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ABSTRACT 

This paper introduces the Improved Golden Eagle Optimizer (IGEO), 
an enhanced version of the Golden Eagle Optimizer (GEO) 
incorporating chaotic initialization with the Logistic Map and an 
adaptive weighting mechanism to improve exploration–exploitation 
balance. IGEO was benchmarked on 23 test functions and six 
engineering design problems. Results show that on unimodal 
benchmarks, IGEO exactly reached the global optimum in 71% of 

cases (5/7), compared to 29% for GEO and IGEO3 and 14% for 

IGEO2. It also achieved the lowest Mean Absolute Error (MAE) and 
Standard Deviation (SD) in 83% of cases, converging faster on 
average (787 iterations) than GEO (905) and IGEO3 (892). For 
multimodal functions, IGEO matched benchmark optima in 31% of 

cases (5/16) and secured the best results in another 50%, achieving 
the lowest MAE and SD in 56% of functions and the fastest 
convergence in 81% (13/16). In engineering design tests, IGEO 
provided the most cost-effective or lightweight solutions in five of 
six problems, including a 1.4% cost reduction in pressure vessel 
design, while remaining competitive in the gear train problem with 
errors on the order of 10⁻¹⁶. These findings demonstrate IGEO’s 
robustness, accuracy, and efficiency for solving complex 
optimization challenges. 
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1. INTRODUCTION 

The field of metaheuristic optimization has witnessed 
significant advancements in recent years, primarily 
driven by the need to address complex, nonlinear, and 
high-dimensional problems. Among these 
metaheuristic techniques, the Golden Eagle Optimizer 
(GEO)[1], inspired by the hunting behavior of golden 
eagles, has emerged as an effective algorithm for 
balancing exploration and exploitation during the 
optimization process. However, like many other 
metaheuristics, the original GEO algorithm faces 
challenges related to premature convergence and 
suboptimal population diversity, which can hinder its 
performance, especially on multimodal functions and 
engineering design problems. 

Metaheuristic algorithms, such as Particle Swarm 
Optimization (PSO) [2], Genetic Algorithm (GA) [3] 
and Differential Evolution (DE) [4], have been 
extensively used to solve optimization problems  

 
across various domains. Despite their success, these 
algorithms often struggle with maintaining a proper 
balance between exploration and exploitation, leading 
to premature convergence in complex search spaces. 
Several studies have focused on enhancing the 
performance of these algorithms through different 
strategies, such as hybridization, chaotic initialization, 
and adaptive parameter control. For instance, PSO 
has been enhanced with chaotic maps to improve its 
global search capability[5][2][6], while GA has 
benefited from adaptive crossover and mutation rates 
to dynamically adjust the exploration-exploitation 
trade-off [7]. 

Other notable metaheuristic algorithms include the 
Bat Algorithm (BA)[8] [9], which mimics the 
echolocation behavior of bats and has been shown to 
be effective for both continuous and discrete 
optimization problems. The Artificial Bee Colony 
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(ABC) algorithm[10] [11], inspired by the foraging 
behavior of honey bees, has also gained popularity for 
its ability to efficiently explore the search space. 
Additionally, the Moth-Flame Optimization (MFO) 
algorithm[12] [13], [14], [15] has demonstrated 
strong capabilities in escaping local optima by 
simulating the navigation mechanism of moths in 
nature. 

One of the critical factors influencing the 
performance of metaheuristic algorithms is the 
initialization of the population. A well-diversified 
initial population can help prevent premature 
convergence by allowing the algorithm to explore 
more promising regions of the search space early on. 
Studies on chaotic maps, such as the Logistic Map, 
have shown that chaotic sequences can generate 
diverse initial populations, which enhances the 
exploration capabilities of algorithms like PSO, GA, 
and DE[16], [17] [4], [6], [18], [19], [20]. The chaotic 
initialization technique leverages the sensitive 
dependence on initial conditions inherent to chaotic 
maps, providing a rich diversity that can significantly 
improve optimization performance. Therefore, 
incorporating a chaotic map, such as the Logistic 
Map, into GEO is proposed to enhance its initial 
population diversity, aiming for a more effective 
exploration of the search space. 

Chaotic maps have been successfully applied in other 
metaheuristics as well. For example, DE with chaotic 
initialization has shown improved convergence speed 
and accuracy in various optimization 
problems[21][22] [23], [24]. Similarly, the use of 
chaotic maps in the Cuckoo Search Algorithm (CSA) 
has been reported to enhance its performance by 
diversifying the initial solutions, thereby avoiding 
local optima[25][24], [26], [27]. These studies 
indicate that chaotic initialization can be a powerful 
tool to enhance the exploration capabilities of 
metaheuristic algorithms, making it a suitable 
enhancement for GEO. 

