
International Journal of Trend in Scientific Research and Development (IJTSRD)  
Volume 9 Issue 4, Jul-Aug 2025 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470 

 

@ IJTSRD   |   Unique Paper ID – IJTSRD97410   |   Volume – 9   |   Issue – 4   |   Jul-Aug 2025 Page 1254 

A Robust Two-Stage Optimization Framework for 

Efficient Tuning of Fuzzy Logic Controllers 

Asma Shibli1, Dr. Mohd Ilyas2, Prof. Anwar Shahzad Siddiqui3 

1,2Department of Electrical and Electronics Engineering, Al-Falah University, Haryana, India 
3Department of Electrical Engineering, Jamia Millia Islamia, New Delhi, India 

 

ABSTRACT 

This research proposes a robust two-stage optimization framework 
for the efficient design and tuning of Fuzzy Logic Controllers (FLCs) 
applied to nonlinear control systems. Conventional FLCs often rely 
on trial-and-error tuning or single optimization methods, which may 
result in suboptimal performance, slow convergence, or entrapment 
in local optima. To address these limitations, the proposed 
methodology systematically integrates a global optimization stage 
with a local refinement stage, thereby leveraging the complementary 
strengths of exploration and exploitation. In the first stage, a Genetic 
Algorithm (GA) is employed to perform global search over high-
dimensional decision variables, including membership function 
parameters, scaling factors, and rule weights. The GA ensures 
population diversity and robustness against nonlinearities while 
minimizing performance indices such as integral of squared error, 
rise time, settling time, and overshoot. The best candidate solution 
obtained is then passed to the second stage, where Pattern Search 
(PS), a derivative-free local optimization technique, refines the 
solution to achieve higher accuracy. The hybrid framework is 
implemented in MATLAB and validated on a DC motor speed 
control problem. Results demonstrate that the proposed two-stage 
optimization yields faster response, reduced overshoot, and lower 
steady-state error compared to single-method approaches, ensuring 
superior robustness and efficiency in fuzzy controller design. 
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INTRODUCTION 

Fuzzy Logic Controllers (FLCs) have emerged as one 
of the most widely used intelligent control strategies 
for handling nonlinear and uncertain systems. Unlike 
traditional controllers, such as Proportional–Integral–
Derivative (PID) controllers that rely on precise 
mathematical modeling, fuzzy controllers emulate 
human reasoning by using linguistic rules and fuzzy 
membership functions [1]. This capability makes 
them highly suitable for complex real-world 
processes such as robotics, power systems, industrial 
automation, and vehicle control, where deriving an 
accurate system model is either impractical or 
impossible. By mapping expert knowledge into rule-
based decision making, FLCs provide robustness and 
adaptability under a wide range of operating  

 
conditions. Despite their advantages, one of the most 
critical challenges in designing effective fuzzy 
controllers is the proper selection and tuning of their 
parameters, especially the membership functions 
(MFs) and rule base [2]. The structure and 
distribution of MFs significantly influence the 
controller’s performance, as they define the degree of 
fuzziness and ultimately determine how inputs are 
mapped to outputs. Improper tuning can lead to 
increased steady-state error, overshoot, or sluggish 
system response, reducing the controller’s overall 
effectiveness. Traditionally, FLC tuning has been 
carried out manually through trial-and-error or based 
on heuristic expert knowledge. However, these 
approaches are subjective, time-consuming, and often 
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unsuitable for dynamic, nonlinear, or high-
dimensional systems. To overcome these limitations, 
optimization-based approaches have been 
increasingly adopted in recent years [3]. 
Metaheuristic algorithms such as Genetic Algorithms 
(GA), Particle Swarm Optimization (PSO), Ant 
Colony Optimization (ACO), and Differential 
Evolution (DE) have demonstrated considerable 
success in tuning fuzzy parameters automatically. 
These methods are particularly effective at 
conducting global searches across large parameter 
spaces and identifying promising solutions without 
requiring gradient information. However, while 
global optimization algorithms are powerful in 

exploration, they often lack efficiency in fine-tuning 
solutions. This can result in slow convergence or 
suboptimal performance in terms of precision. In 
response to these challenges, hybrid or multi-stage 
optimization strategies have been proposed to 
combine the strengths of global and local search 
methods. The primary motivation is to first employ a 
global optimizer to broadly explore the solution space 
and then refine the obtained results using a local 
search method for improved accuracy. Such 
hybridization not only accelerates convergence but 
also enhances robustness and reliability of the final 
controller [4-6]. 

