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ABSTRACT 

Neurodegenerative diseases (NDs), such as Alzheimer’s disease 
(AD), Parkinson’s disease (PD), Huntington’s disease (HD), and 
amyotrophic lateral sclerosis (ALS), are characterized by progressive 
neuronal dysfunction and loss, leading to cognitive and motor 
impairments. Despite decades of research, effective disease-
modifying therapies remain elusive, mainly due to complex 
pathophysiology, genetic heterogeneity, and translational challenges 
in drug discovery. Drug repurposing identifying novel therapeutic 
applications for existing drugs offers an efficient, cost-effective, and 
faster route for therapy development. Advances in artificial 
intelligence (AI) and pharmacogenomics are transforming this 
paradigm by enabling integrative data mining, predictive modeling, 
and patient stratification. This review highlights recent developments 
in AI-driven drug repurposing pipelines, the role of 
pharmacogenomic profiling in precision medicine, and emerging case 
studies demonstrating successful application of these approaches. 
Finally, we discuss future opportunities and challenges in integrating 
AI and pharmacogenomics to establish a robust framework for 
personalized therapeutics in neurodegeneration. 
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1. INTRODUCTION 

Neurodegenerative diseases (NDs) - including 
Alzheimer’s disease (AD), Parkinson’s disease (PD), 
amyotrophic lateral sclerosis (ALS), and 
Huntington’s disease (HD) - pose one of the most 
formidable challenges in modern medicine. Their 
prevalence rises as populations age: for example, the 
number of people with AD is projected to grow from 
tens of millions currently to more than 150 million by 
2050 globally [1]. The burden of these disorders is 
not only clinical but also economic and societal, as 
they lead to progressive cognitive, motor, and 
behavioral decline, straining health systems and 
caregivers alike [2]. 

Despite decades of intense research, therapeutic 
breakthroughs remain elusive. Many promising 
candidates targeting canonical pathological 
hallmarks-such as amyloid-β accumulation, tau 
aggregation, or α-synuclein pathology-have failed in  
late-stage clinical trials [3]. These repeated failures  

 
highlight the complexity and multifactorial nature of  
NDs, and the limitations of traditional “target-centric” 
drug discovery. Moreover, development of first-in-
class agents is a costly, high-risk, and time-
consuming process: bringing a novel CNS drug from 
concept to market may take 10–15 years and cost 
upwards of a billion US dollars [4]. 

Figure 1. AI- and pharmacogenomics-driven drug 
repurposing framework for neurodegenerative 

diseases. Multi-omics and clinical data are 
integrated using machine learning and network 
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models to identify candidate drugs and stratify 
patient-specific therapies. 

In this context, drug repurposing (also called drug 
repositioning) has emerged as a promising alternative 
or complement to de novo drug discovery. Rather 
than starting from scratch, drug repurposing seeks 
new therapeutic uses for existing compounds whose 
safety, pharmacokinetics, and toxicity profiles are 
already partially characterized. This reduces cost, 
risk, and development time [5]. Indeed, repurposed 
agents have a distinct advantage in the 
neurodegeneration field because the blood–brain 
barrier (BBB), CNS toxicity, and long-term safety 
hurdles are among the major obstacles for novel 
compounds [6]. 

However, repurposing is not a trivial “plug-and-play” 
strategy. To be effective, it must go beyond mere 
serendipity or trial-and-error screening. It should 
integrate mechanistic insights, network-level models, 
and patient heterogeneity [7]. Here is where artificial 

intelligence (AI) and pharmacogenomics converge 
to offer a transformative paradigm. 

AI and computational intelligence enable scouring of 
vast biomedical datasets-such as genomics, 
transcriptomics, proteomics, metabolomics, imaging, 
electronic health records (EHRs), and drug–target 
databases-to uncover hidden or nonobvious 
associations between drugs and disease pathways [8]. 
Graph neural networks, knowledge graphs, deep 
learning, and network-based inference methods are 
increasingly being applied to generate repurposing 
hypotheses [9]. 

