International Journal of Trend in Scientific Research and Development (ILJTSRD)
Volume 9 Issue 5, Sep-Oct 2025 Available Online: www.ijtsrd.com e-ISSN: 2456 — 6470

L 4

Research on Knowledge Graph Visualization Based on Computer
Networks and In-depth Introduction to Computers Networks

Hang Dong, He Xu, Yi Cheng, Guanyu Liu, Qilun Lyu

Beijing Wuzi University, Beijing, China

ABSTRACT

With the development of educational informatization, learners are
shifting from traditional linear reading to structured, visual, and
interactive exploration. Taking Computer Network and a simple
introduction to computer networks as research objects, this paper
constructs a knowledge graph using Neo4j and designs a browser-
based visualization system with ECharts.

The system adopts an embedded Neo4j solution, preloading .dump
files and packaging with a built-in JRE for one-click cross-platform
deployment. It realizes functions such as graph loading, interactive
display, dynamic refresh, and health check. The paper details the
design of backend APIs, frontend rendering logic, and exception
handling mechanisms. Multiple rounds of testing confirm that the
system can stably load and interact with graphs, supporting scenarios
with up to 1000 nodes and 1500 edges, This not only helps learners
better organize fragmented knowledge and grasp the logical
relationships between concepts but also effectively enhances the
efficiency of knowledge review.

KEYWORDS: Knowledge Graph Visualization, Embedded Neo4j;
ECharts; Flask Framework; Computer Network Teaching, Cross-
platform Deployment; User Interaction; Data Rendering.

How to cite this paper: Hang Dong | He
Xu | Yi Cheng | Guanyu Liu | Qilun Lyu
"Research on Knowledge Graph
Visualization Based on Computer
Networks and In-depth Introduction to
Computers Networks" Published in
International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN:
2456-6470,
Volume-9 | Issue-5,
October 2025,
pp-461-465, URL:
www.ijtsrd.com/papers/ijtsrd97511.pdf

Copyright © 2025 by author (s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an

Open Access article t'EE‘J @
distributed under the ST
terms of the Creative Commons
Attribution License (CC BY 4.0)

INTRODUCTION

In the traditional learning mode, students usually need
to read textbooks page by page, which makes it
difficult for them to quickly locate the connections
between knowledge points and is not conducive to
forming an overall understanding. Especially in the
computer discipline, where there are a large number
of knowledge points and complex connections
between concepts, learners often encounter the
situation of "remembering local knowledge but not
understanding the overall structure". Computer
Networks and A Concise Course in Computer
Networks start from computer communication and
basic knowledge respectively, and systematically
introduce contents such as network layering,
protocols, operating systems, and computer
composition, making them very suitable for
constructing cross-chapter knowledge graphs [1].

Through knowledge graphs, knowledge points in
textbooks are transformed into nodes, and
connections between concepts are presented in the
form of edges. Learners can explore the knowledge

(http://creativecommons.org/licenses/by/4.0)

system as if browsing a map. Visualization can not
only display concept definitions and attributes, but
also reveal the sequential dependency relationships,
inclusion relationships, and potential connections of
knowledge points, helping to form a systematic
understanding [2]. For the visual presentation of
knowledge graphs, this project adopts a hierarchical
structure display method based on force-directed
layout, which can more intuitively present the
hierarchical relationships and connection density
between knowledge points [3].

This project aims to develop a visualization platform
that can run in a browser, allowing students to
connect knowledge points in a graphical way during
review and quickly grasp the overall context. The
platform is developed based on the Flask
framework—this Python Web programming
framework has the advantages of being lightweight
and flexible for expansion, and can efficiently support
the development of Web-based visualization
platforms [4]. At the same time, the platform

@ IJTSRD | Unique Paper ID —IJTSRD97511 | Volume-9 | Issue—35 | Sep-Oct 2025

Page 461

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

integrates ECharts components to realize the
interactive display of knowledge graph data. ECharts
has rich chart types and strong interactivity, which
can well meet the needs of visualizing the
relationships between knowledge points [5].

