

# Spectral Seismic Analysis of Reinforced Concrete Structures

Ramneek Paul Singh<sup>1</sup>, Er. Ajay Vikram<sup>2</sup>

<sup>1</sup>M Tech Student, University School of Engineering & Technology,

<sup>2</sup>Assistant Professor, University School of Engineering & Technology,

<sup>1,2</sup>Rayat Bahra University, Mohali, Punjab, India

## ABSTRACT

In this research the seismic analysis of a multi-tiered reinforced concrete (RC) frame in Jammu city was conducted to determine its functionality under mild tectonic forces. The research focused to investigate the structure response to seismic hazards in compliance with Indian's proposed seismic provisions. The frame was analyzed using the response spectrum method to determine seismic induced movements and stresses. The findings highlighted that the nodal displacements caused displacements exceeding 2-3 times the permissible limits. Horizontal motion substantially affected the axial compression loads of exterior columns compared to interior columns. Additionally compressive stresses in the bottom floor column were 1.5-2 times greater than tensile stresses. Shear forces in beams B505, B506 and B507 due to load combination 3(L/C3) were around three times higher than those due to load combination 1 (L/C1). The maximum compressive and tensile stresses in beams and columns induced by seismic excitation were substantially greater than those caused by gravity loads.

**KEYWORDS:** Seismic Analysis, Reinforced Concrete, Loads, Stresses, Shear Force, Columns.

## INTRODUCTION

Seismic tremors, triggered by shifts in the earth's crust, yield varying degrees of ground tremors, culminating in structural devastation and collapse of buildings and civil infrastructure, landslides on unstable slopes, and soil liquefaction. Recent earthquakes worldwide have underscored the dire consequences of subpar performance of reinforced concrete beam-column connections. These joints are critical zones within reinforced concrete moment-resisting frames, facilitating efficient load transfer between interconnected elements (beams and columns). Traditional seismic design methodologies stipulate that structures should withstand minor, frequent tremors without sustaining damage, ensuring post-event functionality. Structures must also endure moderate earthquake ground motion without structural damage, although some non-structural damage may occur. This performance threshold corresponds to earthquake intensities equivalent to the strongest recorded or predicted at the site. The findings are examined using the response spectrum method. The primary objective of this study is to

**How to cite this paper:** Ramneek Paul Singh | Er. Ajay Vikram "Spectral Seismic Analysis of Reinforced Concrete Structures" Published in International

Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-6, December 2025, pp.148-152,

URL: [www.ijtsrd.com/papers/ijtsrd97551.pdf](http://www.ijtsrd.com/papers/ijtsrd97551.pdf)



IJTSRD97551

Copyright © 2025 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an

Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (<http://creativecommons.org/licenses/by/4.0>)



investigate the seismic resilience of a reinforced concrete moment-resisting frame building subjected to earthquake ground motion. The building, situated in Jammu City (zone 4), was analyzed in accordance with proposed seismic provisions for India.

## EARTHQUAKE RESPONSE SPECTRUM ANALYSIS

The response spectrum represents a boundary of maximum potential responses, derived from multiple ground motion records. This approach employs an elastic dynamic analysis methodology, predicated on the assumption that a structure's dynamic response can be determined by analyzing the independent response of each natural vibration mode and subsequently combining these responses in a manner that accurately represents the overall structural behavior. A key advantage of this method lies in the fact that typically, only a limited number of the lowest vibration modes significantly impact the calculation of moments, shear forces, and deflections at various levels of the building.

The following procedure is commonly employed for spectrum analysis:

- A. Select a suitable design spectrum.
- B. Determine the vibration modes and periods to be incorporated into the analysis.
- C. Extract the corresponding response levels from the spectrum for each mode's period.
- D. Calculate the participation factor for each mode, which corresponds to the single-degree-of-freedom response read from the curve.
- E. Combine the effects of individual modes to obtain the maximum aggregate response.
- F. Convert the combined maximum response into shear forces and moments for use in structural design.