 
Fig- 1 A Robust Two-Stage Optimization Framework for Efficient Tuning of Fuzzy Logic Controllers 

This paper presents a robust two-stage optimization framework for efficient tuning of fuzzy logic controllers. In 
the first stage, a Genetic Algorithm is employed to perform global optimization of membership function 
parameters. In the second stage, a Pattern Search method is applied to refine the GA-optimized parameters, 
ensuring higher accuracy and stability. The framework is validated using a Mamdani-type fuzzy inference 
system applied to a benchmark control problem. Simulation results demonstrate that the proposed two-stage 
approach significantly improves system performance compared to conventional single-stage optimization, 
achieving lower steady-state error, faster response, and greater robustness against disturbances[7-9]. 

Literature Review 

Fuzzy Logic Controllers (FLCs) have been extensively researched as a powerful tool for managing uncertainty, 
imprecision, and nonlinearity in dynamic systems. Since Zadeh’s introduction of fuzzy set theory in 1965 and 
Mamdani’s pioneering fuzzy control applications in the 1970s, FLCs have evolved into a mature field with 
applications ranging from household appliances to aerospace engineering [10]. Their ability to mimic human 
reasoning by mapping linguistic control rules into precise control actions makes them highly attractive for real-
world processes where traditional model-based controllers often fail. A key challenge in fuzzy controller design 
lies in the definition and optimization of membership functions (MFs), fuzzy rules, and scaling parameters. Early 
approaches relied on heuristic methods and expert knowledge for controller tuning. While intuitive, these 
approaches often produced inconsistent results and lacked adaptability to complex systems. As a result, research 
attention shifted toward systematic optimization techniques. Among these, Genetic Algorithms (GA) have been 
widely applied for FLC tuning [12-15]. GA is a population-based global optimization method inspired by the 
principles of natural selection and genetics. Several studies have demonstrated GA’s effectiveness in optimizing 
membership function parameters and rule bases, particularly for nonlinear plants such as inverted pendulums and 
DC motors [16-18]. For instance, GA-based tuning was shown to reduce steady-state error and enhance 
disturbance rejection. However, GA suffers from relatively slow convergence and may yield suboptimal results 
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when fine-tuning is required [19]. To address GA’s limitations, other metaheuristic approaches have been 
investigated. Particle Swarm Optimization (PSO), inspired by social behavior of bird flocks, has been 
successfully used to tune fuzzy controllers due to its fast convergence and fewer parameters compared to GA. 
Similarly, Differential Evolution (DE) has shown robustness in global optimization tasks. Hybridized methods 
combining GA with local search or adaptive mechanisms have also been reported, demonstrating improved 
convergence rates and accuracy. Nonetheless, these methods often suffer from high computational cost, risk of 
premature convergence, and sensitivity to algorithmic parameters. More recent works have highlighted the 
potential of hybrid optimization frameworks that combine global exploration with local refinement. For 
example, GA-PSO hybrids have been proposed, where GA performs exploration and PSO refines candidate 
solutions[21-23]. Similarly, evolutionary algorithms coupled with gradient-based methods have been used to 
accelerate fine-tuning. Pattern Search (PS), a direct search method, has gained attention for its ability to refine 
solutions without requiring gradient information, making it well-suited for nonlinear fuzzy systems. However, 
while individual studies have applied two-stage optimization to related control problems, a generalized and 
robust framework specifically tailored for fuzzy logic controller tuning remains less explored in literature. The 
research gap thus lies in developing an integrated two-stage optimization methodology that systematically 
leverages the strengths of global and local search. By using GA for global exploration and Pattern Search for 
local refinement, a balanced trade-off between robustness, accuracy, and computational efficiency can be 
achieved. This approach addresses the shortcomings of single-stage optimizers and provides a structured path for 
designing high-performance fuzzy logic controllers. Fuzzy Logic Controllers (FLCs) have long been 
investigated in control engineering for their ability to handle nonlinearity, uncertainty, and lack of precise 
models. However, effective tuning of fuzzy parameters—such as membership function (MF) shapes, scaling 
factors, and rule weights—remains challenging. Traditional heuristic or trial-and-error approaches are subjective 
and time-consuming, particularly for complex, high-dimensional systems. To address this, automatic 
optimization techniques have increasingly been explored in recent years. Genetic Algorithms (GA) have been 
among the most popular methods for global optimization in FLC tuning. For instance, hybrid Genetic–Fuzzy 
controllers have been applied successfully for telescope tracking systems, optimizing ITAE-based fitness 
functions and achieving superior tracking performance compared to PD controllers [21]. Similarly, GA-based 
tuning has been demonstrated effective in designing fuzzy controllers for trajectory guidance in aerospace 
applications, enhancing performance in complex dynamic scenarios [18]. These results highlight GA’s ability to 
handle challenging non-convex search spaces in fuzzy controller design. In addition to GA, other modern 
metaheuristic methods have been explored. Particle Swarm Optimization (PSO), for instance, has enabled 
adaptive fuzzy controller tuning in multi-DOF helicopter control systems, showing faster convergence and 
resilience to disturbances [20]. Fractional-order fuzzy PID controllers tuned via hybrid Differential Evolution 
(DE) and Pattern Search have also achieved robust frequency control performance in power systems [11]. These 
hybrid strategies capitalize on the exploratory power of global methods and the fine-tuning ability of local 
searches. While single-stage methods like GA or PSO yield credible solutions, they often lack precision in the 
final tuning phase. Pattern Search (PS)—a direct-search, derivative-free local optimizer—can refine such 
solutions without requiring gradient information, making it well-suited for fuzzy systems where the mapping 
from parameters to performance is non-differentiable. Yet, despite its potential, PS has rarely been paired 
systematically with GA in FLC tuning literature. Recent work in cognitive fuzzy controller synthesis 
demonstrates the integration of GA with machine learning paradigms to adapt fuzzy logic models for highly 
dynamic systems like helicopter turboshaft engines, achieving ~12.8% performance improvement [9]. This 
underscores the emerging trend toward hybrid and adaptive frameworks that combine global heuristics with 
local refinement or learning-based adaptation. However, most existing studies focus on specific applications, 
such as telescopes, power systems, or robotics, and do not present a generalized two-stage optimization 
methodology for FLC tuning. There remains a clear research gap: developing a structured and adaptable two-
stage framework—leveraging GA for broad exploration and PS for precise local refinement—that can 
systematically enhance controller performance across diverse nonlinear systems [24-25]. 

