an even bigger role in the future. Today, we see AI and ML applications being integrated to solve challenges throughout the media and entertainment industry. The integration of AI/ML in media is a transformative journey that holds tremendous potential for innovation and growth. In the rapidly evolving landscape of media and entertainment, artificial intelligence (AI) and machine learning (ML) have emerged as transformative technologies, reshaping how content is created, managed, distributed, and consumed.

Machine learning and AI is absolutely the future of entertainment from a tech perspective. The future of entertainment lies in ML-driven innovations. We can expect that enhanced by natural language processing and computer vision, content will respond to user actions and preferences in real-time. Virtual celebrities and AI-driven characters will gain popularity, blurring the lines between human and AI performers. The future will witness on-demand, customized shows where users experience the pinnacle of personalized content delivery. Ultimately, AI will create a level playing field where even small

studios can leverage AI workflows and create erudite artworks that stand the test of time [16].

CONCLUSION

One of the things that is going to determine the future of entertainment is the integration of AI and ML. The integration of AI/ML in the media industry holds the key to enhancing workflow efficiency and optimization, personalization, and audience engagement. As the industry continues to evolve, embracing the power of AI/ML will be a key differentiator for success in the competitive media and content acquisition landscape. Entertainment companies that embrace AI/ML technologies are poised to deliver superior user experiences, remain competitive, and shape the future of the industry. What has been covered in this paper is the tip of the iceberg of what machine learning in media can do to the entertainment industry. Looking into the future, ML will merge with other emerging technologies including cloud computing, AR, VR, and blockchain.

In today's digital age, the media and entertainment industry stands as a dynamic and ever-evolving realm, captivating billions of people worldwide. The scope of a media and entertainment career is vast and dynamic, offering diverse opportunities in fields like film, television, radio, journalism, digital media, gaming, social media, and more. The sector is experiencing unprecedented growth and expansion, making it one of the swiftest-growing industries globally. As the media and entertainment industry continues to expand, so does the demand for talented and skilled professionals. With the advent of technology, professionals can explore content creation, production, marketing, and distribution, making it an exciting and ever-evolving industry for aspiring talents [17]. The future of the entertainment sector with AI/ML promises to be vast and transformative. More information on the use of machine learning in media and entertainment is available in the books in [5,18,19,20,21,22,23].

REFERENCES

- [1] “Artificial intelligence and machine learning on cloud are reshaping the trends in media and entertainment,” March 2022, <https://ciodialogues.com/index.php/events/artificial-intelligence-and-machine-learning-on-cloud-are-reshaping-the-trends-in-media-and-entertainment/>
- [2] “What is machine learning? Definition, types, and examples,” August 2025, <https://www.coursera.org/articles/what-is-machine-learning>
- [3] “Army hosts global AI, machine learning event,” May 2021,

[4] “Machine learning” *Wikipedia*, the free encyclopedia
https://en.wikipedia.org/wiki/Machine_learning

[5] S. Shalev-Shwartz and S. Ben-David, *Understanding Machine Learning: From Theory to Algorithms*. New York, NY: Cambridge University Press, 2014.

[6] M. N. O. Sadiku, S. M. Musa, and O. S. Musa, “Machine learning,” *International Research Journal of Advanced Engineering and Science*, vol. 2, no. 4, 2017, pp. 79-81.

[7] “Machine learning: Application in gaming and various industries,” October 2020, <https://www.linkedin.com/pulse/machine-learning-application-gaming-various-industries-radha--1f>

[8] T. Wuest et al., “Machine learning in manufacturing: Advantages, challenges, and applications,” *Production & Manufacturing Research*, vol. 4, no. 1, 2016, pp. 23-45.

[9] “How the entertainment industry is embracing ai & machine learning?” July 2025, <https://medium.com/@jiitak.global/how-the-entertainment-industry-is-embracing-ai-machine-learning-26e11b6c121b>

[10] Mango Media, “The impact of AI and machine learning on video production,” October 2025, <https://www.mangomedia.ie/blog/the-impact-of-ai-and-machine-learning-on-video-production>

[11] R. Morgan, “Harnessing the potential of AI/ML in media and entertainment workflows,” February 2024, <https://www.pixitmedia.com/blog/harnessing-the-potential-of-ai-ml-in-media-and-entertainment-workflows/>

[12] G. Singh, “The role of machine learning for social media in 2025,” June 2025, <https://www.debutinfotech.com/blog/machine-learning-for-social-media>

[13] “Revolutionary machine learning in film production: Transform your movies,” <https://vitrina.ai/blog/machine-learning-in-film-production/>

[14] “The impact of machine learning on the entertainment industry: From recommendations to predictive analytics,” <https://cookiedev.com/blog/ml-changing-entertainment-industry>

[15] G. Anil, “AI-ML revolution in media and entertainment: Enriching content experiences,” October 2025, <https://prometteursolutions.com/blog/ai-ml-revolution-in-media-and-entertainment-enriching-content-experiences/>

[16] J. Wilson, “Artificial intelligence, machine learning, and the future of entertainment,” December 2022, <https://www.forbes.com/sites/joshwilson/2022/12/06/artificial-intelligence-machine-learning-and-the-future-of-entertainment/>

[17] Whistling Woods International, “What is the scope of media and entertainment career?” <https://vocal.media/education/what-is-the-scope-of-media-and-entertainment-career>

[18] R. Kumar, *AI Agents for Entertainment & Media: Exploring the Role of Intelligent Agents in the Future of Creativity and Content*. Kindle Edition, 2025.