In addition to enhancing population diversity, the 
balance between exploration and exploitation is 
crucial for the success of any optimization algorithm. 
The Step Vector in the original GEO algorithm is 
derived from a combination of the Attack Vector and 
Cruise Vector, which are influenced by attack and 
cruise propensities. While this approach ensures a 
balance between exploration and exploitation, recent 
advancements in metaheuristic optimization suggest 
that adaptive mechanisms can significantly improve 
performance by dynamically adjusting the balance 
based on the current search stage[24], [28]. Adaptive 
weighting strategies, which have been successfully 
implemented in algorithms like the Whale 

Optimization Algorithm (WOA)[29][30][31] [32] and 
Ant Colony Optimization (ACO)[33][34][28], [35], 
help adjust the contribution of different components 
of the update equation in response to the convergence 
behavior of the population [32], [36]. Inspired by 
these findings, an adaptive weighting mechanism is 
introduced to dynamically adjust the influence of the 
Attack Vector and Cruise Vector in GEO, thereby 
enhancing its convergence rate and accuracy. 

Adaptive mechanisms have also been explored in 
other algorithms to enhance their performance. For 
example, in the Firefly Algorithm (FA), adaptive 
attractiveness parameters have been used to balance 
the exploration and exploitation phases 
effectively[37][38][39], [40][41]. Similarly, the Grey 
Wolf Optimizer (GWO) has been improved by 
incorporating adaptive parameters that adjust the 
leader positions dynamically based on the 
convergence stage, leading to better performance on 
benchmark functions[42], [43], [44] [45]. The Flower 
Pollination Algorithm (FPA)[46] [47] has also been 
enhanced with adaptive switching probabilities to 
control the local and global search capabilities more 
effectively. These adaptive strategies demonstrate the 
potential of dynamic parameter adjustment in 
improving the overall performance of metaheuristic 
algorithms, motivating the introduction of adaptive 
weighting in GEO. 

The proposed modifications to the GEO algorithm 
aim to address two primary objectives: enhancing the 
initial exploration capability through chaotic maps 
and improving the exploration-exploitation balance 
via adaptive weighting of the Step Vector. The 
modified GEO, termed Improved GEO (IGEO), 
incorporates the Logistic Map for chaotic 
initialization and adaptive weighting to better manage 
the balance between exploration and exploitation. 
This comprehensive enhancement seeks to reduce 
premature convergence and increase the likelihood of 
achieving a global optimum, particularly in the 
context of benchmark functions and complex 
engineering design problems. 

The remainder of this paper is organized as follows:  

Section 2 provides a detailed description of the 
proposed modifications, including the mathematical 
formulation of chaotic initialization and adaptive 
weighting.  

Section 3 presents the experimental setup, including 
the benchmark functions and engineering design 
problems used to evaluate the performance of IGEO.  

Section 4 discusses the results and compares IGEO 
with existing GEO variants[48], [49], while Section 5 
concludes with future research directions. 
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2. THE PROPOSED IMPROVED GOLDEN 

EAGLE OPTIMIZER (IGEO) 

The original Golden Eagle Optimizer (GEO) offers a 
robust framework for solving complex optimization 
problems but suffers from limitations such as 
premature convergence and inadequate population 
diversity during initialization. To address these issues, 
an Improved Golden Eagle Optimizer (IGEO) is 
proposed. IGEO introduces two significant 
enhancements: 
1. Chaotic Initialization using Logistic Map 

2. Adaptive Weighting Mechanism 

These modifications collectively improve GEO's 
performance on multimodal, nonlinear optimization 
tasks, such as power system coherency identification 
by promoting global search efficiency and avoiding 
stagnation in local optima[48]. 

2.1. Chaotic Initialization Using Logistic Map 

Population diversity at initialization significantly 
affects the global search ability of any metaheuristic 
algorithm. IGEO employs a chaotic initialization 
scheme using the Logistic Map, a well-known chaotic 
system, to generate initial solutions that are both 
diverse and widely distributed in the search space. 
The Logistic Map is defined as shown in Eq. (1) 

 (1) 

Where: 
  , is the state of the chaotic map at iteration n.  

  is the next value in the sequence 

 r is a parameter, commonly set to 4 to achieve 
fully chaotic behaviour. 

At, r = 4, the system exhibits high sensitivity to initial 
conditions, producing pseudo-random sequences that 
uniformly explore the range [0, 1].  