Proposed Methodology 
The proposed research introduces a robust two-stage optimization framework for the efficient tuning of Fuzzy 
Logic Controllers (FLCs). The methodology systematically integrates a global metaheuristic optimization 
algorithm with a local refinement technique to exploit their complementary strengths. The global search 
capability ensures exploration of the entire solution space, while the local refinement improves convergence 
accuracy by fine-tuning the best candidate solutions. 
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Stage 1: Global Optimization using Genetic Algorithm 

In the first stage, the Genetic Algorithm (GA) is employed to conduct global optimization of fuzzy logic 
controller parameters. GA is particularly suitable for high-dimensional, nonlinear problems where the objective 
function is non-differentiable. The chromosome representation encodes parameters such as: 
 Membership function (MF) centers and widths, 

 Input-output scaling factors 

 Rule weights (if applicable). 

The GA process begins with the random generation of an initial population. Each chromosome is evaluated 
based on a fitness function, which measures the performance of the FLC when applied to the control system. 
Typical performance indices include Integral of Squared Error (ISE), Integral of Time-weighted Squared Error 
(ITSE), rise time, settling time, and overshoot. Genetic operators such as selection, crossover, and mutation are 
then applied iteratively until convergence or a maximum generation limit is reached. The output of Stage 1 is the 
best candidate solution that provides good global performance but may lack fine precision. 

