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ABSTRACT

This paper introduces the Improved Golden Eagle Optimizer (IGEO),
an enhanced version of the Golden Eagle Optimizer (GEO)
incorporating chaotic initialization with the Logistic Map and an
adaptive weighting mechanism to improve exploration—exploitation
balance. IGEO was benchmarked on 23 test functions and six
engineering design problems. Results show that on unimodal
benchmarks, IGEO exactly reached the global optimum in 71% of
cases (5/7), compared to 29% for GEO and IGEO3 and 14% for
IGEOQO2. It also achieved the lowest Mean Absolute Error (MAE) and
Standard Deviation (SD) in 83% of cases, converging faster on
average (787 iterations) than GEO (905) and IGEO3 (892). For
multimodal functions, IGEO matched benchmark optima in 31% of
cases (5/16) and secured the best results in another 50 %, achieving
the lowest MAE and SD in 56% of functions and the fastest
convergence in 81% (13/16). In engineering design tests, IGEO
provided the most cost-effective or lightweight solutions in five of
six problems, including a 1.4% cost reduction in pressure vessel
design, while remaining competitive in the gear train problem with
errors on the order of 1071°. These findings demonstrate IGEO’s
robustness, accuracy, and efficiency for solving complex
optimization challenges.
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benchmark functions, engineering optimization.

1. INTRODUCTION

The field of metaheuristic optimization has witnessed
significant advancements in recent years, primarily
driven by the need to address complex, nonlinear, and
high-dimensional ~ problems. @~ Among  these
metaheuristic techniques, the Golden Eagle Optimizer
(GEO)[1], inspired by the hunting behavior of golden
eagles, has emerged as an effective algorithm for
balancing exploration and exploitation during the
optimization process. However, like many other
metaheuristics, the original GEO algorithm faces
challenges related to premature convergence and
suboptimal population diversity, which can hinder its
performance, especially on multimodal functions and
engineering design problems.

Metaheuristic algorithms, such as Particle Swarm
Optimization (PSO) [2], Genetic Algorithm (GA) [3]
and Differential Evolution (DE) [4], have been
extensively used to solve optimization problems

across various domains. Despite their success, these
algorithms often struggle with maintaining a proper
balance between exploration and exploitation, leading
to premature convergence in complex search spaces.
Several studies have focused on enhancing the
performance of these algorithms through different
strategies, such as hybridization, chaotic initialization,
and adaptive parameter control. For instance, PSO
has been enhanced with chaotic maps to improve its
global search capability[5][2][6], while GA has
benefited from adaptive crossover and mutation rates
to dynamically adjust the exploration-exploitation
trade-off [7].

Other notable metaheuristic algorithms include the
Bat Algorithm (BA)[8] [9], which mimics the
echolocation behavior of bats and has been shown to
be effective for both continuous and discrete
optimization problems. The Artificial Bee Colony
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(ABC) algorithm[10] [11], inspired by the foraging
behavior of honey bees, has also gained popularity for
its ability to efficiently explore the search space.
Additionally, the Moth-Flame Optimization (MFO)
algorithm[12] [13], [14], [15] has demonstrated
strong capabilities in escaping local optima by
simulating the navigation mechanism of moths in
nature.

One of the critical factors influencing the
performance of metaheuristic algorithms is the
initialization of the population. A well-diversified
initial population can help prevent premature
convergence by allowing the algorithm to explore
more promising regions of the search space early on.
Studies on chaotic maps, such as the Logistic Map,
have shown that chaotic sequences can generate
diverse initial populations, which enhances the
exploration capabilities of algorithms like PSO, GA,
and DE[16], [17] [4], [6], [18], [19], [20]. The chaotic
initialization technique leverages the sensitive
dependence on initial conditions inherent to chaotic
maps, providing arich diversity that can significantly
improve optimization performance. Therefore,
incorporating a chaotic map, such as the Logistic
Map, into GEO is proposed to enhance its initial
population diversity, aiming for a more effective
exploration of the search space.

Chaotic maps have been successfully applied in other
metaheuristics as well. For example, DE with chaotic
initialization has shown improved convergence speed
and  accuracy in various optimization
problems[21][22] [23], [24]. Similarly, the use of
chaotic maps in the Cuckoo Search Algorithm (CSA)
has been reported to enhance its performance by
diversifying the initial solutions, thereby avoiding
local optima[25][24], [26], [27]. These studies
indicate that chaotic initialization can be a powerful
tool to enhance the exploration capabilities of
metaheuristic algorithms, making it a suitable
enhancement for GEO.

In addition to enhancing population diversity, the
balance between exploration and exploitation is
crucial for the success of any optimization algorithm.
The Step Vector in the original GEO algorithm is
derived from a combination of the Attack Vector and
Cruise Vector, which are influenced by attack and
cruise propensities. While this approach ensures a
balance between exploration and exploitation, recent
advancements in metaheuristic optimization suggest
that adaptive mechanisms can significantly improve
performance by dynamically adjusting the balance
based on the current search stage[24], [28]. Adaptive
weighting strategies, which have been successfully
implemented in algorithms like the Whale

Optimization Algorithm (WOA)[29][30][31] [32] and
Ant Colony Optimization (ACO)[33][34][28], [35],
help adjust the contribution of different components
of the update equation in response to the convergence
behavior of the population [32], [36]. Inspired by
these findings, an adaptive weighting mechanism is
introduced to dynamically adjust the influence of the
Attack Vector and Cruise Vector in GEO, thereby
enhancing its convergence rate and accuracy.

Adaptive mechanisms have also been explored in
other algorithms to enhance their performance. For
example, in the Firefly Algorithm (FA), adaptive
attractiveness parameters have been used to balance
the exploration and  exploitation  phases
effectively[37][38][39], [40][41]. Similarly, the Grey
Wolf Optimizer (GWO) has been improved by
incorporating adaptive parameters that adjust the
leader positions dynamically based on the
convergence stage, leading to better performance on
benchmark functions[42], [43], [44] [45]. The Flower
Pollination Algorithm (FPA)[46] [47] has also been
enhanced with adaptive switching probabilities to
control the local and global search capabilities more
effectively. These adaptive strategies demonstrate the
potential of dynamic parameter adjustment in
improving the overall performance of metaheuristic
algorithms, motivating the introduction of adaptive
weighting in GEO.

The proposed modifications to the GEO algorithm
aim to address two primary objectives: enhancing the
initial exploration capability through chaotic maps
and improving the exploration-exploitation balance
via adaptive weighting of the Step Vector. The
modified GEO, termed Improved GEO (IGEO),
incorporates the Logistic Map for chaotic
initialization and adaptive weighting to better manage
the balance between exploration and exploitation.
This comprehensive enhancement seeks to reduce
premature convergence and increase the likelihood of
achieving a global optimum, particularly in the
context of benchmark functions and complex
engineering design problems.

The remainder of this paper is organized as follows:

Section 2 provides a detailed description of the
proposed modifications, including the mathematical
formulation of chaotic initialization and adaptive
weighting.

Section 3 presents the experimental setup, including
the benchmark functions and engineering design
problems used to evaluate the performance of IGEO.

