

Labile Iron in Intravenous Iron Colloids: A Critical Review of Analytical Challenges, Clinical Implications, and Future Directions

Nitin Suthar¹, Mr. Narendra Singh Solanki²

¹M. Pharmaceutics, Department of Pharmaceutics, Bhupal Nobles' Institute of Pharmaceutical Sciences,

²Associate Professor, Department of Pharmaceutics, Bhupal Nobles' Institute of Pharmaceutical Sciences,

^{1,2}Bhupal Nobles' University, Udaipur, Rajasthan, India

ABSTRACT

Iron deficiency anemia (IDA) represents a major global health challenge, underpinning the critical role of intravenous (IV) iron colloids as a cornerstone therapy. The safety and efficacy of these formulations are profoundly influenced by labile iron - a loosely bound, redox-active fraction that mediates essential iron delivery but also provokes oxidative toxicity when poorly controlled. This review examines the dynamics of labile iron, using iron sucrose as a key illustrative example due to its widespread clinical use and extensively characterized labile iron pool. We discuss the biochemical foundations of labile iron, its pathophysiological roles, and comparative variations across marketed IV iron products. A dedicated evaluation of analytical methodologies - including the bleomycin, ferrozine, EDTA-capillary zone electrophoresis, and transferrin chelation assays - highlights the technical and interpretative challenges in quantifying labile iron. Furthermore, we examine the direct clinical consequences of labile iron exposure, such as acute infusion reactions, oxidative tissue injury in high-risk populations, and heightened infection susceptibility. The review concludes by identifying pressing future directions, including the standardization of analytical protocols, innovations in iron-carbohydrate complex design, and the adoption of personalized treatment strategies. This synthesis seeks to advance the rational development and clinical use of IV iron formulations that maximize therapeutic benefit while minimizing labile iron-related risks.

How to cite this paper: Nitin Suthar | Mr. Narendra Singh Solanki "Labile Iron in Intravenous Iron Colloids: A Critical Review of Analytical Challenges, Clinical Implications, and Future Directions" Published in International

Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-5, October 2025, pp.556-561,

URL: www.ijtsrd.com/papers/ijtsrd97559.pdf

IJTSRD97559

Copyright © 2025 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an

Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (<http://creativecommons.org/licenses/by/4.0>)

KEYWORDS: Iron Sucrose; Intravenous Iron; Labile Iron Pool; Oxidative Stress; Non-Transferrin-Bound Iron (NTBI); Analytical Assays; Ferric Carboxymaltose; Formulation Stability; Clinical Safety.

1. INTRODUCTION

Iron deficiency anemia (IDA) remains a significant global health concern. The most recent WHO Global Anaemia Estimates (2025 edition) indicate that in 2022, approximately 571 million women of reproductive age and 269 million children under five were affected. This corresponds to 30% of women and 40% of young children worldwide. Although anaemia has multiple underlying causes—including infections, inflammation, hemoglobinopathies, and other micronutrient deficiencies—iron deficiency remains the leading factor, particularly in vulnerable populations. Beyond reduced energy and impaired productivity, anaemia contributes to maternal

morbidity, preterm delivery, low birth weight, and compromised child development. Despite the WHO's goal of achieving a 50% reduction in anaemia among women of reproductive age by 2025, current data confirm that progress has been insufficient, emphasizing the urgent need for improved preventive and therapeutic strategies (WHO, 2025)(1). For patients in whom oral iron therapy is ineffective, poorly tolerated, or too slow to correct severe deficiency, intravenous (IV) iron provides a rapid and reliable alternative (2).

Among IV formulations, iron sucrose (Venofer) remains one of the most frequently administered

worldwide, especially in chronic kidney disease (CKD) and pregnancy, because of its favorable safety profile and affordability (3). Although newer agents such as ferric carboxymaltose and ferric derisomaltose allow high-dose single infusions, iron sucrose continues to serve as a reference product, with millions of doses administered annually.

A common feature across all IV iron complexes is the presence of labile iron. This redox-active fraction is weakly bound and exchangeable: it plays a critical role in iron donation to transferrin but also contributes to oxidative damage when present in excess (4). Understanding and controlling labile iron is thus essential to optimizing formulation safety and therapeutic outcomes.

2. Biochemistry of Labile Iron

2.1. Definition

Labile iron refers to loosely coordinated iron, present in ferrous (Fe^{2+}) or ferric (Fe^{3+}) states, that readily exchanges between ligands. Within cells, the labile iron pool (LIP) provides substrate for DNA synthesis, protein assembly, and metabolic reactions, but also catalyzes the Fenton reaction ($Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + \cdot OH + OH^-$), generating hydroxyl radicals capable of damaging lipids, proteins, and DNA (5).