In addition, the project adopts embedded Neo4j and
built-in JRE technology, enabling the system to run
independently without installing additional databases
or configuring the environment. This reduces the
difficulty of deployment and facilitates its use in
computer classrooms, laboratories, and even personal
computers [6]. The overall architecture of the
platform follows the design idea of distributed Web
services based on Flask, which can ensure the
stability of the system during access [7].

1. Related Research and Technology Selection

L 3
\ /

Browser
!

Frontend
ECharts

e A

| REST API calls

Backend
Embedded Meod4j

Neo4

.dump Files
Built in JRE

Data Graph
initialization rendering
Interaction

logic

Figl, System architecture of the knowledge
graphvisualization platform

Knowledge graphs originate from research on the
Semantic Web and ontology, and use graph structures
to represent entities and their relationships. In 2012,
Google first proposed the concept of "knowledge
graph" and applied it to search engine result
optimization, which greatly promoted the
development of knowledge graphs. In recent years,
knowledge graphs have been widely used in fields
such as search, recommendation, intelligent question
answering, medical auxiliary diagnosis, and
educational resource management.

In educational scenarios, knowledge graphs can help
teachers construct course structures, assist students in
2. Technical Design and Implementation

understanding course logic, improve learning
efficiency, and also help narrow the gap in concept
understanding and enhance knowledge transfer
capabilities [1]. The system architecture of the
knowledge graph visualization platform designed in
this study is shown in Fig 1. This architecture takes
the core needs of "knowledge graph construction -
data storage - visual display - user interaction" as the
main line, and divides the system into four core
layers: the data layer, the service layer, the
visualization layer, and the user layer. Among them,
the data layer is mainly responsible for storing
structured knowledge point data through the
embedded Neo4j database; the service layer relies on
the Flask framework to provide background services
such as data query and relationship calculation; the
visualization layer uses ECharts components to
realize the graphical display of knowledge graphs; the
user layer provides a simple and easy-to-operate
browser interface for students and teachers [7].
Meanwhile, this architecture also refers to the design
idea of display-type websites based on the Flask
framework, emphasizing the simplicity and usability
of the user interface while ensuring functional
integrity [8].

In terms of graph database selection, this project uses
Neo4j. It is a native graph database that uses a node-
edge model to store data and provides the Cypher
query language, which can efficiently execute
complex pattern matching queries. Compared with
relational databases, Neo4j has obvious advantages in
multi-hop relationship queries, making it very
suitable for handling complex concept connections in
textbooks [9]. Relevant research on the application of
ECharts in data visualization also points out that
combining graph databases with visualization tools
can maximize the value of structured data, which
further confirms the rationality of the "Neo4j +
ECharts" technology combination in this project [10].

In this project, each knowledge point is stored as a
node, and the dependency, inclusion, or derivation
relationships between concepts are stored as edges.
This storage method facilitates subsequent knowledge
point tracing and path querying. By using embedded
Neo4j, the database can be started directly inside the
application and can quickly restore data through
.dump files. Combined with built-in JRE packaging,
the system can run independently without external
dependencies, making it convenient for users to
deploy quickly [6].

@ IJTSRD | Unique Paper ID —IJTSRD97511 | Volume-9 | Issue—35 | Sep-Oct 2025

Page 462

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

The overall system adopts a frontend—backend separation architecture, as illustrated in Fig 2.The backend is
responsible for embedded database initialization, REST API services, and exception handling; the frontend
focuses on data fetching, knowledge graph rendering, user interaction, and logging. The system is packaged with
a built-in JRE to ensure cross-platform execution without requiring additional Java installation.

s * B
Backend Frontend
ra '\I rs '\
Database Initialization Data Fetch
¢ load dump, start Neodj getGraphData
. A . A
I ™y s Ty
API Service Graph Rendering
* fapi/graphs, /health I ECharts
) - A
Exception User Interaction
Handling refresh, select textbook
% A /
L 4 = 3
Log System

Fig 2 : Technical Design and Implementation

2.1. System Architecture

The system adopts a frontend-backend separation model. The backend is responsible for starting the embedded
Neo4j database, loading .dump files, and providing REST APIs, while the frontend calls these APIs and renders
the results using ECharts . The system is packaged with a built-in JRE, ensuring cross-platform operation and
eliminating the need for users to install a separate Java environment. you can see all of them

2.2. Database Initialization

When the backend starts, it first checks whether the .dump file exists. If the file is found, the database is restored
using Neo4j's Graph Database Factory and Database Management Service, which support transaction
management and query optimization. If the file is missing, the user is prompted to regenerate the data.