Section 4 discusses the results and compares IGEO
with existing GEO variants[48], [49], while Section 5
concludes with future research directions.
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2. THE PROPOSED IMPROVED GOLDEN
EAGLE OPTIMIZER (IGEO)

The original Golden Eagle Optimizer (GEO) offers a

robust framework for solving complex optimization

problems but suffers from limitations such as

premature convergence and inadequate population

diversity during initialization. To address these issues,

an Improved Golden Eagle Optimizer (IGEO) is

proposed. IGEO introduces two significant

enhancements:

1. Chaotic Initialization using Logistic Map

2. Adaptive Weighting Mechanism

These modifications collectively improve GEO's
performance on multimodal, nonlinear optimization
tasks, such as power system coherency identification
by promoting global search efficiency and avoiding
stagnation in local optima[48].

2.1. Chaotic Initialization Using Logistic Map
Population diversity at initialization significantly
affects the global search ability of any metaheuristic
algorithm. IGEO employs a chaotic initialization
scheme using the Logistic Map, a well-known chaotic
system, to generate initial solutions that are both
diverse and widely distributed in the search space.
The Logistic Map is defined as shown in Eq. (1)

"{_r!'!‘l :r'x!!' (1_1-;:)' (1)
Where:
» x, ,is the state of the chaotic map at iteration n.

» X, 1S the next value in the sequence

» ris a parameter, commonly set to 4 to achieve
fully chaotic behaviour.

At, r =4, the system exhibits high sensitivity to initial
conditions, producing pseudo-random sequences that
uniformly explore the range [0, 1].

2.1.1. Advantages of Chaotic Initialization

1. Enhanced Population Diversity:  Chaotic
initialization generates highly diversified initial
solution sets due to its sensitive dependence on
initial conditions, effectively expanding the initial
search coverage and improving exploration
capabilities.

2. Improved Global Search Performance: A
diversified initial population reduces the risk of
early entrapment in local optima, enabling the
algorithm to explore complex optimization
landscapes  more  effectively, especially
multimodal, and nonlinear functions [48].

2.2. IGEO Movement and Iterative Search
The IGEO algorithm improves the population over T
iterations through two main phases:

2.2.1Cruise Phase (Exploration)
Eagles explore the search space in a spiral flight
pattern, the position update equation for the i**eagle
at iteration ¢ is:
et e L £y L+ _ @
Vo LS E IFECLTAT l_t."l EY
a.sin(ot). ( x
Where:
X is the current global best solution, o = 0.5 and © =
0.1 are tunable constants controlling exploration.
The sinusoidal term sin(wt), creates a spiral
trajectory, promoting diversity and escape from local
optima.

2.2.2. Attack Phase (Exploitation)
The attack phase refines solutions by moving toward
the global best with stochastic perturbation.

The position update equation for the {*"eagle at
iteration 7 is:

Cruise vector (C) = x;‘ )= x;“ by
= 3)
a.sin(ot). (X4 - %;7)

Where:
» p: Scaling factor for deterministic exploitation

(0.2-1.0)
» v: Noise level for random search in

neighbourhood (0.01-0.1)
» randn (): Gaussian noise (mean =0, std = 1)

il

The first term S.ﬁ;ﬂ ensures that the eagle

moves toward the global best solution in a
directionally normalized manner. This mimics the
real eagle’s high-speed descent.

This is critical for escaping shallow local minima and
exploring small variations in hyperparameters that
may result in higher validation accuracy.

2.2.3. Adaptive Inertia Weight Control

A smooth transition between exploration and
exploitation is vital for effective optimization. IGEO
incorporates a time-varying inertia weight
w(t),which dynamically modulates the search
intensity as iterations progress:

W(t) = Winas — (

Where:
> Wmax = 0.9, emphasizes exploration at t = 0,

—_— r -
Wma:'c' Hmm

- ).t @

»  Wpin = 0.4, emphasizes exploitation near t = T,
» t is the current iteration; T is the maximum
iterations

This linear decay encourages broad exploration early
and intensification later
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2.24. Adaptive Weighting for Exploration—
Exploitation Balance

To further enhance flexibility, IGEO introduces

adaptive weighting coefficients & and /3, which

evolve over time to tune the relative influence of

exploration (Cruise) and exploitation (Attack)

vectors.

)
Where:

» p(t) = 1 — w(t), emphasizing exploitation later.

This mechanism allows IGEO to gradually shift from
global to local search strategies, mimicking intelligent
foraging behaviour and improving convergence
robustness.

2.2.5. Convergence Criteria

The best solution of each generation is retained
(elitism). If a candidate outperforms the global best, it
replaces it. The process terminates when the
maximum number of iterations is reached

» a(t) = w(t), emphasizing exploration early,
2.2.6. IGEO Algorithm Pseudocode
The pseudocode describing IGEO’s implementation is summarized as follows:

Step  Description
1 Initialize parameters:

- Population size N, maximum iterations T=1000

- Logistic map control parameter r=4 (Eq.1)

- Step control constants: 0=0.5, =0.5, y =0.05, 0=0.1

- Adaptive weight bounds: w,,,,,=0.9, w,,;,=0.4 (Eq. 4)
2 Generate initial population using chaotic Logistic Map (Eq.1)
3 Evaluate fitness for each initial solution
4 Initialize memory for each eagle and identify global best
5 For each iteration t=1to T:

» Compute adaptive inertia weight w(t) (Eq. 4)

For each eagle i:

* Select a random prey from memory

» Compute Attack Vector (Eq.3)

* If Attack Vector #0:

- Compute Cruise Vector (Eq.2)

- Compute Step Vector using adaptive weights (Eq.5)

- Update eagle position

- Evaluate new fitness

- If improved, update memory

» Update global best if improved
6 Terminate if stopping criterion met (max iterations)
7 Return the best solution found

A sensitivity analysis of the chosen parameters (e.g., a=0.5, ®=0.1, y=0.05, w};;4,=0.9, wy;;,=0.4), was

conducted by varying each parameter +20% and evaluating performance on selected benchmarks (e.g., Sphere
and Rastrigin). Results showed that the selected values provide a good balance, with deviations leading to either
slower convergence (higher ) or reduced diversity (lower y). These parameters were tuned empirically based on
preliminary experiments.

For fair comparison, two other GEO variants were implemented:
1. IGEO2: Uses the Arnold Cat Map for chaotic initialization and exponential adaptive weighting.
2. IGEO3: Employs standard Logistic chaotic initialization but with time-varying flight length.
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Figure 1:flowchart of the Improved Golden Eagle Optimizer (IGEO)

Figurel presents the flowchart of the Improved Golden Eagle Optimizer (IGEO). The algorithm begins by
initializing key parameters and generating a diverse initial population using the Logistic Map, ensuring broad
search space coverage. Each eagle (solution agent) then computes its movement through a combination of an
Attack Vector for exploitation and a Cruise Vector for exploration, both influenced by time-varying adaptive
weights. The position of each eagle is updated iteratively based on these vectors, and their fitness is evaluated to
determine whether the new position should replace the existing one in memory.

An adaptive inertia weight further refines the exploration—exploitation balance as iterations progress. The
process continues until a predefined stopping criterion, such as a maximum number of iterations or convergence
threshold, is met. The algorithm ultimately outputs the best solution found, demonstrating a robust and dynamic
optimization strategy suitable for complex and high-dimensional problems.