Pharmacogenomics, which studies how individual 
genetic variation influences drug response, offers the 
means to tailor repurposed therapies to specific patient 
subgroups. Genetic differences in drug metabolism 
(e.g. cytochrome P450 variants), transporters, target 
binding, or downstream signaling may substantially 
modulate both efficacy and safety in the CNS [10]. By 
incorporating pharmacogenomic stratification, 
repurposed drugs can be optimized for personalized 
application, avoiding off-target toxicity or therapeutic 
nonresponders [11]. 

Thus, the integration of AI-driven repurposing 
strategies with pharmacogenomic insight has the 
potential to accelerate precision neuroscience 
therapeutics: discovering candidate repurposed drugs 
and predicting which patients are most likely to 
benefit or suffer adverse effects [12]. 

In recent years this integrative approach has gained 
momentum. For example, the DeepDrug method uses 
a graph neural network built on expert-curated 
biomedical graphs to propose combinations of 

repurposed drugs targeting multiple AD-relevant 
pathways [13]. Other studies have used transcriptomic 
reversal, knowledge graph embeddings, and large 
language model–augmented frameworks to infer 
drug–ND connections [14]. On the pharmacogenomic 
side, efforts to map genotype-phenotype relationships 
in CNS drug response and to integrate GWAS or 
variant data into repurposing pipelines are emerging, 
though still underexploited [15]. 

Nonetheless, this field faces several challenges: 
heterogeneity of data modalities, limited sample sizes 
in CNS cohorts, model interpretability (“black box” 
AI), regulatory and intellectual property constraints 
for repurposed generics, and the need for rigorous 
experimental and clinical validation [16]. 

In this review, we synthesize the state-of-the-art in 
AI-based drug repurposing for neurodegenerative 
diseases, detail how pharmacogenomics can be 
integrated, present key case studies, and highlight 
future prospects and major challenges. Our goal is to 
chart a roadmap toward more efficient, patient-centric 
repurposed therapies in the fight against 
neurodegeneration [17]. 

2. The Rationale for Drug Repurposing in 

Neurodegeneration 

Drug repurposing has emerged as a promising 
strategy in neurodegenerative disease research, 
largely because of the high attrition rates associated 
with traditional drug discovery [18]. Despite 
substantial investments, most neurodegeneration-
targeted drugs fail during Phase II or III clinical trials, 
often due to inadequate efficacy in humans despite 
encouraging preclinical results. This high failure rate 
reflects the complexity of disorders such as 
Alzheimer’s disease, Parkinson’s disease, and 
amyotrophic lateral sclerosis, where multifactorial 
pathophysiology and poor translation from animal 
models remain persistent hurdles [19]. 

In contrast, repurposed drugs offer the advantage of 
well-established safety, pharmacokinetics, and toxicity 
profiles, which can significantly reduce the cost, risk, 
and time associated with clinical development [20]. 
Importantly, many approved drugs exhibit 
polypharmacology, meaning they interact with 
multiple targets and pathways rather than acting in a 
single linear fashion [21]. This pleiotropic nature is 
particularly advantageous in neurodegeneration, 
where disease progression involves interconnected 
mechanisms such as neuroinflammation, oxidative 
stress, excitotoxicity, and mitochondrial dysfunction 
[22]. For example, anti-inflammatory drugs, metabolic 
modulators, and certain oncology therapeutics have 
demonstrated beneficial off-target effects in 
preclinical models of neurodegeneration [23]. 
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Finally, there is a pressing clinical urgency to identify 
viable interventions, as neurodegenerative disorders 
are progressive, irreversible, and associated with 
enormous societal and economic burdens [24]. For 
patients and caregivers facing declining quality of life, 
accelerating therapeutic development through 
repurposing offers a faster route to meaningful clinical 
benefit compared to conventional pipelines [25]. 

3. AI in Drug Repurposing for Neurodegenerative 

Diseases 

3.1. Machine Learning and Deep Learning Models 

Artificial intelligence has transformed drug 
repurposing by enabling the integration of large and 
diverse datasets [26]. Machine learning models can 
learn from known drug–target–disease interactions to 
predict novel associations, while unsupervised 
learning approaches cluster patients according to 
genetic, epigenetic, or transcriptomic profiles to 
identify subgroups that may respond to existing drugs 
[27]. Deep learning, particularly graph neural 
networks and transformer-based models, can capture 
complex nonlinear relationships across multi-omics 
data, neuroimaging, and clinical records [28]. For 
instance, deep learning algorithms have been applied 
to transcriptomic signatures to identify drugs capable 
of reversing disease-specific gene expression patterns 
in Alzheimer’s and Parkinson’s disease [29]. 