2.3. Data Interaction Logic

The backend provides two primary interfaces: /api/graphs/{tag} loads knowledge graph data by textbook and
returns node-edge JSON objects, while /health performs system health checks and returns information about
database status, number of nodes, and number of edges. Exception handling is applied to all interfaces to ensure
that services respond gracefully even in case of incorrect data input .

2.4. Frontend Data Fetching

On the frontend, the asynchronous function get Graph Data(tag) is implemented through the window. Api Client
object. It constructs a request URL based on the input tag and fetches data using the Fetch API . If the request
fails, it attempts to parse the JSON error message and throws an exception to be caught by the caller. After
obtaining data successfully, the function validates that all edges contain source and target fields. Missing type or
relationship fields trigger a warning log for debugging purposes.

2.5. Graph Rendering Module

The core rendering function, render Knowledge Graph(data), processes nodes and edges, converts IDs to strings,
and normalizes node attributes such as size and type. For edges, the type field is preferred as the display label; if
it does not exist, the relationship field is used, and if both are missing, the label defaults to "Association". The
ECharts instance is initialized with parameters such as title, tooltip, and legend. A force-directed layout is
adopted with carefully tuned node repulsion and edge length to ensure readability. Edge labels are displayed
with translucent backgrounds, and a resize event listener ensures responsive rendering.

2.6. Logging and User Interface
The frontend layout includes a title bar, a textbook selection control, a graph display area, and a log output area.
Users can refresh the graph or call the /health endpoint to check database status. The log system is implemented

@ IJTSRD | Unique Paper ID —IJTSRD97511 | Volume-9 | Issue—35 | Sep-Oct 2025 Page 463

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

through addLog(message), which appends timestamps and supports automatic scrolling for easy debugging.
Button interactions provide visual feedback, improving the user experience.

3. Function Verification and Test Results

To fully verify the functional integrity, operational smoothness, and practical teaching adaptability of the
textbook knowledge graph visualization system, the testing work adopted the "full user usage process" as its core
logic and established a multi-dimensional testing framework covering identity verification, core function
operations, and abnormal scenario response. Specifically, this framework includes nine core modules: login and
registration, data loading, node interaction, chapter switching, node search, edge label display, refresh function,
exception handling, and main page operations. For each module, targeted test cases were designed based on
practical usage scenarios such as teachers' lesson preparation and students' knowledge organization. The effects
of key operation interfaces are illustrated with diagrams to ensure the test process is reproducible and the test
results are traceable and verifiable.

As the core operation entry for users, the main page integrates three core function entrances: "select knowledge
graph", "switch chapters"”, and "entity search” (see Fig 3 for the interface effect). Clicking the "select knowledge
graph" button triggers a textbook switching pop-up window, which supports quick switching between the two
preset textbooks. After switching, the system automatically clears the current knowledge graph cache and loads
the basic knowledge graph data of the corresponding textbook, with no obvious lag during the loading process.
After selecting the target textbook, users can further switch between different chapters of the textbook through
the "chapter selection" drop-down menu at the top of the page. The test covered all chapters of the two
textbooks, and no loss or confusion of the association between knowledge graph nodes and edges occurred after
chapter switching. The entity search box on the right side of the page supports two query modes: precise query
and fuzzy query. After entering keywords, the system provides real-time feedback on matching results. Among
them, the precise query can directly locate the target node and highlight it with a red border. In this test, 20
groups of different types of keywords (including core knowledge points, example question names, and formula
numbers) were selected, and the query accuracy rate reached 100%.