3. EXPERIMENTAL SETUP

IGEOQ was tested on unimodal and multimodal benchmark functions and engineering design problems, compared
against GEO, IGEO2 (using Arnold Chaotic Map and nonlinear weighting) [48], and IGEO3 (using time-varying
flight length) [49]. All experiments were conducted on an Intel® Core™ i7-7500U CPU @ 2.70 GHz (2.90
GHz) with 12GB RAM. Performance metrics included Mean Absolute Error (MAE) and Standard Deviation
(SD), defined as:

1

Where S is the number of independent runs (here, 50), X,; is the known global optimum value of the benchmark
function and X, is the best solution obtained in the i-¢4 run.

Sp — ﬁ}_](XiS—#} 7

 1s the mean of all best solutions from the S runs.

@ IJTSRD | Unique Paper ID — IJTSRD97405 | Volume-9 | Issue—6 | Nov-Dec 2025 Page 126



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

3.1. Unimodal Functions

Unimodal benchmark functions, which have only one optimum, are used to assess the exploitation capability of
optimization algorithms. Table 1 lists the seven fixed-dimension and scalable unimodal benchmark functions
(F1 to F7) used in this work.

Table 1: Unimodal benchmark functions[1]

Function . Optimal
Function D Bounds P
Name Value
>
Beale fj_(X) = (15 - Xy — Xj_XQ)Z + (225 — X + xing)z + (2.625 — Xy +x1x32)2 - [-4_5, 4_5] 0
Matyas Elx)=026(x;° +x4;) —048xx; [-10, 10] 0
Three-hump fa() = 22,2 — 1050,  + 2 + xqx; + 22, Z| [-5,5] 0
camel T - ) [
Expon-ential f.x) = —el 705 Zizax) 30 [-1, 1] 0
£ T Y
. v i
Flyl—= v L2 Yy + 2]
PR Al =L S
Vo, 30
Ridge 2 [-5, 5] -5
- N STy L L
x+a)-= > | lxvg"™™
: ’ Lo\
n—u T
OV Nees
Sphere folx) = ) B 30| [-100, 0
= 100]
ooy N7 s ~nl [-5.12
St -(x) = 2 (ix; — 0.5])° 30 ’ 0
P 7 £ 5.12]

3.2. Multimodal Functions
Multimodal benchmark functions contain many local optima that can trap algorithms, making them suitable for
testing exploration capabilities. Table 2 presents the 16 fixed-dimension and scalable

multimodal benchmark functions on which GEO was tested (F8 to F23).
Table 2:Multimodal benchmark functions[1]

function Function D Bounds Gkl
Name Value
Drop . 1+ t:-::s(lzﬂhr‘;\cl2 + 3:22) ) [-5.2, |
) = — -
wave fB (x' U.S(xlz +X22) + 2 52]
[- _
Egg V= (. — A7)si X1 —x.si S
holdar falx) = —(x3 4-7)sm( |x2 + > —1-4'?‘) xlsm( %, — %2 4—7|) 2 512i512 959&640
Hﬁ;‘le' fio() = (g2 + x5, — 112 4 (¢, + 2,2 — 7)2 2| [5.5] 0
Ti—1 10
Levi 13 | f.1(x) = sin?(mw,) —Z (w, — 1)?[1 + 10sin? (mw; + 1)] + (w,, — 1)?[1 + sin? (2mw, )] | 2 [10]’ 0
i=1
T :
-02 |=FR Zi) Lon _ [-32,
Ackley 1 flz(x) _ ZUE‘( an =1 _ e(nzizlcos@ﬁx‘}) +204e 30 32] 0
T ™
1 X;
. _ 2 _ - ['600,
Griewank | f13(x) = 1 +—4DOGZ X% HCOS (\,E) 30 600] 0
. 11, . N 1
Happy cat | f14 = 3/ (lx[[? —n)? + E”X” +Zﬁ’-f +3 301 [-2,2] 0
1=1
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; s. Ty on BF
icha- . ~ o fix A\
Mlcha fis(x) — — ) sin(x;)| sin{ — | 10| [0, =] | -9.6602
lewicz — N T )
=4
Fo0) = Zl10sin2 (ry) + > (O — D21 + 10sin2 Gy 1)) + (o — D2+ > wlx, 1010
L = ) i =
1
Penalized |v; — 1 +—=(x; + 1) e
L g Ty 30| [-5.5] 0
[ Y SR} R
| A i f Af o e
1 ~ | B R
LA, R, TTL) = & u € = A;j =04
I,
lkel—x; —a)"x; < a
n—1
. firlx)— 0.1 [sinz (3mx,) + Z ((_xI — 1)?(1 + 10sin? (J’L\'Hl))j + (tp — 1D2(1 + sin? (2mx,
Penalized =1 e
) 1 30| [-5,59] 0
+ Z u(x;,5,1004)
=1
. N o2 o
Periodic |fis(x) =11 } sin®(x;) 0 lelFimaxtel 30|[-10,10]| 0.9
__i=1
. e “\_‘ - > - P e
Qing |fislx) = ) (x;*—1)° 30 [-5,5] 0
£
i=1
n
h |
. . an. L N . .1 an| [-5.12,
Rastrigin | fao(x) = 10n+ > (x%; — 10 cos(2mx;)) 30 [ 0
L 5.12]
1
i
i} A e _
Rosen- | )= ) [100Cer; 2% 1 (& 1) 30| 551 | 0
brock Y& ’
=1
S \ |
[ n \ | n
1 v \ I
Salomon |f,,(x)=1—cos{ 2r | ) %2 |+01]) x;2 30| [-5.5] 0
\ [ Lt | [ Aot
\ di—-1 ! Li—1
A \] !

3.3. Engineering benchmark tests

IGEO was applied to constrained engineering problems (pressure vessel, three-bar truss, spring, gear train,
cantilever beam, welded beam) details of these problems are in [1] using a penalty function approach, defined as
in Eq. (8) [1]

F(x,mi'r?j] = f(x) 1 ZM ., m; @? +E?’=._1;'}- w} (8)

f(x) is the original objective function,
M is the number of inequality constraints,
m; 1s the penalty factor for inequality constraints,

N is the number of equality constraints,

>
>
>
» ¢, is the amount of constraint violation for the i-th inequality constraint,
>
» vy is the penalty factor for equality constraints, and

>

w; is the amount of constraint violation for the j-th equality constraint.

The advantage of using the penalty function is that it transforms the constrained problem into an unconstrained
problem. Important notice for implementing penalty function is to assign suitable values for penalty factors (im;

=y = 10%)
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4. RESULTS AND ANALYSIS

4.1. Unimodal Functions

4.1.1. Optimum Values

Table 3 below presents the optimum values achieved by the algorithms on the unimodal functions. These simpler
functions require efficient exploitation of the search space, and IGEO stands out by obtaining the benchmark
optimum value in 5 of 7 functions (F1, F2, F3, F4, and F6), while GEO and IGEO3 achieve this in 2 (F1 and F4)
and IGEO2 in 1 (F4). In functions F5 and F7, where the optimum values were not reached, IGEO ranked 1st and
3rd, respectively. These results demonstrate [IGEO’s precise convergence and fine-tuning capability, establishing
it as the most efficient algorithm in this context.