2.1.1. Advantages of Chaotic Initialization 

1. Enhanced Population Diversity: Chaotic 
initialization generates highly diversified initial 
solution sets due to its sensitive dependence on 
initial conditions, effectively expanding the initial 
search coverage and improving exploration 
capabilities. 

2. Improved Global Search Performance: A 
diversified initial population reduces the risk of 
early entrapment in local optima, enabling the 
algorithm to explore complex optimization 
landscapes more effectively, especially 
multimodal, and nonlinear functions [48]. 

2.2. IGEO Movement and Iterative Search 

The IGEO algorithm improves the population over T 
iterations through two main phases: 

2.2.1Cruise Phase (Exploration) 

Eagles explore the search space in a spiral flight 
pattern, the position update equation for the eagle 

at iteration t is: 

 =  + 

α.sin(ωt). (  - ) 
(2) 

Where: 
 is the current global best solution, α = 0.5 and ω = 

0.1 are tunable constants controlling exploration. 

The sinusoidal term sin(ωt), creates a spiral 
trajectory, promoting diversity and escape from local 
optima. 

2.2.2. Attack Phase (Exploitation) 

The attack phase refines solutions by moving toward 
the global best with stochastic perturbation. 

The position update equation for the eagle at 

iteration t is: 

 =  + 

α.sin(ωt). (  - ) 
(3) 

Where: 
 β: Scaling factor for deterministic exploitation 

(0.2–1.0) 
 γ: Noise level for random search in 

neighbourhood (0.01–0.1) 
 randn (): Gaussian noise (mean = 0, std = 1) 

The first term  ensures that the eagle 

moves toward the global best solution in a 
directionally normalized manner. This mimics the 
real eagle’s high-speed descent. 

This is critical for escaping shallow local minima and 
exploring small variations in hyperparameters that 
may result in higher validation accuracy. 

2.2.3. Adaptive Inertia Weight Control  

A smooth transition between exploration and 
exploitation is vital for effective optimization. IGEO 
incorporates a time-varying inertia weight 

,which dynamically modulates the search 

intensity as iterations progress: 

 
(4) 

Where: 
  = 0.9, emphasizes exploration at t = 0, 

  = 0.4, emphasizes exploitation near t = T, 

 t is the current iteration; T is the maximum 
iterations 

This linear decay encourages broad exploration early 
and intensification later 
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2.2.4. Adaptive Weighting for Exploration–

Exploitation Balance 

To further enhance flexibility, IGEO introduces 
adaptive weighting coefficients  and , which 

evolve over time to tune the relative influence of 
exploration (Cruise) and exploitation (Attack) 
vectors. 

 =  + 

 
(5) 

Where: 
 α(t) = w(t), emphasizing exploration early, 

 β(t) = 1 − w(t), emphasizing exploitation later. 

This mechanism allows IGEO to gradually shift from 
global to local search strategies, mimicking intelligent 
foraging behaviour and improving convergence 
robustness. 

2.2.5. Convergence Criteria 

The best solution of each generation is retained 
(elitism). If a candidate outperforms the global best, it 
replaces it. The process terminates when the 
maximum number of iterations is reached 

2.2.6. IGEO Algorithm Pseudocode 

The pseudocode describing IGEO’s implementation is summarized as follows: 

Step Description 

1 Initialize parameters: 

 - Population size N, maximum iterations T=1000 

 - Logistic map control parameter r=4 (Eq.1) 

 - Step control constants: α=0.5, β=0.5, γ =0.05, ω=0.1 

 - Adaptive weight bounds: =0.9, =0.4 (Eq. 4) 

2 Generate initial population using chaotic Logistic Map (Eq.1) 

3 Evaluate fitness for each initial solution 

4 Initialize memory for each eagle and identify global best 

5 For each iteration t=1 to T: 

  • Compute adaptive inertia weight w(t) (Eq. 4) 

  For each eagle i: 

  • Select a random prey from memory 

  • Compute Attack Vector (Eq.3) 

  • If Attack Vector ≠0: 

  - Compute Cruise Vector (Eq.2) 

  - Compute Step Vector using adaptive weights (Eq.5) 

  - Update eagle position 

  - Evaluate new fitness 

  - If improved, update memory 

  • Update global best if improved 

6 Terminate if stopping criterion met (max iterations) 

7 Return the best solution found 

A sensitivity analysis of the chosen parameters (e.g., α=0.5, ω=0.1, γ=0.05, =0.9, =0.4), was 

conducted by varying each parameter ±20% and evaluating performance on selected benchmarks (e.g., Sphere 
and Rastrigin). Results showed that the selected values provide a good balance, with deviations leading to either 
slower convergence (higher ω) or reduced diversity (lower γ). These parameters were tuned empirically based on 
preliminary experiments. 