[19] M. Ebers and P. K. Tupay, *Artificial Intelligence and Machine Learning Powered Public Service Delivery in Estonia: Opportunities and Legal Challenges (Data Science, Machine Intelligence, and Law Book 2)*. Springer, 2023.

[20] Ajayi, A.S., Kim, S. & Yun, R. Study of developing a condensation heat transfer coefficient and pressure drop model for whole reduced pressure ranges. *Int. J. Air-Cond. Ref.* 32, 15 (2024).

[21] Ajayi, A., Badmus, O., Iheuwa, G., Ehizojie, L., & Segun, S. (2025). Comparative Analysis of GitOps Tools and Frameworks. *Path of Science*, 11(5), 2017-2030.

[22] Ajayi, A. S., Abimbola, J., Segun, S. E., Ajayi, E. I., & Bodude, A. D. (2026). Harnessing artificial intelligence for methane emissions control in industrial natural gas engines: Optimizing exhaust after treatment to advance U.S. clean energy goals—A review. *European Journal of Sustainable Development Research*, 10(1), em0345.

[23] Oyetunji, O. R., Ajayi, A. Samuel, Amuda, B. A., & Morawo, I. I. (2023). Comparative study of mechanical properties of 3D printing materials (polylactic acid and acrylonitrile butadiene styrene) via simulations using COMSOL Multiphysics. *Advances in Multidisciplinary and Scientific Research Journal*, 9(3), 21–34

Figure 1 A symbol of machine learning [3].

Types of Machine Learning

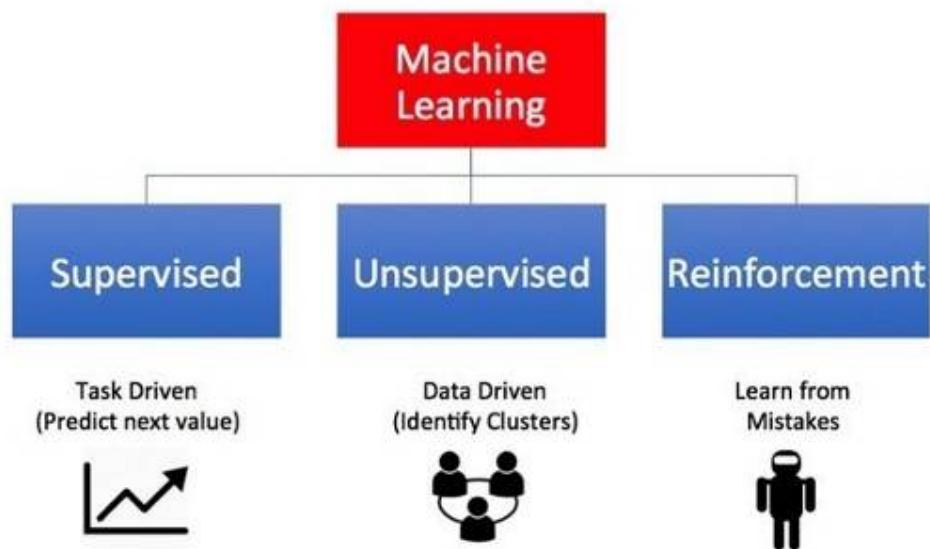
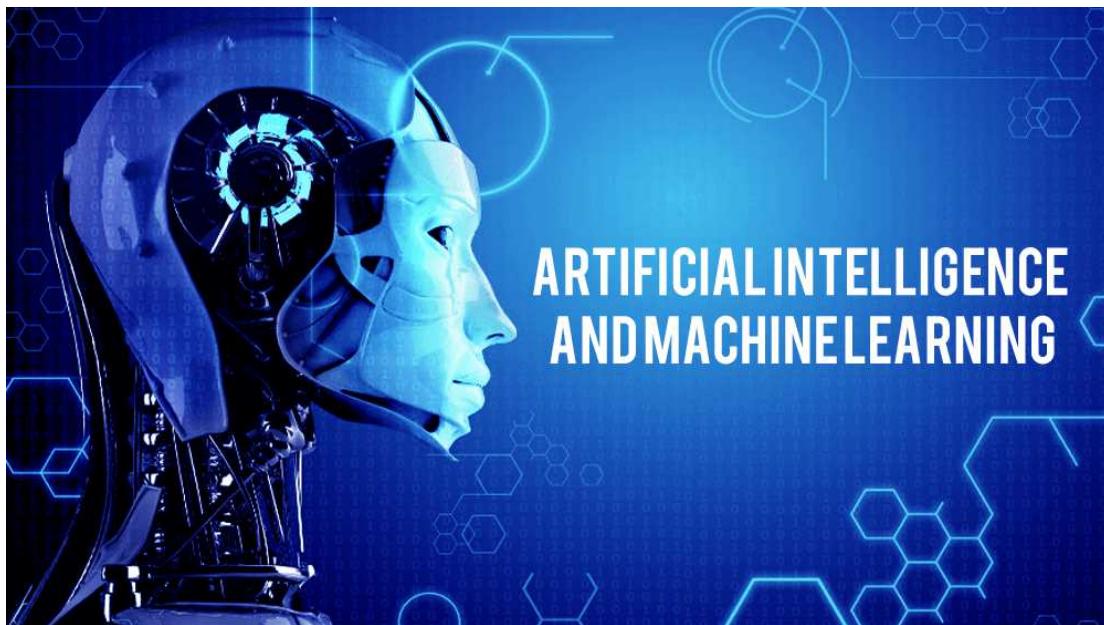



Figure 2 Different types of machine learning [7].

Figure 3 A representation of entertainment [9].

Figure 4 Integration of AI and ML [10].

Figure 5 Key ways ML is improving how we engage with social platforms [12].