Table 3:Optimum Values Obtained for Unimodal Functions
Function Algorithm Optimum Value

GEO 0
Fl IGEO2 5.3441E-06
IGEO3 0
IGEO 0
GEO 4.61818E-98
o IGEO2 1.08886E-98
IGEO3 4.6247E-101
IGEO 0
GEO 6.7931E-131
o IGEO2 2.4209E-130
IGEO3 5.7377E-130
IGEO 0
GEO -1
IGEO2 -1
r IGEO3 -1
IGEO -1
GEO -4.92339204
F5 IGEO2 -3.278390849
IGEO3 -4.919310984
IGEO -4.933902564
GEO 4.10405E-13
F6 IGEO2 2.52648E-13
IGEO3 4.03501E-13
IGEO 0
GEO 2.33735E-15
F7 IGEO2 1.455507459
IGEO3 1.57437E-15
IGEO 3.59568E-15

4.1.2. Statistical Performance Comparison

To ensure the robustness of IGEO’s performance, we conducted a statistical analysis of its results on benchmark
functions. Specifically, we computed the Mean Absolute Error (MAE) and Standard Deviation (SD) for each
algorithm across 50 independent runs. These metrics were used to assess both the precision and consistency of
the algorithms.

The MAE and SD values for the unimodal functions reflect the algorithms' precision and reliability in
converging to optimal solutions. Table 4 shows that IGEO excels with SD values of zero for 4 out of 7 functions
(F2,F3, F4, and F6), alongside the lowest MAEs, indicating excellent accuracy and consistency. IGEO achieves
the lowest MAE and SD in 5 out of 6 functions (F2, F3, F4, F5, and F6), maintaining near-zero errors with
minimal variation. While other algorithms like GEO and IGEO3 perform well in certain cases, IGEO’s ability to
sustain both precision and stability across multiple runs underscores its superiority. This solidifies IGEO as the
most reliable and accurate algorithm for unimodal optimization tasks.
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Table 4:MAE and SD values for the unimodal functions

Function Algorithm | MAE SD
GEO 9.60087E-28 | 6.78884E-27
- IGEO2 0.000627817 | 0.00062832
IGEO3 1.2326E-33 | 8.71576E-33
IGEO 1.2326E-33 | 8.71576E-33
GEO 5.63822E-93 | 2.95774E-92
- IGEO2 2.24343E-93 | 9.76592E-93
IGEO3 4.76337E-93 | 2.94013E-92
IGEO 1.6763E-180 | 0
GEO 1.5274E-125 | 5.4936E-125
- IGEO2 2.5283E-125 | 1.3015E-124
IGEO3 1.7222E-125 | 6.3658E-125
IGEO 7.1773E-215 | 0
GEO 5.32907E-17 | 5.0355E-16
- IGEO2 1.24345E-16 | 5.83393E-16
IGEO3 1 4.04049E-16
IGEO 0 0
GEO 0.096561895 | 0.010899756
Es IGEO2 2.131302059 | 0.130352507
IGEO3 0.098107922 | 0.009513997
IGEO 0.095426222 | 0.009963581
GEO 7.87165E-12 | 1.02167E-11
F6 IGEO2 8.77733E-12 | 6.74692E-12
IGEO3 5.16938E-12 | 3.34811E-12
IGEO 6.3178E-167 | 0
GEO 2.09272E-14 | 1.61059E-14
- IGEO2 1.974710322 | 0.338171851
IGEO3 3.35207E-14 | 6.49153E-14
IGEO 2.38091E-14 | 1.97085E-14

4.1.3. Convergence Analysis

The convergence analysis of the unimodal functions demonstrates the efficiency of each algorithm in reaching
optimal solutions. Unimodal functions are simpler, focusing on exploitation over exploration, making rapid
convergence essential. Table 5 below shows convergence analysis results for the various algorithms on the
unimodal functions. IGEO significantly outperforms the other algorithms with the lowest average iteration count
of 787, indicating it is the most efficient in finding solutions quickly. This trend is consistent across individual
functions, with IGEO showing remarkable convergence in functions such as F4, where it converged in just 20
iterations, far ahead of the others. The rapid convergence of IGEO highlights its ability to exploit the search
space effectively, minimizing the number of iterations needed to achieve the optimum.

In terms of average ranking, IGEO also ranks first, with a score of 1.3 in achieving optimal values across the
functions. This is a clear indication of the algorithm's precision and stability. While GEO, IGEO2, and IGEO3
show comparable performances, with iteration counts close to IGEO in some cases, they are less consistent
across all functions. For example, GEO and IGEO3 take significantly longer to converge for functions like F5
and F6. The analysis confirms that IGEO not only achieves fast convergence but also maintains high precision,
making it the best-performing algorithm for unimodal functions.

Table 5: convergence analysis of the unimodal functions
Iteration number of convergence

unction GEO IGEO2 IGEO3 IGEO
Fl 972 | 818 893 | 548
F2 1000 | 992 | 998 | 963
F3 1000 | 1000 | 998 | 993
F4 367 | 356 | 366 | 20
F5 999 | 679 | 994 | 997
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F6 998 997 996 987
F7 997 992 999 998
Average 905 833 892 787
Iteration Rank 4 2 3 1
Average Optimum Value Rank | 2.3 3 2.1 1.3

Figure 8 below display the convergence curves of various algorithms on unimodal functions. The algorithm with
the best convergence can be identified by the lowest curve, which indicates faster or more effective convergence.
As illustrated below, IGEO has the best convergence rate in 5 (1, 3, 4, 6 and 7) out of 7 functions.

Comeyeacs Corvey e 1 it Carves be )
. L taery _ -
— g | — . [ A L
— i ] e | e —d
A | " I
| S
L —_ | e —
— ~
& A Ty ! 1
W “'L v ™
1 i ,
L ' d |
* Ll‘l w0
L [ =
| 3
L Ak .
T L1 L 4 : !
W O t P W T
"
e, o estery TRy pe— i ]
Comuence Curves hor Fd Comvargence Chrves for Stest P4 - Commrpsnce Curves fac i "
e —% i - - . ! i —_—
| —ED v ! ] T
—a| | I % &
— 4 — T
%’EE' |=——nify 1 = et
3 —ET . B
B o ' L} e
2 :
£ ¥ 5 R o £
el i § %
. = [
i .1 . -
| m v b0 b 103 am Alr L L L1 a i 1] a e T 16
Mumber ol keraiors Wt sl herssons N Sicain
Comvergence Curves for FT
. e
1 e — ey 1
= I GED |
3 — |
> =
g : i _L'ﬂ
L oypt .L"\ ]
"'\-\_
o= 1"|_;
xa 400 004 eoe 1000

it of |@rations

Figure 2:convergence curves of various algorithms on unimodal functions(F1-F7)

4.2. Multimodal Functions

4.2.1. Optimum Values

Multimodal functions test how well algorithms can explore the search space and escape from local optima.
These functions require a strong balance between exploration and exploitation, making them ideal for evaluating
performance in complex environments. Table 6 below shows the optimum values obtained by the various
algorithms for the 16 multimodal functions. IGEO shows very good results by matching the benchmark optimum
values in five cases (F8, F9, F10, F15, and F18), compared to GEO and IGEO3’s three (F8, F9, and F10) and
IGEQO2’s three (F8, F9, and F20). This highlights IGEO’s superior ability to reach benchmark optima. In the
remaining functions where IGEO did not meet the benchmarks, it still achieved the best optimum values in 8 out
of 11 cases (F11, F12, F13, F14, F16, F17, F19, and F21). This demonstrates IGEO’s better exploration-
exploitation balance compared to the other algorithms.
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Table 6:Optimum Values Obtained for multimodal Functions
Function Algorithm Optimum Value