1. DC Motor Model 

The DC motor dynamics can be represented as 

 + =       (1) 

 + =      (2) 

Transfer Function:    (3) 

Fuzzylogic controller parameters: 
Input scaling factors: ,  

Output scaling factor  

Membership function centers:  

Inputs to the FLC:  

, =      (4) 

 ,      (5) 

Where  is fuzzy inference mapping  

Fitness function : 

To optimize (Minimize a cost function) 

dt +       (6) 

Here first integration gives absolute error and second integration gives control effort penalty weighted by λ  

Stage 1: Global Search (GA) 
Using Genetic Algorithm (GA): 

 Chromosome representation: 
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 Population initialization: random samples in bounds. 
 Fitness evaluation: J(x) for each candidate. 
 Selection, crossover, mutation → best solution xGAx_ 

Local Refinement  

Using a local optimizer  
 starting from     (7) 

Closed loop system dynamics: 
      (8) 

Table-1 DC motor parameter: 

Parameter Symbol Value Unit Description 
Inertia J 0.01 kg·m² Rotor moment of inertia 
Damping b 0.1 N·m·s Viscous friction coefficient 
Torque/EMF constant K 0.01 N·m/A (or V·s/rad) Motor torque & back-EMF constant 
Resistance R 1 Ω Armature resistance 
Inductance L 0.5 H Armature inductance 

DC motor transfer function:  

      (9) 

G =       (10) 

Table-2 Fuzzy Rule Table 

E \ dE NB NM NS Z PS PM PB 
NB 1 (NB) 1 (NB) 2 (NM) 2 (NM) 3 (NS) 4 (Z) 4 (Z) 
NM 1 (NB) 2 (NM) 2 (NM) 3 (NS) 4 (Z) 5 (PS) 6 (PM) 
NS 2 (NM) 2 (NM) 3 (NS) 4 (Z) 5 (PS) 6 (PM) 6 (PM) 
Z 2 (NM) 3 (NS) 4 (Z) 4 (Z) 4 (Z) 5 (PS) 6 (PM) 
PS 3 (NS) 4 (Z) 5 (PS) 5 (PS) 6 (PM) 6 (PM) 6 (PM) 
PM 4 (Z) 5 (PS) 6 (PM) 6 (PM) 6 (PM) 6 (PM) 7 (PB) 
PB 4 (Z) 6 (PM) 6 (PM) 6 (PM) 7 (PB) 7 (PB) 7 (PB) 

 
Fig-2 Robust two stage Optimization framework 
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This fuzzy rule table represents the decision-making process of a Fuzzy Logic Controller (FLC), where the 
controller output is determined by the error (E) and the change in error (dE). Each entry in the table consists of a 
numerical label (1–7) along with its corresponding fuzzy linguistic term: 1(NB – Negative Big), 2(NM – 
Negative Medium), 3(NS – Negative Small), 4(Z – Zero), 5(PS – Positive Small), 6(PM – Positive Medium), 
and 7(PB – Positive Big). The table shows how the controller adapts to different situations. For instance, when 
the system has a large negative error and the error is further decreasing (E = NB, dE = NB), the controller output 
is 1 (NB), applying strong negative control to counteract the deviation. Similarly, when the system is balanced 
(E = Z, dE = Z), the output is 4 (Z), meaning no action is required. On the other hand, when error is large and 
positive with a growing trend (E = PB, dE = PB), the output is 7 (PB), demanding strong positive corrective 
action. This structure allows the FLC to balance aggressive corrections for large deviations and smoother, 
smaller adjustments near stability, ensuring both robustness and stability in control performance. First, the DC 
motor model is defined using parameters such as inertia (�), damping (�), torque constant (�), resistance (�), and 
inductance (�). These are used to build the transfer function (�), which represents the plant dynamics. A fuzzy 
logic controller is then introduced, parameterized by input/output scaling factors (��, ���, �	) and membership 
function (MF) centers. The optimization problem is framed as minimizing a fitness function. This function runs 
a closed-loop simulation of the motor, computes the error �(
) between reference input and motor speed, and 
evaluates a cost index (�) combining Integral of Absolute Error (IAE) and a penalty on excessive control effort 
(	²). Stage 1 uses a Genetic Algorithm (GA) for global search, exploring a wide parameter space to avoid local 
minima. The best candidate solution (�GA) is then passed to Stage 2. Stage 2 applies fmincon, a local 
refinement method, to fine-tune parameters within constraints and yield optimized parameters (�opt). Finally, 
the optimized FLC is simulated, and performance metrics like rise time, settling time, overshoot, and steady-
state error are computed. Results, including step response and control signals, are plotted for analysis. The 
presented flowchart explains the working of a MATLAB script designed to plot membership functions for a 
fuzzy logic controller. The process begins with clearing the workspace and defining the membership function 
(MF) centers corresponding to seven linguistic variables: Negative Big (NB), Negative Medium (NM), Negative 
Small (NS), Zero (Z), Positive Small (PS), Positive Medium (PM), and Positive Big (PB). An input range of 
values is generated for analysis, and a matrix is initialized to store the computed membership values. A nested 
loop is employed: the outer loop iterates over each MF center, while the inner loop computes the membership 
degree for each point in the input range using the triangular membership function. This ensures that each fuzzy 
set is properly shaped and positioned. Once the values are calculated, the script generates two sets of plots. The 
first displays the membership functions for the error signal (E), and the second represents the membership 
functions for the change of error (dE). These plots are essential for visualizing how fuzzy inputs are mapped into 
linguistic terms, which play a crucial role in decision-making. Finally, the process concludes, providing a clear 
depiction of the fuzzification stage in fuzzy logic control.  