3.2. Network-Based Approaches 

Network pharmacology leverages gene–drug–disease 
interactomes to identify drugs capable of modulating 
entire biological networks rather than focusing on a 
single target [30]. This approach is highly relevant to 
neurodegenerative diseases, which involve multiple 
converging pathways such as protein aggregation, 
oxidative stress, mitochondrial dysfunction, and 
neuroinflammation [31]. Network-based inference has 
highlighted drugs like pioglitazone, an antidiabetic 
agent, and minocycline, an antibiotic with anti-
inflammatory properties, as candidates for 
repositioning in Alzheimer’s and Parkinson’s disease 
[32]. 

3.3. Natural Language Processing (NLP) and 

Knowledge Graphs 

Natural language processing is increasingly used to 
mine the enormous volume of biomedical literature, 
patents, and clinical trial reports for hidden drug–
disease relationships [33]. Knowledge graphs then 
integrate these findings with curated biomedical 
databases, linking drugs, genes, pathways, and clinical 
phenotypes into structured networks [34]. This 
enables context-specific repurposing predictions and 
accelerates hypothesis generation [35]. Such 
approaches have already produced comprehensive 
resources for Alzheimer’s and Parkinson’s disease 

research, improving predictive accuracy and guiding 
experimental validation [36]. 

3.4. Case Studies 

AI-driven repurposing has already yielded several 
promising candidates in neurodegenerative diseases. 
Sildenafil, originally developed for erectile 
dysfunction, has been identified as a potential 
therapeutic for Alzheimer’s disease based on 
population-scale data and computational modeling 
that highlight its effects on amyloid and tau-related 
pathways [37]. Metformin, widely used for type 2 
diabetes, has emerged as a candidate neuroprotective 
agent due to its capacity to regulate mitochondrial 
metabolism, activate AMP-activated protein kinase 
(AMPK), and exert anti-inflammatory effects, with 
several clinical trials currently assessing its efficacy in 
cognitive decline [38]. Similarly, minocycline, a 
tetracycline antibiotic, has demonstrated 
neuroprotective and anti-inflammatory properties, 
showing promise in models of Parkinson’s disease and 
amyotrophic lateral sclerosis [39]. These examples 
illustrate how AI methodologies-ranging from 
transcriptomic reversal to network inference-can 
uncover non-obvious therapeutic opportunities and 
accelerate the transition from computational 
predictions to experimental validation and clinical 
evaluation. 

4. Pharmacogenomics in Drug Repurposing 

4.1. Role in Precision Medicine 
Pharmacogenomics examines how individual genetic 
variations influence drug absorption, distribution, 
metabolism, excretion (ADME), target interactions, 
and downstream signaling pathways. In 
neurodegenerative diseases, this field provides a 
critical foundation for moving beyond generalized 
treatment strategies toward precision medicine 
approaches that align with genetically defined patient 
subgroups [40]. 

For instance, cytochrome P450 polymorphisms 
(particularly CYP2D6 and CYP3A4/5) are among the 
most studied pharmacogenes, and their variants can 
dramatically alter plasma and CNS concentrations of 
many neuroactive drugs, shifting them between 
therapeutic, subtherapeutic, or toxic ranges [41]. The 
APOE ε4 allele, a major genetic risk factor in 
Alzheimer’s disease, has been linked to variability in 
drug responses, influencing lipid homeostasis, 
neuronal repair, and cerebrovascular function that 
affect drug delivery to the brain [42]. In Parkinson’s 
disease, LRRK2 and GBA mutations define molecular 
subtypes with distinct pathological trajectories, 
influencing lysosomal and mitochondrial function. 
These variations may affect how repurposed drugs 
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perform across patient groups, highlighting the need 
for genotype-informed therapeutic strategies [43]. 

By incorporating pharmacogenomic data into drug 
repurposing strategies, researchers can stratify patients 
into likely responders and non-responders, personalize 
drug selection and dosing, and minimize adverse 
effects. This ensures that therapies are not only 
effective at the population level but also safe and 
optimized for individual patients. 