GEO -1
8 IGEO2 -1
IGEO3 -1
IGEO -1
GEO -959.6406627
9 IGEO2 -959.6406601
IGEO3 -959.6406627
IGEO -959.6406627
GEO 0
F10 IGEO2 0.000232326
IGEO3 0
IGEO 0
GEO 1.34978E-31
IGEO2 2.09112E-05
kil IGEO3 1.34978E-31
IGEO 1.34978E-31
GEO 2.84037E-07
F12 IGEO2 8.88178E-16
IGEO3 1.75983E-07
IGEO 1.0011E-21
GEO 6.83618E-08
FI3 IGEO2 12.89023698
IGEO3 2.00415E-07
IGEO 5.80488E-23
GEO 0.13524447
Fl4 IGEO2 0.478645266
IGEO3 0.128886198
IGEO 5.129E-25
GEO -9.620304477
F1S IGEO2 -5.492348285
IGEO3 -9.660150362
IGEO -9.660151555
GEO 1.9301E-10
Fl6 IGEO2 0.064311307
IGEO3 1.68277E-10
IGEO 4.04655E-23
GEO 8.10487E-10
F17 IGEO2 0.993390238
IGEO3 3.97505E-10
IGEO 8.0033E-23
GEO 1.676578736
F18 IGEO2 1.362239031
IGEO3 1.578476055
IGEO 0.9
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GEO 0.00671503
F19 IGEO2 1302.165703
IGEO3 0.001956392
IGEO 2.86582E-22
GEO 4.974795286
IGEO2 0
F20 IGEO3 2.984877172
IGEO 4.36443E-25
GEO 0.017809207
1 IGEO2 28.61740844
IGEO3 0.016129503
IGEO 4.56239E-22
GEO 0.299873346
22 IGEO2 2.18429E-69
IGEO3 0.299873346
IGEO 1.47632E-23
GEO 5.71112E-23
3 IGEO2 3.05136E-23
IGEO3 1.53E-22
IGEO 5.98749E-76

4.2.2. Statistical Performance Comparison

To ensure the robustness of IGEO’s performance, we conducted a statistical analysis of its results on benchmark
functions. Specifically, we computed the Mean Absolute Error (MAE) and Standard Deviation (SD) for each
algorithm across 50 independent runs. These metrics were used to assess both the precision and consistency of
the algorithms.

We also performed a t-test for pairwise comparisons between IGEO and the other algorithms (GEO, IGEO2, and
IGEQO3). The null hypothesis of the t-test assumes that there is no significant difference between the algorithms'
performances. The p-values obtained from the t-test indicate that IGEO significantly outperforms the other
algorithms at the 0.05 significance level in terms of both solution quality and convergence rate.

IGEO outperforms GEO, IGEO2, and IGEO3 by achieving the lowest MAE and SD in 9 out of 16 functions
(F11,F12,F13, F14,F15, F16,F17, F18, F19, F21, and F22), with near-zero values, demonstrating its superior
ability to balance exploration and exploitation. While other algorithms showed strong performance in specific
cases (e.g., F23), IGEO’s combination of low error and minimal variation makes it the most reliable algorithm
for multimodal optimization.

Table 7:MAE and SD values for the multimodal functions

Function Algorithm \ MAE SD
GEO 0 0

8 IGEO2 0 0
IGEO3 0 0
IGEO 0 0
GEO 0.054485901 | 0.385009898

F9 IGEO2 0.017965698 | 0.033995142
IGEO3 0.054485901 | 0.385009898
IGEO 0.054485901 | 0.385009898
GEO 0 0

F10 IGEO2 0.006770558 | 0.00567744
IGEO3 0 0
IGEO 0 0
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GEO 1.34978E-31 | 1.76941E-46
Fl1 IGEO2 0.000663109 | 0.000633253
IGEO3 1.34978E-31 | 1.76941E-46
IGEO 1.34978E-31 | 1.76941E-46
GEO 0.428143855 | 0.693543549
F12 IGEO2 8.88178E-16 | 0
IGEO3 0.247397371 | 0.550833514
IGEO 3.01949E-17 | 8.93013E-17
GEO 0.005322103 | 0.00700659
F13 IGEO2 20.68672009 | 2.947939448
IGEO3 0.006697596 | 0.007981138
IGEO 6.48677E-17 | 2.59892E-16
GEO 0.232306383 | 0.051201237
Fl4 IGEO2 0.773226297 | 0.082860197
IGEO3 0.235392751 | 0.04020456
IGEO 9.5568E-17 | 4.25822E-16
GEO 0.321500768 | 0.335235475
F15 IGEO2 5.094326638 | 0.329260655
IGEO3 0.346827559 | 0.362958685
IGEO 0.334991734 | 0.366361279
GEO 0.022879206 | 0.052709581
Fl6 IGEO2 0.168089575 | 0.044049026
IGEO3 0.025415259 | 0.067977683
IGEO 8.71224E-17 | 3.19446E-16
GEO 0.00479641 | 0.006238012
F17 IGEO2 2.106678528 | 0.705201862
IGEO3 0.006770977 | 0.009311294
IGEO 7.71964E-17 | 2.89631E-16
GEO 1.775308046 | 0.293009822
FI8 IGEO2 1.784616858 | 0.317471991
IGEO3 1.660874206 | 0.388057901
IGEO 0.003061073 | 0.021645053
GEO 0.741635527 | 2.422538021
F19 IGEO2 1950.596367 | 257.4945329
IGEO3 0.659480508 | 1.736548078
IGEO 6.49848E-17 | 1.49085E-16
GEO 11.36243048 | 3.291259932
F20 IGEO2 0 0
IGEO3 10.76545528 | 3.531693899
IGEO 1.51685E-17 | 3.17022E-17
GEO 3.889391488 | 13.234491
M1 IGEO2 28.73700461 | 0.032541608
IGEO3 7.894926535 | 21.36538155
IGEO 5.1121E-17 | 2.45667E-16
GEO 0.399873351 | 0.069985421
F2 IGEO2 0.024957095 | 0.024951636
IGEO3 0.394629207 | 0.070348211
IGEO 8.7192E-17 | 2.86525E-16
GEO 4.61812E-21 | 7.21541E-21
F23 IGEO2 4.40004E-21 | 5.73252E-21
IGEO3 9.5719E-21 | 1.58453E-20
IGEO 0.021213824 | 0.025584865
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4.2.3. Convergence Analysis

For the multimodal functions, the convergence analysis reflects each algorithm's ability to balance exploration
and exploitation in complex search spaces. Table 8 shows that IGEO achieves a competitive average iteration
count of 780, ranking 3rd overall. While not the fastest in every function, IGEO shines in challenging cases,
such as F8, where it converged in just 32 iterations, outperforming all other algorithms. This demonstrates
IGEQ's ability to efficiently adapt to complex landscapes and identify optimal solutions without unnecessary
exploration. In functions like F9 and F18, IGEO also shows strong convergence, surpassing several other
algorithms, highlighting its effective handling of the exploration-exploitation trade-off.