Table 1.1 Marketed intravenous iron products(8)

Generic Name	Brand Name(s)	Labile Iron (%)	Maximum Single Dose
Low-molecular-weight iron dextran	INFeD (USA)	2.0	100 mg
Iron sucrose	Venofer	3.5	200 mg
Ferric gluconate	Ferrlecit	3.3	125 mg
Ferumoxytol	Feraheme	0.8	510 mg
Ferric isomaltoside	Monofer, Monoferric	1.0	up to 1000 mg
Ferric carboxymaltose	Ferinjected, Injectafer	0.6	up to 1000 mg

These differences influence both dosing strategies and safety profiles. Iron sucrose, while widely used, demonstrates one of the highest labile fractions among commonly administered formulations (9).

4. Analytical Methodologies for Quantifying Labile Iron

Characterizing labile iron is crucial for ensuring IV iron product quality and predicting safety (10).

Several assays are available, each providing different insights into labile fractions.

4.1. Bleomycin Assay

The bleomycin assay is a functional method used to quantify the fraction of iron that is redox-active and catalytically labile. Its mechanism is based on the chemotherapeutic drug bleomycin, which chelates ferrous iron (Fe^{2+}). In the presence of oxygen and a reducing agent such as ascorbate, the Fe^{2+} -bleomycin complex becomes activated and induces site-specific cleavage of DNA strands. This degradation of the DNA backbone releases small fragments that serve as indicators of the amount of reactive iron present(11).

In the conventional version of the assay, the DNA breakdown products are detected by reaction with thiobarbituric acid (TBA) under heat, yielding a colored compound that absorbs at 532 nm. However, this detection step is susceptible to interference from endogenous plasma constituents and secondary oxidation products, which may compromise accuracy(12).

To overcome these limitations, an alternative approach known as the ethidium-binding assay has been developed. Instead of relying on TBA, this method monitors DNA integrity by tracking the reduction in ethidium bromide fluorescence as DNA damage occurs. It offers greater sensitivity, capable of detecting iron at

2.2. Cellular Regulation

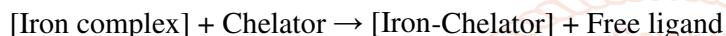
Physiological iron homeostasis relies on transferrin-bound iron, which is internalized by receptor-mediated endocytosis. Released in endosomes, iron contributes to cytosolic labile iron (LCI) and mitochondrial labile iron (LMI) pools, which support metabolic needs (6). In pathological states or after infusion of unstable IV colloids, non-transferrin-bound iron (NTBI) appears in plasma, bypassing regulatory control and promoting oxidative stress (7).

2.3. Pathophysiological Consequences

Excess labile iron drives the formation of reactive oxygen species (ROS), leading to lipid peroxidation, endothelial injury, and the activation of inflammatory pathways. These processes contribute to complications of iron overload and remain relevant to transient spikes in labile iron after IV infusion.

3. Labile iron in Marketed IV Iron Colloids

Marketed IV iron formulations vary in carbohydrate shell, stability, and labile iron fraction. Products such as ferric carboxymaltose and ferumoxytol exhibit relatively low labile iron levels, whereas iron sucrose and ferric gluconate contain higher fractions (8).


nanomolar concentrations, though measurements at higher iron levels may require careful dilution to prevent signal saturation(13).

- **Strengths:** The assay directly assesses the pool of iron capable of promoting hydroxyl radical formation and oxidative DNA injury, thus providing mechanistic insight into the toxic potential of labile iron.
- **Limitations:** Acidic preparation steps used to release iron from formulations may disrupt the integrity of colloids, artificially increasing the measurable fraction of free iron. Consequently, values obtained may overestimate clinically relevant labile iron levels(12).
- **Relevance:** The bleomycin assay offers a meaningful measure of oxidative risk in pharmaceutical formulations, although its complexity limits routine use.

4.2. Iron Chelation Assay

Iron chelation assays constitute a category of biochemical and chemical methods designed to quantify labile, weakly bound iron by measuring its displacement from synthetic complexes using high affinity chelating agents. Unlike the bleomycin assay, which specifically detects redox-active Fe^{2+} , chelation assays identify iron that is readily transferable or exchangeable. This fraction is considered to reflect the iron that could be rapidly donated to biological carriers like transferrin or accessed by synthetic chelators, providing a direct indicator of the potential toxicity inherent in an iron formulation (12, 14).