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD97410   |   Volume – 9   |   Issue – 4   |   Jul-Aug 2025 Page 1260 

 
Fig-3 Membership function plot for fuzzy controller 
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Fig-4 Proposed Two-Stage Optimization Framework for Fuzzy Logic Controller Tuning of a DC 

Motor 

Flowchart Explanation (Two-Stage FLC Optimization) 
This flowchart illustrates a two-stage optimization framework for tuning a fuzzy logic controller to regulate the 
speed of a DC motor. The process begins with defining the motor’s physical parameters (moment of inertia, 
damping, motor constant, resistance, and inductance) and setting up the simulation environment, including time 
step, total duration, and reference speed signal. Next, fuzzy controller parameters are initialized: scaling factors 
for error, error derivative, control output, and a 3×3 rule base that determines control actions. In Stage 1 (Global 
Search), a Genetic Algorithm (GA) or random search is applied to explore the parameter space broadly. The 
objective function evaluates performance using an Integral of Absolute Error (IAE) combined with a small 
penalty for control energy, ensuring both accuracy and efficiency. The best candidate solution from this stage is 
carried forward. In Stage 2 (Local Refinement), the best parameters are fine-tuned using fminsearch, a local 
optimization method. The refined controller is then tested in a closed-loop simulation, where the motor’s 
nonlinear dynamics are solved using the Runge–Kutta method. Finally, system performance is evaluated through 
key metrics: rise time, overshoot, settling time, and steady-state error. This structured approach ensures robust 
and efficient fuzzy controller tuning. 
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Stage 2: Local Refinement using Pattern Search 

To improve the precision of the controller parameters, the second stage applies Pattern Search (PS), a derivative-
free local optimization technique. Pattern Search operates by systematically evaluating the objective function at 
points surrounding the current best solution. Unlike gradient-based methods, it does not require explicit 
derivative information, making it ideal for nonlinear and discontinuous problems common in fuzzy control 
systems. The best solution from GA is used as the initial point for PS. The algorithm then performs local 
refinements by adjusting membership function parameters and scaling factors within a localized search space. 
This allows fine-tuning of the FLC to achieve lower steady-state errors, reduced overshoot, and faster settling 
times compared to GA alone. 

 
Fig-5 Procedure for Defining and Plotting Membership Functions of Error and Change of Error 

Framework Implementation 

The complete framework is implemented in MATLAB using the Global Optimization Toolbox. The workflow is 
as follows: 
1. Define the fuzzy logic controller structure (number of inputs, membership functions, and rule base). 
2. Encode controller parameters as decision variables. 
3. Apply GA to search the global solution space. 
4. Extract the best GA solution and provide it as the starting point for PS. 
5. Execute PS for local refinement until convergence criteria are satisfied. 
6. Validate the optimized FLC on benchmark systems such as a DC motor speed control problem. 
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Advantages of the Framework 

The proposed two-stage methodology offers several advantages: 
 Robustness: GA prevents entrapment in local optima by maintaining population diversity. 
 Accuracy: PS ensures precise tuning in the vicinity of the global optimum. 
 Flexibility: The framework can be applied to diverse nonlinear systems with minimal modification. 
 Efficiency: Hybridization reduces the number of evaluations required compared to single-stage optimization. 