Despite ranking 3rd in terms of average iterations, IGEO leads with an average optimum value rank of 1.3,
consistently reaching the best or near-optimal solutions. While algorithms like IGEO2 and GEO achieve faster
convergence in certain functions (e.g., F12 and F20), their performance is more variable, often resulting in
suboptimal solutions. IGEO's balanced performance in both convergence speed and precision makes it the most
reliable and effective algorithm for multimodal optimization.

Table 8:convergence analysis of the multimodal functions
Iteration number of convergence

GEO IGEO2 IGEO3 IGEO

Function

F8 259 221 251 32
F9 462 830 289 250
F10 418 814 387 384
F11 529 418 533 525
F12 996 132 792 995
F13 998 992 997 951
F14 579 748 758 887
F15 985 951 950 779
F16 994 839 997 921
F17 997 999 1000 999
F18 858 88 981 951
F19 1000 610 1000 882
F20 774 77 834 925
F21 999 958 999 1000
F22 704 938 428 992
F23 999 990 1000 999
Average 784 663 762 780
Iteration Rank 4 1 2 3
Average Optimum Value Rank | 2.7 2.9 1.9 1.3

Figure 9 below illustrates the convergence curves of the various algorithms on multimodal functions. The
algorithm with the best convergence can be identified by the lowest curve, which indicates faster or more
effective convergence. As can be seen, IGEO has the best convergence rate in 13 (Functions 8,9, 11, 13, 14, 15,
16, 17, 18, 19, 21, 22 and 23) out of 16 functions.
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Figure 3:convergence curves of various algorithms on multimodal functions(F8-F23)

4.3. Engineering Design Problems
4.3.1. Pressure Vessel Design

The objective of this problem is to minimize the cost of constructing a pressure vessel. Table 9 shows the best
results amongst 50 runs for the respective algorithms. IGEO achieves the best result with an objective function
value of 6100.507839, indicating it outperforms the other algorithms in finding the most cost-effective solution.
Compared to the other algorithms, GEO, IGEO2, and IGEO3[49] show competitive performance but fall slightly
short in terms of cost optimization.
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Table 9:Results amongst 50 runs for the respective algorithms
GEO \ IGEO2 IGEO3 IGEO

x|
Ts

0.980658497

1.347728923

0.898567555

0.888502773

Th

0.481927649

0.688039125

0.442274375

0.437430096

R

50.67667968

60.09702045

46.54995801

46.00068679

L

93.08134297

41.29465736

128.3718536

133.6588891

F(x)

6184.771069

8903.392411

6119.954255

6100.507839

4.3.2. Three Bar Truss Problem

The aim here is to minimize the weight of the three-bar truss while meeting structural constraints. Table 10
shows the best results amongst 50 runs for the respective algorithms. IGEO performs achieves the minimal
objective function value of 263.8958439, outperforming all other algorithms by a slight margin. The small
difference in results showcases IGEO’s fine-tuning capabilities.

Table 10:Results amongst 50 runs for the respective algorithms
GEO IGEO2 IGEO3 IGEO

H]

i

0.788669845

0.791039065

0.78853496

0.788666694

X2

0.408263257

0.401658347

0.408644942

0.408272179

263.9054694

263.8958611

263.8958439

f(x) | 263.895845

4.3.3. Spring Design Problem

The aim of this problem is to minimize the weight of the spring while ensuring it meets functional constraints.
IGEO achieves the best result with an objective function value of 0.012669502, surpassing the other algorithms.
IGEO once again showcases its strength in handling complex design optimization challenges.

Table 11:Results amongst 50 runs for the respective algorithms
GEO IGEO2 IGEO3 IGEO

0.053018402

0.05

0.052352277

0.052114351

d
D

0.389543267

0.314539858

0.372869647

0.367028565

N

9.596727343

15

10.40247361

10.70998414

£(x)

0.012698266

0.013367944

0.012674665

0.012669502

4.3.4. Gear Train Design Problem

The goal of this problem is to minimize the error in gear ratios. GEO achieves the best result with a near-zero
objective function value of 6.29762E-18, while IGEO follows closely with 1.94393E-16, demonstrating
comparable accuracy. Although IGEO does not achieve the absolute best result, it still shows reliable
convergence by maintaining minimal error.

Table 12:Results amongst 50 runs for the respective algorithms
GEO IGEO2 IGEO3 IGEO

A

24.38876096

12

19.43055878

13.13023881

B

15.27471849

12

17.20985108

22.47369294

C

50.25203289

34.24560129

46.68251409

39.40222398

D

51.38131419

29.14435755

49.64826859

51.90655301

£(x)

6.29762E-18

8.7706E-14

2.06535E-16

1.94393E-16

4.3.5. Cantilever Beam Design Problem

The objective of this problem is to minimize the weight of the beam while meeting strength requirements. IGEO
achieves the best objective function value of 1.339956411 as can be observed from table 13 below,
demonstrating precision and optimization efficiency. While the results from GEO, IGEO2, and IGEO3 are close,
IGEQ's ability to provide the best overall solution highlights its superior performance.

Table 13:Results amongst 50 runs for the respective algorithms

GEO IGEO2 IGEO3 IGEO
hi | 6.01451248 | 5.830979524 | 6.016996543 | 6.016943269
h: | 531062118 | 5.063267654 | 5.307416791 | 5.308958407
hs | 4.493687635 | 4.811119394 | 4.495019804 | 4.494099593
hs | 3.50140461 | 3.41286681 | 3.50162712 | 3.501213061
hs | 2.153436723 | 2.551123644 | 2.152603277 | 2.152446101
fi(x) | 1.339956548 | 1.352167878 | 1.339956605 | 1.339956411
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4.3.6. Welded Beam Design Problem
The objective here is to minimize the cost while ensuring the welded beam’s structural integrity. IGEO achieves
the best result with an objective function value of 1.49577057, once again outperforming all other algorithms.
The results from the other algorithms are close but fall short in providing the same level of precision, further
confirming IGEQ’s superior optimization ability.

Table 14:Results amongst 50 runs for the respective algorithms

h ]0.185234631 | 0.243360676 | 0.16779759 | 0.143167998
1 | 2.466442986 | 2.535560855 | 2.839263377 | 4.224980553
t |9.611446898 | 8.305628145 | 9.179967253 | 6.751441163
b ]0.186197804 | 0.250848045 | 0.199895069 | 0.368709617
f(x) | 1.511234999 | 1.823328376 | 1.574938137 | 1.49577057

5. CONCLUSION

This paper introduced the Improved Golden Eagle
Optimizer (IGEO), enhanced with chaotic
initialization and adaptive weighting to address
premature convergence and weak population
diversity. The results demonstrate that IGEO
consistently outperforms GEO and its variants. On
unimodal benchmarks, it reached the global optimum
in 71% of cases and recorded the lowest MAE and
SD in over 80%, converging more efficiently at an
average of 787 iterations. For multimodal problems,
IGEO achieved benchmark or best solutions in more
than 80% of functions and exhibited the fastest
convergence in 81% of cases. In engineering design
tests, it produced the most cost-effective or
lightweight solutions in five of six problems,
including a 1.4% cost reduction in pressure vessel
design. These findings confirm IGEQO’s robustness,
accuracy, and convergence efficiency, establishing it
as a reliable tool for complex optimization. Future
studies should extend its application to large-scale
and noisy environments through hybridization with
other metaheuristics.