Labile iron is displaced via a competitive chelator (e.g., EDTA, ferrozine, deferoxamine). The liberated iron is quantified colorimetrically, fluorometrically, or via atomic absorption (12).

4.2.1. Ferrozine Assay

The ferrozine assay is a widely used colorimetric method for quantifying ferrous iron (Fe^{2+}). The assay relies on the reduction of ferric iron (Fe^{3+}) to Fe^{2+} by a reducing agent like ascorbate or hydroxylamine, followed by chelation with ferrozine (3-(2-Pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine) to form a stable magenta-colored complex with a sharp absorption peak at 562 nm (15).

- **Strengths:** The assay is simple, rapid, inexpensive, and highly sensitive, making it excellent for high-throughput screening and routine quality control in pharmaceutical development.
- **Limitations:** The mandatory acidic dissolution step fundamentally alters the native structure of the iron-carbohydrate colloid. This disruption can lead to a significant overestimation of the clinically relevant labile iron fraction, as it measures iron that would not be readily released in the bloodstream(12).
- **Relevance:** Despite its tendency to overestimate, the ferrozine assay remains a valuable and standardized tool for comparative batch-to-batch consistency and initial formulation screening.

4.2.2. EDTA-Capillary Zone Electrophoresis (EDTA-CZE) Assay

Capillary Zone Electrophoresis with EDTA chelation is a high-resolution analytical technique that separates and quantifies labile iron based on its differential mobility when chelated(16). It can be performed in two distinct modes to characterize different fractions of labile iron:

1. **Off-capillary complexation:** The IV iron formulation is incubated with EDTA before injection. This measures the total "chelatable iron", iron that can be released from the colloid over time under sink conditions.
2. **On-capillary complexation:** EDTA and the iron formulation are injected sequentially into the capillary without prior mixing. This detects only "electrophoretically free" iron—iron that is immediately labile and capable of rapid complexation.

In both modes, labile iron is quantified as the stable, anionic $\text{Fe}(\text{III})\text{-EDTA}^-$ complex, which is detected by UV absorbance at 246 nm. The off-capillary method revealed that iron gluconate and iron sucrose (saccharate) release iron more rapidly and to a greater extent (up to ~4%) than iron dextran (~1%) at physiological pH. Crucially, the on-capillary method detected a significant fraction of immediately labile iron (~1.5%) only in iron gluconate, indicating a uniquely weakly bound iron pool in this formulation(16).

- **Strengths:** This method offers exceptional analytical precision and resolution without the need for harsh acidic conditions that disrupt colloids. The dual-mode approach provides a unique distinction between immediately bioavailable iron and slowly released iron, offering profound mechanistic insight.

- **Limitations:** It requires specialized and expensive instrumentation (a capillary electrophoresis system) and significant expertise in analytical chemistry. The on-capillary method may underestimate weakly bound iron due to the slow formation kinetics of the Fe (III)-EDTA complex during the short transit time in the capillary.
- **Relevance:** EDTA-CZE is a powerful tool for in-depth comparative analysis, mechanistic studies of iron release kinetics, and regulatory filing support due to its precision and ability to probe different facets of lability.

4.2.3. Transferrin Chelation Assay

The transferrin chelation assay measures the ability of intravenous iron formulations to donate iron directly to apotransferrin under near-physiological conditions. In this method, IV iron agents are incubated with serum, and intact complexes are removed by alumina column separation. The eluates are then analyzed for transferrin-bound iron using a ferrozine-based colorimetric method, where Fe^{3+} is reduced to Fe^{2+} and forms a stable colored complex with an absorption peak at 560 nm. This approach provides a quantitative estimate of the labile fraction capable of rapid physiological transfer. Studies have shown that approximately 2.5–5.8% of total iron in commonly used formulations can be donated to transferrin, following the order: ferric gluconate > iron sucrose > iron dextran (INFeD) > iron dextran (Dexferrum) (9).

- **Strengths:** Closely mimics in vivo conditions, highly relevant for predicting transferrin saturation and subsequent labile iron exposure.
- **Limitations:** Technically complex, requires serum incubation and careful separation to avoid interference, and is less suited for routine quality control.
- **Relevance:** Provides the strongest translational insight into clinical safety, as rapid transferrin donation may predict non-transferrin-bound iron formation, oxidative stress, and infusion-related risks.