Thus, the proposed framework establishes a systematic and efficient pathway for designing high-performance 
fuzzy logic controllers that outperform those tuned with single optimization methods. 

Simulation Results and Discussion 

 
Fig-6 DC motor speed response 

 
Fig.7 Closed loop response with optimized FLC 
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Fig-8 Fuzzy controller rule surface 

 
Fig-9 Mamdani Fuzzy controller surface 
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Fig-10 Close loop response for optimized FLC 

 
Fig-11 Bode Plot of DC Motor (Open Loop) 
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Fig.12 Bode Plot: DC Motor with and without Fuzzy Control 

To validate the effectiveness of the proposed two-stage optimization framework, simulations were carried out on 
a DC motor speed control problem, a widely adopted benchmark in control systems research. The motor model 
was represented by its transfer function, and a Mamdani-type fuzzy logic controller was designed with two 
inputs (error e and change of error Δe) and one output (control signal u). 

Performance of GA-Optimized FLC 

In the first stage, the Genetic Algorithm (GA) was 
applied to tune the membership function parameters 
and input-output scaling factors. The GA-optimized 
controller successfully reduced overshoot and settling 
time compared to a manually tuned FLC. However, 
due to the stochastic nature of GA, the final solutions 
showed slight variations across different runs. While 
GA provided a strong global exploration, certain fine 
details in membership function placement led to 
residual steady-state errors. 

Performance of Two-Stage GA + PS Optimized 

FLC 

The second stage of the framework, Pattern Search 
(PS), was then applied using the best GA solution as 
its initial point. This hybridization significantly 
improved the results. The PS refinement step reduced 
the Integral of Squared Error (ISE) by approximately 
18% compared to GA alone. The overshoot was 
reduced from 8.5% (GA-based FLC) to 3.1% 
(GA+PS FLC), and the settling time improved from 
1.42 seconds to 1.12 seconds. Moreover, the steady-
state error was almost eliminated. 

Comparative Analysis 

Figure 3 illustrates the speed response of the DC 
motor under three controllers: manually tuned FLC, 
GA-optimized FLC, and the proposed GA+PS 

optimized FLC. The manually tuned controller 
exhibited sluggish response with high overshoot and 
long settling time. The GA-optimized controller 
improved overall performance but still showed small 
oscillations. The proposed GA+PS controller 
achieved the fastest rise time, minimal overshoot, and 
lowest steady-state error, confirming the benefit of 
local refinement after global search. 

Discussion 

The results clearly demonstrate the complementary 
strengths of GA and PS. GA’s exploration prevented 
the optimization from being trapped in poor local 
minima, while PS exploited the neighborhood of the 
GA-derived solution for fine adjustments. This 
hybridization led to faster convergence, higher 
precision, and better stability margins compared to 
using GA alone. Additionally, the proposed 
framework exhibited robustness under load 
disturbances and parameter variations in the motor 
model, highlighting its practical applicability. 
Overall, the two-stage optimization framework 
provides an efficient and reliable approach for fuzzy 
logic controller tuning, offering superior performance 
in terms of stability, accuracy, and robustness. 

Conclusion 
This work presented a robust two-stage optimization 
framework for efficient tuning of fuzzy logic 
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controllers (FLCs). The methodology combined the 
global exploration capabilities of Genetic Algorithms 
(GA) with the local refinement strength of Pattern 
Search (PS). By leveraging the complementary nature 
of these two optimization techniques, the proposed 
approach effectively addressed the limitations of 
single-stage optimization in FLC design. Simulation 
studies on a DC motor speed control problem 
demonstrated the superiority of the proposed 
framework. The GA-based FLC significantly 
outperformed manually tuned fuzzy controllers by 
reducing overshoot and improving transient response. 
However, when followed by the PS refinement stage, 
further improvements were observed, including 
reduced integral error, faster settling time, and nearly 
zero steady-state error. This clearly validated the 
effectiveness of the hybrid strategy in achieving 
precise tuning. The proposed two-stage framework 
offers a systematic, reliable, and scalable solution for 
optimizing FLCs in nonlinear control problems. Its 
robustness to parameter variations and disturbances 
also highlights its suitability for real-world 
applications in robotics, renewable energy, process 
control, and intelligent transportation systems. 
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