REFERENCES

[1] A.Mohammadi-Balani, M. Dehghan Nayeri, A.
Azar, and M. Taghizadeh-Yazdi, “Golden eagle
optimizer: A nature-inspired metaheuristic
algorithm,” Comput Ind Eng, vol. 152, Feb.
2021, doi:10.1016/j.cie.2020.107050.

[2] D.D.Ramirez-Ochoa, L. A. Pérez-Dominguez,
E. A. Martinez-Gomez, and D. Luviano-Cruz,
“PSO, a Swarm Intelligence-Based
Evolutionary Algorithm as a Decision-Making
Strategy: A Review,” Mar. 01, 2022, MDPI.
doi:10.3390/sym14030455.

[3] S. D. Immanuel and C. Udit Kr., “Genetic
Algorithm : An Approach on Optimization,” in
Proceedings of the Fourth International

Conference on Communication and Electronics
Systems (ICCES 2019) IEEE Conference

[4]

[5]

[6]

[71

(8]

(9]

[10]

Record # 45898, Coimbatore, India: [IEEE],
Jul. 2019, pp. 701-708.

T. Eltaecib and A. Mahmood, ‘“Differential
evolution: A survey and analysis,” Applied
Sciences (Switzerland), vol. 8, no. 10, Oct.
2018, doi:10.3390/app8101945.

W. Deng, J. Xu, H. Zhao, and Y. Song, “A
Novel Gate Resource Allocation Method Using
Improved PSO-Based QEA” IEEE
Transactions on Intelligent Transportation
Systems, vol. 23, no. 3, pp. 1737-1745, Mar.
2022, doi:10.1109/TITS.2020.3025796.

W. Elloumi, H. El Abed, A. Abraham, and A.
M. Alimi, “A comparative study of the
improvement of performance using a PSO
modified by ACO applied to TSP,” Appl Soft
Comput, vol. 25, pp. 234-241, 2014,
doi:10.1016/j.as0c.2014.09.031.

S. Han and L. Xiao, “An improved adaptive
genetic algorithm,” SHS Web of Conferences,
vol. 140, p- 01044, 2022,
doi:10.1051/shsconf/202214001044.

A. Yahya Zebari, S. M. Almufti, and C.
Mohammed Abdulrahman, “International
Journal of Scientific World Bat algorithm
(BA): review, applications and modifications,”
2020. [Online]. Available:
www.sciencepubco.com/index.php/IJSW

S.U. Umar, T. A. Rashid, A. M. Ahmed, B. A.
Hassan, and M. R. Baker, “Modified Bat
Algorithm: a newly proposed approach for
solving complex and real-world problems,” Soft
comput, vol. 28, no. 13-14, pp. 79837998, Jul.
2024, doi:10.1007/s00500-024-09761-5.

E. Kaya, B. Gorkemli, B. Akay, and D.
Karaboga, “A review on the studies employing
artificial bee colony algorithm to solve
combinatorial optimization problems,” Oct. 01,

@ IJTSRD | Unique Paper ID — IJTSRD97405 | Volume-9 | Issue—6 | Nov-Dec 2025

Page 138



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

2022, Elsevier
doi:10.1016/j.engappai.2022.105311.

S. F. Hussain, A. Pervez, and M. Hussain, “Co-
clustering optimization using Artificial Bee
Colony (ABC) algorithm,” Appl Soft Comput,
vol. 97, Dec. 2020,
doi:10.1016/j.as0c.2020.106725.

D. Pelusi, R. Mascella, L. Tallini, J. Nayak, B.
Naik, and Y. Deng, “An Improved Moth-Flame
Optimization algorithm with hybrid search
phase ¥¢,” Knowl Based Syst, vol. 191, pp. 1-
14, 2020, doi:10.1016/j.knosys.

S.  Mirjalili, “Moth-flame optimization
algorithm: A novel nature-inspired heuristic
paradigm,” Knowl Based Syst, vol. 89, pp. 228—
249, Nov. 2015,
doi:10.1016/j.knosys.2015.07.006.

Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and
X. Zhang, “Enhanced Moth-flame optimizer
with mutation strategy for global optimization,”
InfSci (NY), vol. 492, pp. 181-203, Aug. 2019,
doi:10.1016/].ins.2019.04.022.

S. K. Sahoo et al., “Moth Flame Optimization:
Theory, Modifications, Hybridizations, and
Applications,” Archives of Computational
Methods in Engineering, vol. 30, no. 1, pp.
391426, Jan. 2023, doi:10.1007/s11831-022-
09801-z.

R.B.R. and G. Dr. Aloysius, “A New Adaptive
Mutation Technique for Genetic Algorithm,” in
2012 IEEE International Conference on
Computational Intelligence and Computing
Research, IEEE, 2013.

A. F. Gad, “PyGAD: an intuitive genetic
algorithm Python library,” Multimed Tools
Appl, vol. 83, no. 20, pp. 58029-58042, Jun.
2024, doi:10.1007/s11042-023-17167-y.

T. Li, G. Shao, W. Zuo, and S. Huang, “Genetic
algorithm for building optimization - State-of-
the-art survey,” in ACM International
Conference Proceeding Series, Association for
Computing Machinery, Feb. 2017, pp. 205-
210. doi:10.1145/3055635.3056591.

M. Jain, V. Saihjpal, N. Singh, and S. B. Singh,
“An Overview of Variants and Advancements
of PSO Algorithm,” Sep. 01, 2022, MDPI.
doi:10.3390/app12178392.

V. Veeraiah, H. Khan, A. Kumar, S. Ahamad,
A. Mahajan, and A. Gupta, “Integration of PSO
and Deep Learning for Trend Analysis of Meta-
Verse,” in 2022 2nd International Conference

Lid.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

on Advance Computing and Innovative
Technologies in Engineering, ICACITE 2022,
Institute of Electrical and Electronics Engineers
Inc., 2022, PP- 713-718.
doi:10.1109/ICACITES3722.2022.9823883.

Y. Song et al., “Dynamic hybrid mechanism-
based differential evolution algorithm and its
application,” Expert Syst Appl, vol. 213, Mar.
2023, doi:10.1016/j.eswa.2022.118834.

Z.Xu, S. Gao, H. Yang, and Z. Lei, “SCJADE:
Yet Another State-of-the-Art Differential
Evolution Algorithm,” Apr. 01, 2021, John
Wiley and Sons Inc. doi:10.1002/tee.23340.

Bilal, M. Pant, H. Zaheer, L. Garcia-
Hernandez, and A. Abraham, ‘“Differential
Evolution: A review of more than two decades
of research,” Eng Appl Artif Intell, vol. 90, Apr.
2020, doi:10.1016/j.engappai.2020.103479.

Z. Zhang, S. Ding, and W. Jia, “A hybrid
optimization algorithm based on cuckoo search
and differential evolution for solving
constrained engineering problems,” Eng Appl
Artif Intell, vol. 85, pp. 254-268, Oct. 2019,
doi:10.1016/j.engappai.2019.06.017.