4.2. Integration with Repurposing Pipelines 

To fully harness the potential of pharmacogenomics in 
repurposing, integration is required at every stage of 
the discovery and development pipeline [44]. During 
candidate filtering, predicted repurposed drugs should 
be prioritized if their mechanisms or metabolic 
pathways overlap with known pharmacogenomic 
markers relevant to the disease cohort (for example, 
CYP2D6-metabolized drugs in populations with 
common CYP2D6 variants). In silico modeling can 
then incorporate genotype-specific parameters such as 
predicted enzyme activity or transporter 
polymorphisms, simulating heterogeneous drug 
responses across genetic subgroups. 

Pharmacogenomic insights also guide biomarker 
selection, with markers used as covariates or 
stratification factors in preclinical validation or 
clinical trial design. Finally, adaptive trial designs 
represent a particularly powerful application: they 
allow dynamic reassignment of patients or dose 
adjustments based on emerging genotype–response 
data, ensuring that patients are not unnecessarily 
exposed to ineffective regimens while maximizing the 
chance of clinical success. 

When implemented systematically, this integration 
enhances the efficiency of drug repurposing pipelines, 
reduces attrition, and accelerates the identification of 
precision therapies in genetically heterogeneous 
populations. 

 
Figure 2. Pharmacogenomics-guided drug 

repurposing: integrating genetic variants and 
stratification to enable precision therapy in 

neurodegenerative disease 

4.3. Examples 

Several illustrative cases highlight how 
pharmacogenomics has shaped therapeutic outcomes 
in neurodegenerative contexts. Donepezil, a widely 
prescribed acetylcholinesterase inhibitor for 
Alzheimer’s disease, demonstrates marked 
interindividual variability in efficacy. Variants in 
CYP2D6 strongly influence drug metabolism: for 
example, the rs1080985 promoter polymorphism has 
been linked to differential responses, with G-allele 
carriers exhibiting faster metabolism and reduced drug 
exposure, resulting in diminished cognitive benefit 
[45]. Conversely, patients with intermediate or poor 
metabolizer genotypes may show improved 
therapeutic responses due to prolonged drug exposure. 
These findings are supported by pharmacokinetic 
studies demonstrating that CYP2D6 activity scores 
correlate with steady-state plasma levels of donepezil 
[46]. 

Other drug–gene interactions provide prospective 
insights, even if direct evidence in repurposed 
neurotherapeutics remains limited. Agents such as 
valproic acid (mood stabilizer with repurposing 
potential in ALS), modafinil (wake-promoting agent 
with potential cognitive benefits), and other metabolic 
modulators show variable efficacy depending on 
genetic background [47]. Variants in genes encoding 
mitochondrial proteins, oxidative stress regulators, or 
transporter proteins (e.g., ABC family) can alter drug 
distribution, efficacy, or toxicity in neurodegenerative 
disease contexts [48]. These examples illustrate both 
the promise and current limitations: 
pharmacogenomics has the capacity to meaningfully 
guide drug repurposing decisions, but large-scale, 
consistent evidence remains to be established. 

5. Synergistic Use of AI and Pharmacogenomics 

The integration of artificial intelligence with 
pharmacogenomics represents a paradigm shift in the 
rational design of repurposing strategies for 
neurodegenerative diseases. AI excels at handling the 
scale and complexity of multi-omics datasets-
including genomics, transcriptomics, proteomics, 
metabolomics, and epigenomics-and can generate 
predictive biomarkers and stratification strategies [49]. 
By embedding these data into machine learning 
models, AI can identify which repurposed drugs are 
most likely to benefit genetically defined subgroups. 

A particularly promising development is the creation 
of virtual patient cohorts-in silico populations 
generated from real-world genomic and clinical data-
that allow researchers to test candidate drugs across 
heterogeneous subgroups before human trials [50]. 
Such computational avatars simulate variability in 
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efficacy and toxicity, reducing the risk of costly trial 
failures. 

 
Figure 3. Synergistic use of AI and 

pharmacogenomics in drug repurposing for 
neurodegenerative diseases. Multi-omics data are 
analyzed by AI algorithms to identify biomarkers, 
enable pharmacogenomic stratification, generate 

virtual patient cohorts, and guide adaptive clinical 
trials, ultimately facilitating precision repurposed 

therapies. 