Table 1.2 Comparative summary of analytical assays for labile iron quantification

Method	Principle	Strengths	Limitations	Clinical Relevance
Bleomycin assay	Fe^{2+} activates bleomycin, leading to DNA cleavage and detection of TBA chromogen at 532 nm.	Mechanistic; evaluates ROS-producing potential.	Complexity; interference from redox-active compounds	Models' oxidative toxicity risk from labile iron
Ferrozine assay	Fe^{3+} is reduced to Fe^{2+} , which then forms a magenta Fe^{2+} -ferrozine complex measurable at 562 nm.	Simple, rapid, inexpensive, high throughput	Acidic preparation disrupts colloids; may lead to overestimating the labile fraction.	Standardized tool for batch screening and comparative formulation testing
EDTA-CZE assay	Fe^{3+} chelated with EDTA forms a Fe (III)-EDTA ⁻ complex, which is detected by electrophoresis at 246 nm.	High resolution; differentiates immediate from delayed release.	Requires costly equipment; expertise necessary	Regulatory and mechanistic studies, including detailed kinetic profiling.
Transferrin assay	Serum incubation leads to iron transfer to apotransferrin, followed by ferrozine detection at 560 nm.	Most biologically relevant; mimics physiological transfer.	Technically challenging; inconsistent reproducibility; low throughput	Strongest clinical predictor of transferrin saturation and NTBI generation

Recognizing that each of these methods has its own limitations, the most comprehensive picture of labile iron is obtained by using several techniques in combination. The ferrozine assay offers a rapid, standardized means for quality control screening, though its tendency to overestimate clinically relevant iron must be considered (12). For a more physiologically relevant measure, the transferrin donation assay is paramount, as it best predicts clinical safety by mimicking in vivo iron transfer (9). Finally, high-resolution techniques like EDTA-CZE provide invaluable mechanistic insight into iron release kinetics (16). Employing this combination of assays provides a comprehensive profile essential for informed decision-making in both formulation development and clinical application.

5. Clinical Implications of Labile Iron

The labile iron content has direct clinical correlations:

- **Acute Infusion Reactions (AIRs):** Formulations with higher labile iron (e.g., iron sucrose, ferric gluconate) are associated with a higher incidence of AIRs, likely due to labile iron catalyzing the production of reactive oxygen species and activating inflammatory pathways (17).
- **Oxidative Stress:** In vulnerable populations like chronic kidney disease (CKD) patients, repeated exposure to labile iron contributes to oxidative damage, endothelial dysfunction, and accelerated vascular calcification (18).
- **Infection Risk:** Labile iron that saturates transferrin circulates as NTBI, which can be utilized as a growth factor by bacteria, potentially increasing the risk of infection (19).

6. Conclusion and Future Directions

The critical role of intravenous (IV) iron in managing iron deficiency anemia is well-established, yet its safety profile remains closely linked to the behavior of labile iron. As this review has shown, the labile fraction represents a fundamental therapeutic challenge: it is necessary for biological uptake and incorporation into erythrocytes, but can also catalyze harmful oxidative reactions when not properly controlled (4, 5). Iron sucrose, with its extensive clinical history, exemplifies this balance. Analytical studies have quantified its labile iron pool, which is directly linked to its effectiveness and its potential to contribute to oxidative risk (9).

A significant challenge in optimizing the therapeutic window of IV iron formulations lies in the absence of a universally standardized assay for quantifying clinically relevant labile iron. Existing methodologies—each employing distinct mechanistic principles—yield valuable but method-dependent data that often prove difficult to correlate directly. For instance, while the ferrozine assay offers practical utility for quality control, its requirement for acidic conditions can artificially inflate measured labile iron values by disrupting the iron-carbohydrate complex (12). In contrast, the transferrin donation assay provides superior physiological relevance by measuring iron readily transferred to apo-transferrin, but it remains technically demanding for routine implementation (9). This methodological heterogeneity complicates direct inter-formulation comparisons and underscores the urgent need for standardized regulatory approaches to assess labile iron (20).

The clinical significance of labile iron is substantiated by considerable evidence linking its presence to acute

infusion reactions, oxidative tissue damage in compromised populations such as CKD patients, and potential susceptibility to infections through enhanced microbial growth (17-19). Consequently, the paramount objective in IV iron therapy remains the development of formulations and administration protocols that maximize iron delivery for erythropoiesis while minimizing the generation of non-transferrin-bound iron (NTBI).

Advancements in this field will likely emerge from several critical avenues of investigation:

1. Standardization of Analytical Assays:

Establishing a consensus on a tiered analytical framework is imperative. This could incorporate a harmonized ferrozine method for manufacturing quality control, supplemented by transferrin-based or capillary electrophoresis assays (e.g., EDTA-CZE) for detailed preclinical characterization and bioequivalence studies of novel formulations (10, 16).