M. Shehab, A. T. Khader, and M. A. Al-Betar,
“A survey on applications and variants of the
cuckoo search algorithm,” Dec. 01, 2017,
Elsevier Ltd. doi:10.1016/j.as0c.2017.02.034.

T. T. Nguyen, D. N. Vo, and A. V. Truong,
“Cuckoo search algorithm for short-term
hydrothermal scheduling,” Appl Energy, vol.
132, pp- 276-287, Nov. 2014,
doi:10.1016/j.apenergy.2014.07.017.

T. Kurokawa and N. Hayashibara, “Content
placement using Cuckoo search in Cloud-based
Content delivery networks,” Dec. 01, 2021,
Elsevier B.V. doi:10.1016/j.10t.2021.100430.

M. A. Awadallah et al., “Multi-objective Ant
Colony Optimization: Review,” 2024, Springer
Science  and  Business  Media  B.V.
doi:10.1007/s11831-024-10178-4.

F. S. Gharehchopogh and H. Gholizadeh, “A
comprehensive survey: Whale Optimization
Algorithm and its applications,” Swarm Evol
Comput, vol. 48, pp. 1-24, Aug. 2019,
do0i:10.1016/j.swevo.2019.03.004.

S. Chakraborty, A. Kumar Saha, S. Sharma, S.
Mirjalili, and R. Chakraborty, “A novel
enhanced whale optimization algorithm for
global optimization,” Comput Ind Eng, vol.
153, Mar. 2021, doi: 10.1016/j.cie.2020.107086.

@ IJTSRD | Unique Paper ID — IJTSRD97405 | Volume-9 | Issue—6 | Nov-Dec 2025

Page 139



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

S. Mirjalili and A. Lewis, “The Whale
Optimization  Algorithm,” Advances in
Engineering Software, vol. 95, pp. 51-67, May
2016, doi:10.1016/j.advengsoft.2016.01.008.

S. Mirjalili and A. Lewis, “The Whale
Optimization  Algorithm,” Advances in
Engineering Software, vol. 95, pp. 51-67, May
2016, doi:10.1016/j.advengsoft.2016.01.008.

H. Fahmi, M. Zarlis, E. B. Nababan, and P.
Sihombing, “Ant Colony Optimization (ACO)
Algorithm for Determining the Nearest Route
Search in Distribution of Light Food
Production,” in Journal of Physics: Conference
Series, Institute of Physics Publishing, Jul.
2020. doi:10.1088/1742-6596/1566/1/012045.

W. Yan, Y. Jia, H. Jinquan, L. Chen, and C.
Long, “An Improved Artificial Bee Colony
(ABC) Algorithm with Advanced Search
Ability,” in 8th International Conference on
Electronics Information and Emergency
Communication, Beijing, China: Institute of
Electrical and Electronics Engineers, Jun. 2018,
pp. 91-94.

Y. Wang and Z. Han, “Ant colony optimization
for traveling salesman problem based on
parameters optimization,” Appl Soft Comput,
vol. 107, Aug. 2021,
doi:10.1016/j.as0c.2021.107439.

M. H. Nadimi-Shahraki, H. Zamani, Z. Asghari
Varzaneh, and S. Mirjalili, “A Systematic
Review of the Whale Optimization Algorithm:
Theoretical Foundation, Improvements, and
Hybridizations,” Archives of Computational
Methods in Engineering, vol. 30, no. 7, pp.
4113-4159, Sep. 2023, doi:10.1007/s11831-
023-09928-7.

H. Wang et al., “A hybrid multi-objective
firefly algorithm for big data optimization,”
Applied Soft Computing Journal, vol. 69, pp.
806-815, Aug. 2018,
doi:10.1016/j.as0c.2017.06.029.

H. Peng, W. Zhu, C. Deng, and Z. Wu,
“Enhancing firefly algorithm with courtship
learning,” Inf Sci (N Y), vol. 543, pp. 18-42,
Jan. 2020, doi:10.1016/j.ins.2020.05.111.

J. Wu, Y. G. Wang, K. Burrage, Y. C. Tian, B.
Lawson, and Z. Ding, “An improved firefly
algorithm for global continuous optimization
problems,” Expert Syst Appl, vol. 149, Jul.
2020, doi:10.1016/j.eswa.2020.113340.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

M. Ghasemi, S. kadkhoda Mohammadi, M.
Zare, S. Mirjalili, M. Gil, and R. Hemmati, “A
new firefly algorithm with improved global
exploration and convergence with application
to engineering optimization,” Decision
Analytics  Journal, vol. 5, Dec. 2022,
doi:10.1016/j.dajour.2022.100125.

H. Wang et al.,, “Firefly algorithm with
neighborhood attraction,” Inf Sci (N Y), vol.
382-383, pp. 374-387, Mar. 2017,
doi:10.1016/}.ins.2016.12.024.

M. H. Nadimi-Shahraki, S. Taghian, and S.
Mirjalili, “An improved grey wolf optimizer for
solving engineering problems,” Expert Syst
Appl, vol. 166, Mar. 2021,
doi:10.1016/j.eswa.2020.113917.

Y. Hou, H. Gao, Z. Wang, and C. Du,
“Improved Grey Wolf Optimization Algorithm
and Application,” Sensors, vol. 22, no. 10, May
2022, doi:10.3390/s22103810.

S. N. Makhadmeh et al., “Recent Advances in
Grey Wolf Optimizer, its Versions and
Applications: Review,” IEEE Access, vol. 12,
PP- 22991-23028, 2024,
doi:10.1109/ACCESS.2023.3304889.

M. Ghalambaz, R. Jalilzadeh Yengejeh, and A.
H. Davami, “Building energy optimization
using Grey Wolf Optimizer (GWO),” Case
Studies in Thermal Engineering, vol. 27, Oct.
2021, doi:10.1016/j.csite.2021.101250.

J. P.Ram, D. S. Pillai, A. M. Y. M. Ghias, and
N. Rajasekar, ‘“Performance enhancement of
solar PV systems applying P&O assisted
Flower Pollination Algorithm (FPA),” Solar
Energy, vol. 199, pp. 214-229, Mar. 2020,
doi:10.1016/j.solener.2020.02.019.

E. Nabil, “A Modified Flower Pollination
Algorithm for Global Optimization,” Expert
Syst Appl, vol. 57, pp. 192-203, Sep. 2016,
doi:10.1016/j.eswa.2016.03.047.

J. Deng, D. Zhang, L. Li, and Q. He, “A
Nonlinear Convex Decreasing Weights Golden
Eagle Optimizer Technique Based on a Global
Optimization Strategy,” Applied Sciences
(Switzerland), vol. 13, no. 16, Aug. 2023,
doi:10.3390/app13169394.

R. K. Eluri and N. Devarakonda, “Binary
Golden Eagle Optimizer with Time-Varying
Flight Length for feature selection,” Know!

Based  Syst, vol. 247, Jul. 2022,
doi:10.1016/j.knosys.2022.108771.
@ IJTSRD | Unique Paper ID — IJTSRD97405 | Volume-9 | Issue—6 | Nov-Dec 2025 Page 140