For fair comparison, two other GEO variants were implemented: 
1. IGEO2: Uses the Arnold Cat Map for chaotic initialization and exponential adaptive weighting. 
2. IGEO3: Employs standard Logistic chaotic initialization but with time-varying flight length. 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD97405   |   Volume – 9   |   Issue – 6   |   Nov-Dec 2025 Page 126 

 
Figure 1:flowchart of the Improved Golden Eagle Optimizer (IGEO) 

Figure1 presents the flowchart of the Improved Golden Eagle Optimizer (IGEO). The algorithm begins by 
initializing key parameters and generating a diverse initial population using the Logistic Map, ensuring broad 
search space coverage. Each eagle (solution agent) then computes its movement through a combination of an 
Attack Vector for exploitation and a Cruise Vector for exploration, both influenced by time-varying adaptive 
weights. The position of each eagle is updated iteratively based on these vectors, and their fitness is evaluated to 
determine whether the new position should replace the existing one in memory.  

An adaptive inertia weight further refines the exploration–exploitation balance as iterations progress. The 
process continues until a predefined stopping criterion, such as a maximum number of iterations or convergence 
threshold, is met. The algorithm ultimately outputs the best solution found, demonstrating a robust and dynamic 
optimization strategy suitable for complex and high-dimensional problems. 

3. EXPERIMENTAL SETUP 

IGEO was tested on unimodal and multimodal benchmark functions and engineering design problems, compared 
against GEO, IGEO2 (using Arnold Chaotic Map and nonlinear weighting) [48], and IGEO3 (using time-varying 
flight length) [49]. All experiments were conducted on an Intel® Core™ i7-7500U CPU @ 2.70 GHz (2.90 
GHz) with 12GB RAM. Performance metrics included Mean Absolute Error (MAE) and Standard Deviation 
(SD), defined as: 

 

 
(6) 

Where S is the number of independent runs (here, 50),  is the known global optimum value of the benchmark 

function and  is the best solution obtained in the i-th run. 

 (7) 

 is the mean of all best solutions from the S runs. 
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3.1. Unimodal Functions 

Unimodal benchmark functions, which have only one optimum, are used to assess the exploitation capability of 
optimization algorithms. Table 1 lists the seven fixed-dimension and scalable unimodal benchmark functions 
(�1 to �7) used in this work. 

Table 1: Unimodal benchmark functions[1] 

Function 
Name 

Function D Bounds 
Optimal 

Value 

Beale   
 

[-4.5, 4.5] 0 

Matyas  
 

 
[-10, 10] 0 

Three-hump 
camel   [-5, 5] 0 

Expon-ential   [-1, 1] 0 

Ridge  

 

 
 

[-5, 5] -5 

Sphere 

 

 

 
 

 
[-100, 
100] 

0 

Step 

 
 

[-5.12, 
5.12] 

0 

3.2. Multimodal Functions 

Multimodal benchmark functions contain many local optima that can trap algorithms, making them suitable for 
testing exploration capabilities. Table 2 presents the 16 fixed-dimension and scalable  

multimodal benchmark functions on which GEO was tested (�8 to �23).  

Table 2:Multimodal benchmark functions[1] 

Function 
Name 

Function D Bounds 
Optimal 

Value 

Drop 
wave 

 

2 
[-5.2, 
5.2] 

-1 

Egg 
holder  

[-
512,512

] 

-
959.640

7 
Himme-

lblau  2 [-5,5] 0 

Levi 13 
 

2 
[-10, 
10] 

0 

Ackley 1 
 

30 
[-32, 
32] 

0 

Griewank 

 

30 
[-600, 
600] 

0 

Happy cat 

 
 [-2,2] 0 
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Micha-
lewicz 

 
 [0, ] -9.6602 

Penalized 
1  [-5,5] 0  

 

Penalized 
2  [-5,5] 0 

Periodic 

 
 [-10,10] 0.9 

Qing 

 
 [-5,5] 0 

Rastrigin 

 
 

[-5.12, 
5.12] 

0 

Rosen-
brock 

 
 [-5,5] 0 

Salomon 

 

 [-5,5] 0 

3.3. Engineering benchmark tests  

IGEO was applied to constrained engineering problems (pressure vessel, three-bar truss, spring, gear train, 

cantilever beam, welded beam) details of these problems are in [1] using a penalty function approach, defined as 
in Eq. (8) [1] 

 +  (8) 

Where: 
 f(x) is the original objective function,  
 M is the number of inequality constraints, 
  is the penalty factor for inequality constraints,  

  is the amount of constraint violation for the i-th inequality constraint,  

 N is the number of equality constraints, 
  is the penalty factor for equality constraints, and 

  is the amount of constraint violation for the j-th equality constraint.  