2. Advanced Nanocarrier Design:

Future innovation should focus on engineering iron-carbohydrate complexes with enhanced stability in the circulation through advanced material science.

The development of carriers that preferentially release iron within the bone marrow environment would represent a significant breakthrough in reducing systemic labile iron exposure and improving targeted delivery(20).

3. Personalized Treatment Approaches:

Clinical practice should evolve toward tailored therapeutic strategies based on individual patient risk profiles. This may involve selecting formulations with inherently lower labile iron content for patients with elevated oxidative stress backgrounds (e.g., CKD, cardiovascular disease) while reserving rapid-correction agents for populations with lower vulnerability (8, 17).

4. Longitudinal Clinical Studies:

Comprehensive prospective studies are essential to elucidate the long-term clinical implications of chronic labile iron exposure, particularly regarding cardiovascular outcomes, infection susceptibility, and all-cause mortality in patient populations requiring repeated iron administration (8, 18).

References

- [1] WHO global anaemia estimates. 2025.
- [2] Das SN, Devi A, Mohanta BB, Choudhury A, Swain A, Thatoi PK. Oral versus intravenous iron therapy in iron deficiency anemia: An observational study. J Family Med Prim Care. 2020; 9(7): 3619-22.

[3] Chertow GM, Mason PD, Vaage-Nilsen O, Ahlmen J. On the relative safety of parenteral iron formulations. *Nephrol Dial Transplant*. 2004; 19(6): 1571-5.

[4] Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: An intimate relationship. *Biochim Biophys Acta Mol Cell Res*. 2019; 1866(12): 118535.

[5] Slotki I, Cabantchik ZI. The Labile Side of Iron Supplementation in CKD. *J Am Soc Nephrol*. 2015; 26(11): 2612-9.

[6] Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes¹ This article is part of a series of reviews on "Iron and Cellular Redox Status." The full list of papers may be found on the homepage of the journal. *Free Radical Biology and Medicine*. 2002; 33(8): 1037-46.

[7] Camarena V, Huff TC, Wang G. Epigenomic regulation by labile iron. *Free Radic Biol Med*. 2021; 170: 44-9.

[8] Rund D. Intravenous iron: do we adequately understand the short- and long-term risks in clinical practice? *Br J Haematol*. 2021; 193(3): 466-80.

[9] Van Wyck D, Anderson J, Johnson K. Labile iron in parenteral iron formulations: a quantitative and comparative study. *Nephrol Dial Transplant*. 2004; 19(3): 561-5.

[10] Nikravesh N, Borchard G, Hofmann H, Philipp E, Flühmann B, Wick P. Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: From production to clinical practice. *Nanomedicine: Nanotechnology, Biology and Medicine*. 2020; 26: 102178.

[11] Gutteridge JM. Bleomycin-detectable iron in knee-joint synovial fluid from arthritic patients and its relationship to the extracellular antioxidant activities of caeruloplasmin, transferrin and lactoferrin. *Biochem J*. 1987; 245(2): 415-21.

[12] Zou P, Tyner K, Raw A, Lee S. Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products. *AAPS J*. 2017; 19(5): 1359-76.

[13] BURKITT MJ, MILNE L, RAAFAT A. A simple, highly sensitive and improved method for the measurement of bleomycin-detectable iron: the 'catalytic iron index' and its value in the assessment of iron status in haemochromatosis. *Clinical Science*. 2001; 100(3): 239-47.

[14] Espósito BP, Breuer W, Slotki I, Cabantchik ZI. Labile iron in parenteral iron formulations and its potential for generating plasma nontransferrin-bound iron in dialysis patients. *Eur J Clin Invest*. 2002; 32 Suppl 1: 42-9.

[15] Stookey LL. Ferrozine---a new spectrophotometric reagent for iron. *Analytical Chemistry*. 1970; 42: 779-81.

[16] Jahn MR, Mrestani Y, Langguth P, Neubert RH. CE characterization of potential toxic labile iron in colloidal parenteral iron formulations using off-capillary and on-capillary complexation with EDTA. *Electrophoresis*. 2007; 28(14): 2424-9.

[17] Auerbach M, Macdougall IC. Safety of intravenous iron formulations: facts and folklore. *Blood Transfus*. 2014; 12(3): 296-300.

[18] Agarwal R, Vasavada N, Sachs NG, Chase S. Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. *Kidney Int*. 2004; 65(6): 2279-89.

[19] Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. *Science*. 2012; 338(6108): 768-72.

[20] Nikravesh N, Borchard G, Hofmann H, Philipp E, Flühmann B, Wick P. Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: From production to clinical practice. *Nanomedicine*. 2020; 26: 102178.