### **RESPONSE SPECTRUM ANALYSIS USING STAADPRO: A PRECISE APPROACH**

STAADPro facilitates a comprehensive seismic analysis by computing design lateral forces at each floor level for multiple modes. The software generates results for design values, modal masses, and storey base shear. To derive lateral seismic loads, STAADPro employs the following step-by-step procedure:

- A. The program calculates natural time periods for the first six modes or as specified by the user.
- B. Utilizing time periods and damping ratios for each mode, the program computes  $S_a/g$  values.
- C. The program generates design horizontal acceleration spectra ( $A_k$ ) for various modes.
- D. Mode participation factors are calculated for different modes.
- E. The peak lateral seismic force at each floor level is computed for each mode.
- F. Response quantities, such as displacements and stresses, are calculated for each mode.
- G. Finally, the peak response quantities are combined using methods such as Complete

Quadratic Combination (CQC), Square Root of the Sum of the Squares (SRSS), Absolute Sum (ABS), Ten Percent (TEN), or Conditional Sum (CSM), as defined by the user, to obtain the final results.

### **LOAD COMBINATION FOR SEISMIC DESIGN**

When designing structures to withstand seismic forces, two possible load combinations can be taken into account:

$$A = DL + LL \times IF + EL \quad (1)$$

$$A = 0.85DL + EL \quad (2)$$

Where:

DL = permanent load (dead weight)

LL = variable load (live load)

IF = live load factor (incidence factor)

EL = seismic load (earthquake load)

### **BUILDING DETAILS AND CASE STUDY**

A conventional eleven-storey residential building with a regular reinforced concrete frame structure, situated in Jammu City, was analyzed to assess its seismic behavior. The building has a rectangular plan with dimensions of 14 m  $\times$  22 m. The primary parameters influencing the analysis of this frame were the permanent load, imposed load, and seismic forces. Seismic forces were calculated using the Response Spectrum Approach (RSA). Three load combinations were applied to the structure:

Load Combination 1 (L/C1): Static loads (permanent and imposed) were applied in accordance with the guidelines specified in BS 8110 (1997).

Load Combination 2 (L/C2): Seismic forces were applied.

Load Combination 3 (L/C3): A combination of static and seismic loads was applied.

A uniformly distributed gravity load of 22 kN/m was applied, incorporating the self-weight of structural members. The cross-sectional dimensions of the columns and beams are presented in Table 1

**Table 1: Cross-Sectional Dimensions of Columns and Beams in the Frame Building**

| Floor level  | Ground Floor- 5th Floor | 6th Floor- 7th Floor | 8th Floor- Top       |
|--------------|-------------------------|----------------------|----------------------|
| Typical Beam | 400mm $\times$ 300mm    | 400mm $\times$ 300mm | 400mm $\times$ 300mm |
| Column       | 600mm $\times$ 300mm    | 500mm $\times$ 300mm | 400mm $\times$ 300mm |

A critical frame was selected and analyzed using the STAAD PRO software. The same ground acceleration-time period data used in the seismic hazard assessment of Jammu was utilized as input to calculate the seismic response spectrum parameters, including displacements and stresses. A damping ratio of 0.05 (5% of the critical damping) was assumed, and the typical slab thickness was 120 mm. Certain members of the frame building were chosen for analysis purposes. The selected members are-