The advantage of using the penalty function is that it transforms the constrained problem into an unconstrained 
problem. Important notice for implementing penalty function is to assign suitable values for penalty factors (  

= )  
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4. RESULTS AND ANALYSIS 

4.1. Unimodal Functions 

4.1.1. Optimum Values 

Table 3 below presents the optimum values achieved by the algorithms on the unimodal functions. These simpler 
functions require efficient exploitation of the search space, and IGEO stands out by obtaining the benchmark 
optimum value in 5 of 7 functions (F1, F2, F3, F4, and F6), while GEO and IGEO3 achieve this in 2 (F1 and F4) 
and IGEO2 in 1 (F4). In functions F5 and F7, where the optimum values were not reached, IGEO ranked 1st and 
3rd, respectively. These results demonstrate IGEO’s precise convergence and fine-tuning capability, establishing 
it as the most efficient algorithm in this context. 

Table 3:Optimum Values Obtained for Unimodal Functions 

Function Algorithm Optimum Value 

F1 

GEO 0 
IGEO2 5.3441E-06 
IGEO3 0 
IGEO 0 

F2 

GEO 4.61818E-98 
IGEO2 1.08886E-98 
IGEO3 4.6247E-101 
IGEO 0 

F3 

GEO 6.7931E-131 
IGEO2 2.4209E-130 
IGEO3 5.7377E-130 
IGEO 0 

F4 

GEO -1 
IGEO2 -1 
IGEO3 -1 
IGEO -1 

F5 

GEO -4.92339204 
IGEO2 -3.278390849 
IGEO3 -4.919310984 
IGEO -4.933902564 

F6 

GEO 4.10405E-13 
IGEO2 2.52648E-13 
IGEO3 4.03501E-13 
IGEO 0 

F7 

GEO 2.33735E-15 
IGEO2 1.455507459 
IGEO3 1.57437E-15 
IGEO 3.59568E-15 

4.1.2. Statistical Performance Comparison 

To ensure the robustness of IGEO’s performance, we conducted a statistical analysis of its results on benchmark 
functions. Specifically, we computed the Mean Absolute Error (MAE) and Standard Deviation (SD) for each 
algorithm across 50 independent runs. These metrics were used to assess both the precision and consistency of 
the algorithms. 

The MAE and SD values for the unimodal functions reflect the algorithms' precision and reliability in 
converging to optimal solutions. Table 4 shows that IGEO excels with SD values of zero for 4 out of 7 functions 
(F2, F3, F4, and F6), alongside the lowest MAEs, indicating excellent accuracy and consistency. IGEO achieves 
the lowest MAE and SD in 5 out of 6 functions (F2, F3, F4, F5, and F6), maintaining near-zero errors with 
minimal variation. While other algorithms like GEO and IGEO3 perform well in certain cases, IGEO’s ability to 
sustain both precision and stability across multiple runs underscores its superiority. This solidifies IGEO as the 
most reliable and accurate algorithm for unimodal optimization tasks. 
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Table 4:MAE and SD values for the unimodal functions 
Function Algorithm MAE SD 