T AELE R

Fig 3 : Main Page Display

In the verification of data loading and interaction functions, the complete knowledge graph data of the two
textbooks was used as the test sample. After loading, it was confirmed that the matching degree of node quantity
and attribute information with the original data both reached 100%. In the node interaction test, hovering the
mouse over any node displays complete information in the details panel; when dragging a node to adjust the
layout, the edges adapt in real time; the zoom operation with the mouse wheel is smooth without lag; and
hovering the mouse over an edge highlights and indicates the two connected nodes (see Fig 4). In addition, in the
refresh function test, clicking the refresh button reloads the current knowledge graph data to ensure data
synchronization with the background. The test results of all modules meet the preset performance and functional
indicators, fully verifying the overall functional effectiveness and operational stability of the system.

@ IJTSRD | Unique Paper ID —IJTSRD97511 | Volume-9 | Issue—35 | Sep-Oct 2025 Page 464

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

Fig 4 : Relationship Highlight Display

4. Conclusion

This paper implements a textbook knowledge graph
visualization system based on embedded Neo4j,
covering the entire process of data collection,
database construction, backend API development,
frontend rendering, and interaction. The system can
transform abstract knowledge points into a visualized
network graph, helping learners form an overall
understanding. The packaging solution of embedded
Neo4j + .dump files + built-in JRE significantly
reduces the deployment threshold; users can run the
system without additional configuration, improving
its applicability in teaching and demonstrations.

References

[1] LIUMY,LIUXS, YANG W C, et al. Design
and Research of IT Technology Learning
Knowledge Graph System Based on Neo4j[J].
Modern Information Technology, 2025, 9(16):
113-119. DOLIL: 10.19850/j.cnki.2096-
4706.2025.16.020.

[2] Wang, Z. Y., & Zhang, C. H. (2016). Design
and implementation of data visualization
analysis component based on ECharts.
Microcomputer & Its Applications, 35(14), 46-
48+51. https://doi.org/10.19358/j.issn.1674-
7720.2016.14.015.

[3] Li,Z.G.,Chen, Y., Zhang, X. Y., etal. (2014).
A hierarchical structure visualization method
based on force-directed layout. Computer
Simulation, 31(03), 283-288.

[4] Ye, F. (2015). Research on Flask, the latest
Python web programming framework.
Computer Programming Skills & Maintenance,
(15), 27-28.

(5]

[6]

[71

(8]

(9]

[10]

https://doi.org/10.16184/j.cnki.comprg.2015.15.
010.

Fan, L. Q., Gao, J., & Duan, B. X. (2023). Data
visualization system for domestic popular
tourist attractions based on
Python+Flask+ECharts. Modern Electronics
Technique, 46(09), 126-130.
https://doi.org/10.16652/j.issn.1004-
373x.2023.09.024.

LIUW, AN X, YANPF, et al. Research on the
Construction of Knowledge Graph for China's
Information Innovation Industry Based on
Neo4j[J]. Science and Technology
Management Research, 2025, 45(14): 151-159.

Xu, J. (2020). Research and application of
distributed web service architecture based on
Flask. Industrial Control Computer, 33(10), 97-
98+101.

Ma, X., & Wang, S. L. (2018). Design and
implementation of a display-type website based
on the Flask framework. Digital Technology
and Application, 36(11), 137-138.
https://doi.org/10.19695/j.cnki.cn12-
1369.2018.11.73.

WANG Y L. Comparative Study between
Graph Database Neo4j and Relational
Database[J]. Modern Electronics Technique,
2012, 35(20): 77-79. DOI:
10.16652/j.issn.1004-373x.2012.20.045.

Cui, P. (2019). Application of ECharts in data
visualization. Software Engineering, 22(06),
42-46. https://doi.org/10.19644/j.cnki.issn2096-
1472.2019.06.011.

@ IJTSRD | Unique Paper ID —IJTSRD97511 | Volume-9 | Issue—35 | Sep-Oct 2025

Page 465