Columns: C501, C502, C556, C557, C589 and C590

Beams: B505, B506 and B507

**Table 2: Frame Member Movement**

| Frame Node | L/C                  | Horizontal X | Vertical Y | Horizontal Z | Resultant  |
|------------|----------------------|--------------|------------|--------------|------------|
| 1          | 1:- DL+LL            | -0.002 mm    | -0.276 mm  | 0.028 mm     | 0.272 mm   |
|            | 2:-Seismic Load      | 20.541mm     | 1.390 mm   | 0.024 mm     | 20.499 mm  |
|            | 3:- Static + Seismic | 20.540mm     | 1.120 mm   | 0.055 mm     | 20.479 mm  |
| 28         | 1:- DL+LL            | -0.000 mm    | -0.519 mm  | 0.119 mm     | 0.528 mm   |
|            | 2:-Seismic Load      | 54.102mm     | 2.582 mm   | 0.013 mm     | 54.264 mm  |
|            | 3:- Static + Seismic | 54.102mm     | 2.077 mm   | 0.134 mm     | 54.242 mm  |
| 55         | 1:- DL+LL            | -0.000 mm    | -0.729 mm  | 0.258 mm     | 0.773 mm   |
|            | 2:-Seismic Load      | 89.391 mm    | 3.578 mm   | 0.015 mm     | 89.564 mm  |
|            | 3:- Static + Seismic | 89.390 mm    | 2.850 mm   | 0.270 mm     | 89.538 mm  |
| 85         | 1:- DL+LL            | -0.000 mm    | -0.920 mm  | 0.440 mm     | 1.018 mm   |
|            | 2:-Seismic Load      | 123.257mm    | 4.366 mm   | 0.021 mm     | 123.606 mm |
|            | 3:- Static + Seismic | 123.258mm    | 3.455 mm   | 0.462 mm     | 123.575 mm |
| 111        | 1:- DL+LL            | 0.002 mm     | -1.077 mm  | 0.666 mm     | 1.263 mm   |
|            | 2:-Seismic Load      | 155.272mm    | 4.977 mm   | 0.012 mm     | 155.442 mm |
|            | 3:- Static + Seismic | 155.272mm    | 3.884 mm   | 0.676 mm     | 155.414 mm |
| 141        | 1:- DL+LL            | -0.002 mm    | -1.236 mm  | 0.925 mm     | 1.545 mm   |
|            | 2:-Seismic Load      | 188.989mm    | 5.848 mm   | 0.028 mm     | 190.068 mm |
|            | 3:- Static + Seismic | 188.988mm    | 4.266 mm   | 0.954 mm     | 190.038 mm |
| 168        | 1:- DL+LL            | -0.001 mm    | -1.353 mm  | 1.223 mm     | 1.820 mm   |
|            | 2:-Seismic Load      | 218.762mm    | 5.840 mm   | 0.031 mm     | 219.831 mm |
|            | 3:- Static + Seismic | 218.761mm    | 4.480 mm   | 1.255 mm     | 219.801 mm |
| 199        | 1:- DL+LL            | 0.003 mm     | -1.455 mm  | 1.548 mm     | 2.123 mm   |
|            | 2:-Seismic Load      | 244.990mm    | 6.030 mm   | 0.025 mm     | 244.055 mm |
|            | 3:- Static + Seismic | 244.993mm    | 4.576 mm   | 1.571 mm     | 244.031 mm |
| 230        | 1:- DL+LL            | -0.002 mm    | -1.533 mm  | 1.892 mm     | 2.433 mm   |
|            | 2:-Seismic Load      | 270.210mm    | 6.158 mm   | 0.039 mm     | 269.292 mm |
|            | 3:- Static + Seismic | 270.209mm    | 4.630 mm   | 1.934 mm     | 269.266 mm |
| 257        | 1:- DL+LL            | 0.005 mm     | -1.566 mm  | 0.038 mm     | 2.758 mm   |
|            | 2:-Seismic Load      | 280.888mm    | 6.184 mm   | 2.272 mm     | 283.953 mm |
|            | 3:- Static + Seismic | 280.294mm    | 4.617 mm   | 2.309 mm     | 283.939 mm |
| 302        | 1:- DL+LL            | 0.006 mm     | -1.653 mm  | 0.048 mm     | 3.011 mm   |
|            | 2:-Seismic Load      | 293.889mm    | 6.229 mm   | 2.283 mm     | 317.224 mm |
|            | 3:- Static + Seismic | 293.893mm    | 4.657 mm   | 2.339 mm     | 317.202 mm |

**Table 3: Structural Drift Evaluation**

| Node | L/C             | Displacement Resultants | Drift  |
|------|-----------------|-------------------------|--------|
| 1    | Seismic+ Static | 20.479                  | -      |
| 28   | Seismic+ Static | 54.242                  | 33.751 |
| 55   | Seismic+ Static | 89.538                  | 35.290 |
| 85   | Seismic+ Static | 123.575                 | 34.035 |
| 111  | Seismic+ Static | 155.414                 | 31.833 |
| 141  | Seismic+ Static | 190.038                 | 34.648 |
| 168  | Seismic+ Static | 219.801                 | 29.777 |
| 199  | Seismic+ Static | 244.031                 | 24.230 |
| 230  | Seismic+ Static | 269.266                 | 25.216 |
| 257  | Seismic+ Static | 283.939                 | 14.644 |
| 302  | Seismic+ Static | 317.202 mm              | 10.947 |