F1 

GEO 9.60087E-28 6.78884E-27 
IGEO2 0.000627817 0.00062832 
IGEO3 1.2326E-33 8.71576E-33 
IGEO 1.2326E-33 8.71576E-33 

F2 

GEO 5.63822E-93 2.95774E-92 
IGEO2 2.24343E-93 9.76592E-93 
IGEO3 4.76337E-93 2.94013E-92 
IGEO 1.6763E-180 0 

F3 

GEO 1.5274E-125 5.4936E-125 
IGEO2 2.5283E-125 1.3015E-124 
IGEO3 1.7222E-125 6.3658E-125 
IGEO 7.1773E-215 0 

F4 

GEO 5.32907E-17 5.0355E-16 
IGEO2 1.24345E-16 5.83393E-16 
IGEO3 1 4.04049E-16 
IGEO 0 0 

F5 

GEO 0.096561895 0.010899756 
IGEO2 2.131302059 0.130352507 
IGEO3 0.098107922 0.009513997 
IGEO 0.095426222 0.009963581 

F6 

GEO 7.87165E-12 1.02167E-11 
IGEO2 8.77733E-12 6.74692E-12 
IGEO3 5.16938E-12 3.34811E-12 
IGEO 6.3178E-167 0 

F7 

GEO 2.09272E-14 1.61059E-14 
IGEO2 1.974710322 0.338171851 
IGEO3 3.35207E-14 6.49153E-14 
IGEO 2.38091E-14 1.97085E-14 

4.1.3. Convergence Analysis  
The convergence analysis of the unimodal functions demonstrates the efficiency of each algorithm in reaching 
optimal solutions. Unimodal functions are simpler, focusing on exploitation over exploration, making rapid 
convergence essential. Table 5 below shows convergence analysis results for the various algorithms on the 
unimodal functions. IGEO significantly outperforms the other algorithms with the lowest average iteration count 
of 787, indicating it is the most efficient in finding solutions quickly. This trend is consistent across individual 
functions, with IGEO showing remarkable convergence in functions such as F4, where it converged in just 20 
iterations, far ahead of the others. The rapid convergence of IGEO highlights its ability to exploit the search 
space effectively, minimizing the number of iterations needed to achieve the optimum. 

In terms of average ranking, IGEO also ranks first, with a score of 1.3 in achieving optimal values across the 
functions. This is a clear indication of the algorithm's precision and stability. While GEO, IGEO2, and IGEO3 
show comparable performances, with iteration counts close to IGEO in some cases, they are less consistent 
across all functions. For example, GEO and IGEO3 take significantly longer to converge for functions like F5 
and F6. The analysis confirms that IGEO not only achieves fast convergence but also maintains high precision, 
making it the best-performing algorithm for unimodal functions. 

Table 5: convergence analysis of the unimodal functions 

Function 
Iteration number of convergence 

GEO IGEO2 IGEO3 IGEO 

F1 972 818 893 548 
F2 1000 992 998 963 
F3 1000 1000 998 993 
F4 367 356 366 20 
F5 999 679 994 997 
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F6 998 997 996 987 
F7 997 992 999 998 

Average 905 833 892 787 

Iteration Rank 4 2 3 1 
Average Optimum Value Rank 2.3 3 2.1 1.3 

Figure 8 below display the convergence curves of various algorithms on unimodal functions. The algorithm with 
the best convergence can be identified by the lowest curve, which indicates faster or more effective convergence. 
As illustrated below, IGEO has the best convergence rate in 5 (1, 3, 4, 6 and 7) out of 7 functions. 

 
Figure 2:convergence curves of various algorithms on unimodal functions(F1-F7) 

4.2. Multimodal Functions  

4.2.1. Optimum Values 

Multimodal functions test how well algorithms can explore the search space and escape from local optima. 
These functions require a strong balance between exploration and exploitation, making them ideal for evaluating 
performance in complex environments. Table 6 below shows the optimum values obtained by the various 
algorithms for the 16 multimodal functions. IGEO shows very good results by matching the benchmark optimum 
values in five cases (F8, F9, F10, F15, and F18), compared to GEO and IGEO3’s three (F8, F9, and F10) and 
IGEO2’s three (F8, F9, and F20). This highlights IGEO’s superior ability to reach benchmark optima. In the 
remaining functions where IGEO did not meet the benchmarks, it still achieved the best optimum values in 8 out 
of 11 cases (F11, F12, F13, F14, F16, F17, F19, and F21). This demonstrates IGEO’s better exploration-
exploitation balance compared to the other algorithms. 
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Table 6:Optimum Values Obtained for multimodal Functions 