Moreover, adaptive trial designs powered by AI-
pharmacogenomic frameworks represent a dynamic 
alternative to traditional static protocols. These 
designs allow iterative modifications of dosage, 
inclusion criteria, or subgroup stratification in 
response to real-time data [51]. Together, these 
approaches illustrate how AI and pharmacogenomics 
can work synergistically to accelerate precision 
repurposing in neurodegenerative diseases. 

6. Challenges and Limitations 

Despite its transformative potential, this convergence 
faces key challenges. Data integration is a persistent 
barrier, as omics, imaging, and clinical records are 
often fragmented across platforms and lack 
standardized formatting [52]. Model interpretability is 
another limitation: while deep learning models 
achieve high predictive accuracy, their “black box” 
nature reduces mechanistic transparency and slows 
clinical adoption [53]. 

Ethical and regulatory concerns also remain pressing. 
Pharmacogenomic data is highly sensitive, raising 
issues of privacy, ownership, and algorithmic bias. 
Without proper governance, AI models risk 
reinforcing health disparities by underperforming in 
underrepresented populations [54]. Furthermore, most 
regulatory frameworks are not yet equipped to 
validate AI-driven pipelines, creating uncertainty 
regarding evidentiary requirements for approval [55]. 

Finally, a substantial clinical validation gap exists. 
Many AI-predicted drug candidates perform well in 

silico or preclinically but fail in human trials due to 
disease heterogeneity, poor biomarker translation, or 
unanticipated side effects [56]. Closing this gap 
requires robust validation frameworks, large-scale 
longitudinal cohorts, and close alignment with 
regulatory science. 

7. Future Perspectives 

Several emerging strategies could overcome these 
limitations. Federated learning enables multi-
institutional collaborations without direct data sharing, 
allowing models to be trained across diverse datasets 
while preserving privacy [57]. This is particularly 
important for rare genetic subgroups and for ensuring 
inclusivity of underrepresented populations. 

The integration of single-cell omics with AI provides 
an unprecedented resolution of cellular heterogeneity 
in neurodegeneration. Single-cell transcriptomics and 
proteomics reveal the dysfunction of specific neuronal 
and glial subtypes, enabling repurposed drugs to be 
targeted with higher precision [58]. 

Another promising frontier is the development of 
digital twins-computational avatars of patients that 
incorporate genomic, molecular, and clinical data to 
simulate disease trajectories and drug responses [59]. 
These models could allow clinicians to virtually test 
repurposed drugs before prescribing them, reducing 
trial-and-error approaches in clinical practice. 

Finally, the establishment of pharmacogenomic-
informed repurposing consortia will be essential for 
uniting academia, industry, regulators, and patient 
advocacy groups. Such collaborations can standardize 
data collection, address ethical concerns, and ensure 
rapid clinical translation [60]. Together, these 
innovations could firmly establish repurposing, 
augmented by AI and pharmacogenomics, as a 
cornerstone of precision medicine in 
neurodegenerative diseases. 

8. Conclusion 

Drug repurposing offers a pragmatic and high-impact 
avenue to address the persistent unmet needs in 
neurodegenerative disorders. Unlike conventional 
drug development, which is protracted, costly, and 
prone to high attrition, repurposing leverages known 
compounds with established safety profiles, thereby 
accelerating the path to clinical translation [61]. 

The integration of AI and pharmacogenomics adds 
unprecedented depth to this approach. AI models can 
interrogate vast and complex datasets, uncover novel 
drug–disease associations, and simulate heterogeneous 
drug responses, while pharmacogenomics provides the 
precision medicine lens needed to match therapies 
with genetically defined patient subgroups [62]. 
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Yet, challenges remain-including data fragmentation, 
interpretability of AI models, privacy concerns, and 
the validation gap between computational predictions 
and clinical success. Addressing these issues will 
require collaborative frameworks, transparent AI 
systems, and adaptive clinical trial designs informed 
by pharmacogenomic markers [63]. 

If successfully implemented, the convergence of AI 
and pharmacogenomics in drug repurposing has the 
potential to redefine therapeutic development in 
neurodegeneration-delivering safer, more effective, 
and personalized treatments to patients in need [64]. 
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