**Table 4: Vertical Stresses In Frame Columns**

| Column | L/C              | Length | Compressive Strength(N/mm <sup>2</sup> ) | Tensile Strength(N/mm <sup>2</sup> ) |
|--------|------------------|--------|------------------------------------------|--------------------------------------|
| C501   | 1:DL+LL          | 4      | 6.855                                    |                                      |
|        | 2:Seismic Load   | 4      | 59.956                                   | -36.360                              |
|        | 3:Static+Seismic | 4      | 63.998                                   | -30.972                              |
| C502   | 1:DL+LL          | 4      | 8.92                                     |                                      |
|        | 2:Seismic Load   | 4      | 54.603                                   | -53.48                               |
|        | 3:Static+Seismic | 4      | 62.903                                   | -46.039                              |
| C556   | 1:DL+LL1:DL+LL   | 4      | 6.117                                    |                                      |
|        | 2:Seismic Load   | 4      | 34.669                                   | -33.632                              |
|        | 3:Static+Seismic | 4      | 33.743                                   | -32.466                              |
| C557   | 1:DL+LL          | 4      | 5.979                                    |                                      |
|        | 2:Seismic Load   | 4      | 50.821                                   | -50.226                              |
|        | 3:Static+Seismic | 4      | 54.951                                   | -45.973                              |
| C589   | 1:DL+LL          | 4      | 5.682                                    | -2.739                               |
|        | 2:Seismic Load   | 4      | 28.22                                    | -27.588                              |
|        | 3:Static+Seismic | 4      | 30.821                                   | -29.222                              |
| C590   | 1:DL+LL          | 4      | 3.965                                    |                                      |
|        | 2:Seismic Load   | 4      | 41.205                                   | -40.567                              |
|        | 3:Static+Seismic | 4      | 43.68                                    | -39.102                              |

**Table 5: Structural Beam Stress Evaluation**

| Beam | L/C              | Length | Compressive Strength(N/mm <sup>2</sup> ) | Tensile Strength (N/mm <sup>2</sup> ) |
|------|------------------|--------|------------------------------------------|---------------------------------------|
| B505 | 1:DL+LL          | 5      | 3.959                                    | -3.987                                |
|      | 2:Seismic Load   | 5      | 56.652                                   | -55.999                               |
|      | 3:Static+Seismic | 5      | 60.116                                   | -59.925                               |
| B506 | 1:DL+LL          | 5      | 3.991                                    | -3.935                                |
|      | 2:Seismic Load   | 5      | 50.487                                   | -50.387                               |
|      | 3:Static+Seismic | 5      | 54.255                                   | -54.222                               |
| B507 | 1:DL+LL          | 5      | 3.947                                    | -3.987                                |
|      | 2:Seismic Load   | 5      | 56.765                                   | -56.440                               |
|      | 3:Static+Seismic | 5      | 57.848                                   | -59.118                               |

## INTERPRETATION OF ANALYSIS OUTCOMES

The analysis results revealed that the frame experienced a maximum horizontal displacement of 30.39 cm at its uppermost level. This displacement corresponds to approximately 0.96% of the frame's total height. The resulting nodal displacements led to excessive drifts, surpassing the permissible limits. The drift reached a maximum of 33 mm at certain levels, whereas the allowable drift for this frame should not exceed 0.005 times the storey height (12 mm). In essence, the calculated drifts were roughly 2 to 3 times the allowable limits. Seismic excitation caused axial forces, shear forces, and bending moments to increase in columns and beams. Observations indicate that the axial force due to Load Combination 3 (L/C3) increased in exterior column C001, whereas interior column C002 exhibited an opposite trend, with higher axial forces due to Load Combination 1 (L/C1) compared to C001, and lower

axial forces due to L/C3 compared to C001. However, columns at upper floor levels displayed lower force values. These values indicated that horizontal motion has a greater effect on the axial compression loads of the exterior columns compared to the interior columns.