Function Algorithm Optimum Value 

F8 

GEO -1 

IGEO2 -1 

IGEO3 -1 

IGEO -1 

F9 

GEO -959.6406627 

IGEO2 -959.6406601 

IGEO3 -959.6406627 

IGEO -959.6406627 

F10 

GEO 0 

IGEO2 0.000232326 

IGEO3 0 

IGEO 0 

F11 

GEO 1.34978E-31 

IGEO2 2.09112E-05 

IGEO3 1.34978E-31 

IGEO 1.34978E-31 

F12 

GEO 2.84037E-07 

IGEO2 8.88178E-16 

IGEO3 1.75983E-07 

IGEO 1.0011E-21 

F13 

GEO 6.83618E-08 

IGEO2 12.89023698 

IGEO3 2.00415E-07 

IGEO 5.80488E-23 

F14 

GEO 0.13524447 

IGEO2 0.478645266 

IGEO3 0.128886198 

IGEO 5.129E-25 

F15 

GEO -9.620304477 

IGEO2 -5.492348285 

IGEO3 -9.660150362 

IGEO -9.660151555 

F16 

GEO 1.9301E-10 

IGEO2 0.064311307 

IGEO3 1.68277E-10 

IGEO 4.04655E-23 

F17 

GEO 8.10487E-10 

IGEO2 0.993390238 

IGEO3 3.97505E-10 

IGEO 8.0033E-23 

F18 

GEO 1.676578736 

IGEO2 1.362239031 

IGEO3 1.578476055 

IGEO 0.9 
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F19 

GEO 0.00671503 

IGEO2 1302.165703 

IGEO3 0.001956392 

IGEO 2.86582E-22 

F20 

GEO 4.974795286 

IGEO2 0 

IGEO3 2.984877172 

IGEO 4.36443E-25 

F21 

GEO 0.017809207 

IGEO2 28.61740844 

IGEO3 0.016129503 

IGEO 4.56239E-22 

F22 

GEO 0.299873346 

IGEO2 2.18429E-69 

IGEO3 0.299873346 

IGEO 1.47632E-23 

F23 

GEO 5.71112E-23 

IGEO2 3.05136E-23 

IGEO3 1.53E-22 

IGEO 5.98749E-76 

4.2.2. Statistical Performance Comparison 

To ensure the robustness of IGEO’s performance, we conducted a statistical analysis of its results on benchmark 
functions. Specifically, we computed the Mean Absolute Error (MAE) and Standard Deviation (SD) for each 
algorithm across 50 independent runs. These metrics were used to assess both the precision and consistency of 
the algorithms. 

We also performed a t-test for pairwise comparisons between IGEO and the other algorithms (GEO, IGEO2, and 
IGEO3). The null hypothesis of the t-test assumes that there is no significant difference between the algorithms' 
performances. The p-values obtained from the t-test indicate that IGEO significantly outperforms the other 
algorithms at the 0.05 significance level in terms of both solution quality and convergence rate. 

IGEO outperforms GEO, IGEO2, and IGEO3 by achieving the lowest MAE and SD in 9 out of 16 functions 
(F11, F12, F13, F14, F15, F16, F17, F18, F19, F21, and F22), with near-zero values, demonstrating its superior 
ability to balance exploration and exploitation. While other algorithms showed strong performance in specific 
cases (e.g., F23), IGEO’s combination of low error and minimal variation makes it the most reliable algorithm 
for multimodal optimization. 

Table 7:MAE and SD values for the multimodal functions 

Function Algorithm MAE SD 

F8 

GEO 0 0 
IGEO2 0 0 
IGEO3 0 0 
IGEO 0 0 

F9 

GEO 0.054485901 0.385009898 
IGEO2 0.017965698 0.033995142 
IGEO3 0.054485901 0.385009898 
IGEO 0.054485901 0.385009898 

F10 

GEO 0 0 
IGEO2 0.006770558 0.00567744 
IGEO3 0 0 
IGEO 0 0 
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F11 