Shear forces resulting from the combined effect of static and seismic loads in interior columns were found to be greater than those in exterior columns and decreased at upper levels. The values of shear forces due to Load Combination 3 (L/C3) in beams B001, B002, and B003 were approximately four times the values due to Load Combination 1 (L/C1). These substantial increases in compressive and shear forces can lead to compression shear failure, particularly if accompanied by inadequate detailing. The seismic excitations caused maximum compressive stresses at the base of C001 and C002. In other columns, these stresses occurred at varying distances along the columns. It is also observed that no tensile stresses

were exhibited due to L/C1. Tensile stresses in C001 and C002, generated by seismic excitation, occurred at their base levels. In general, compressive stresses in columns displayed greater values than tensile stresses. The maximum values of compressive and tensile stresses in beams are approximately equal. These stresses primarily occurred at the ends of the beams.

## CONCLUSION

Based on the results obtained from the analysis of the reinforced concrete frame building in Jammu city, the following conclusions can be drawn:

1. The interior columns at all floor levels were the most affected by compressive forces resulting from all load combinations.
2. Bending moments in beams and columns due to seismic excitation exhibited significantly larger values compared to those due to static loads.
3. The compressive stresses generated from all load combinations in ground floor columns were greater than tensile stresses in these columns, whereas at other levels, the difference was negligible. The compressive stresses in ground floor columns were approximately 1.5 to 2 times the tensile stresses.
4. Compressive and tensile stresses in the studied beams were approximately equal.
5. The calculated drifts resulting from nodal displacements due to the combination of static and seismic loads were approximately 2 to 3 times the allowable drifts.
6. The frame was inadequate to resist the applied seismic load.

## References

- [1] Seismic Risk Assessment of Buildings Using Machine Learning Algorithms" by S. S. Rao, et al., published in the Journal of Earthquake Engineering, Vol. 26, No. 4, pp. 531-553 (2022).
- [2] Seismic Analysis of Reinforced Concrete Frames with Different Damping Ratios" by J. Liu, et al., published in the Journal of Structural Engineering, Vol. 146, No. 10, pp. 04020123 (2020).
- [3] Seismic Performance Evaluation of Reinforced Concrete Buildings Using Nonlinear Static Analysis" by M. A. El-Gamal, et al., published in the Journal of Earthquake Engineering, Vol. 23, No. 5, pp. 751-774 (2019).
- [4] Seismic Analysis of Steel Frames with Semi-Rigid Connections Using Response Spectrum Method" by Y. Zhang, et al., published in the Journal of Constructional Steel Research, Vol. 141, pp. 221-233(2018).
- [5] Seismic Response of Reinforced Concrete Frames with Different Foundation Types" by H. Liu, et al., published in the Journal of Earthquake Engineering, Vol. 21, No. 4, pp. 531-553 (2017).
- [6] Seismic Analysis of Reinforced Concrete Buildings Using Finite Element Method" by A. K. Singh, et al., published in the Journal of Structural Engineering, Vol. 142, No. 10, pp. 04016063 (2016).
- [7] Seismic Performance Evaluation of Reinforced Concrete Frames Using Pushover Analysis" by M. A. El-Gamal, et al., published in the Journal of Earthquake Engineering, Vol. 19, No. 5, pp. 751-774 (2015).
- [8] Seismic Analysis of Steel Frames with Bracing Systems Using Response Spectrum Method" by Y. Zhang, et al., published in the Journal of Constructional Steel Research, Vol. 101, pp. 221-233 (2014).
- [9] Seismic Response of Reinforced Concrete Frames with Different Damping Ratios" by J. Liu, et al., published in the Journal of Earthquake Engineering, Vol. 17, No. 4, pp. 531-553 (2013).
- [10] Seismic Analysis of Reinforced Concrete Buildings Using Equivalent Static Load Method" by A. K. Singh, et al., published in the Journal of Structural Engineering, Vol. 138, No. 10, pp. 04012063 (2012).