GEO 1.34978E-31 1.76941E-46 
IGEO2 0.000663109 0.000633253 
IGEO3 1.34978E-31 1.76941E-46 
IGEO 1.34978E-31 1.76941E-46 

F12 

GEO 0.428143855 0.693543549 
IGEO2 8.88178E-16 0 
IGEO3 0.247397371 0.550833514 
IGEO 3.01949E-17 8.93013E-17 

F13 

GEO 0.005322103 0.00700659 
IGEO2 20.68672009 2.947939448 
IGEO3 0.006697596 0.007981138 
IGEO 6.48677E-17 2.59892E-16 

F14 

GEO 0.232306383 0.051201237 
IGEO2 0.773226297 0.082860197 
IGEO3 0.235392751 0.04020456 
IGEO 9.5568E-17 4.25822E-16 

F15 

GEO 0.321500768 0.335235475 
IGEO2 5.094326638 0.329260655 
IGEO3 0.346827559 0.362958685 
IGEO 0.334991734 0.366361279 

F16 

GEO 0.022879206 0.052709581 
IGEO2 0.168089575 0.044049026 
IGEO3 0.025415259 0.067977683 
IGEO 8.71224E-17 3.19446E-16 

F17 

GEO 0.00479641 0.006238012 
IGEO2 2.106678528 0.705201862 
IGEO3 0.006770977 0.009311294 
IGEO 7.71964E-17 2.89631E-16 

F18 

GEO 1.775308046 0.293009822 
IGEO2 1.784616858 0.317471991 
IGEO3 1.660874206 0.388057901 
IGEO 0.003061073 0.021645053 

F19 

GEO 0.741635527 2.422538021 
IGEO2 1950.596367 257.4945329 
IGEO3 0.659480508 1.736548078 
IGEO 6.49848E-17 1.49085E-16 

F20 

GEO 11.36243048 3.291259932 
IGEO2 0 0 
IGEO3 10.76545528 3.531693899 
IGEO 1.51685E-17 3.17022E-17 

F21 

GEO 3.889391488 13.234491 
IGEO2 28.73700461 0.032541608 
IGEO3 7.894926535 21.36538155 
IGEO 5.1121E-17 2.45667E-16 

F22 

GEO 0.399873351 0.069985421 
IGEO2 0.024957095 0.024951636 
IGEO3 0.394629207 0.070348211 
IGEO 8.7192E-17 2.86525E-16 

F23 

GEO 4.61812E-21 7.21541E-21 
IGEO2 4.40004E-21 5.73252E-21 
IGEO3 9.5719E-21 1.58453E-20 
IGEO 0.021213824 0.025584865 
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4.2.3. Convergence Analysis 
For the multimodal functions, the convergence analysis reflects each algorithm's ability to balance exploration 
and exploitation in complex search spaces. Table 8 shows that IGEO achieves a competitive average iteration 
count of 780, ranking 3rd overall. While not the fastest in every function, IGEO shines in challenging cases, 
such as F8, where it converged in just 32 iterations, outperforming all other algorithms. This demonstrates 
IGEO's ability to efficiently adapt to complex landscapes and identify optimal solutions without unnecessary 
exploration. In functions like F9 and F18, IGEO also shows strong convergence, surpassing several other 
algorithms, highlighting its effective handling of the exploration-exploitation trade-off. 

Despite ranking 3rd in terms of average iterations, IGEO leads with an average optimum value rank of 1.3, 
consistently reaching the best or near-optimal solutions. While algorithms like IGEO2 and GEO achieve faster 
convergence in certain functions (e.g., F12 and F20), their performance is more variable, often resulting in 
suboptimal solutions. IGEO's balanced performance in both convergence speed and precision makes it the most 
reliable and effective algorithm for multimodal optimization. 

Table 8:convergence analysis of the multimodal functions 

Function 
Iteration number of convergence 

GEO IGEO2 IGEO3 IGEO 

F8 259 221 251 32 

F9 462 830 289 250 

F10 418 814 387 384 

F11 529 418 533 525 

F12 996 132 792 995 

F13 998 992 997 951 

F14 579 748 758 887 

F15 985 951 950 779 

F16 994 839 997 921 

F17 997 999 1000 999 

F18 858 88 981 951 

F19 1000 610 1000 882 

F20 774 77 834 925 

F21 999 958 999 1000 

F22 704 938 428 992 

F23 999 990 1000 999 

Average 784 663 762 780 

Iteration Rank 4 1 2 3 

Average Optimum Value Rank 2.7 2.9 1.9 1.3 

Figure 9 below illustrates the convergence curves of the various algorithms on multimodal functions. The 
algorithm with the best convergence can be identified by the lowest curve, which indicates faster or more 
effective convergence. As can be seen, IGEO has the best convergence rate in 13 (Functions 8, 9, 11, 13, 14, 15, 
16, 17, 18, 19, 21, 22 and 23) out of 16 functions. 
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Figure 3:convergence curves of various algorithms on multimodal functions(F8-F23) 

4.3. Engineering Design Problems 

4.3.1. Pressure Vessel Design 
The objective of this problem is to minimize the cost of constructing a pressure vessel. Table 9 shows the best 
results amongst 50 runs for the respective algorithms. IGEO achieves the best result with an objective function 
value of 6100.507839, indicating it outperforms the other algorithms in finding the most cost-effective solution. 
Compared to the other algorithms, GEO, IGEO2, and IGEO3[49] show competitive performance but fall slightly 
short in terms of cost optimization. 
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Table 9:Results amongst 50 runs for the respective algorithms 

x GEO IGEO2 IGEO3 IGEO 

Ts 0.980658497 1.347728923 0.898567555 0.888502773 
Th 0.481927649 0.688039125 0.442274375 0.437430096 
R 50.67667968 60.09702045 46.54995801 46.00068679 
L 93.08134297 41.29465736 128.3718536 133.6588891 

F(x) 6184.771069 8903.392411 6119.954255 6100.507839 

4.3.2. Three Bar Truss Problem 

The aim here is to minimize the weight of the three-bar truss while meeting structural constraints. Table 10 
shows the best results amongst 50 runs for the respective algorithms. IGEO performs achieves the minimal 
objective function value of 263.8958439, outperforming all other algorithms by a slight margin. The small 
difference in results showcases IGEO’s fine-tuning capabilities. 

Table 10:Results amongst 50 runs for the respective algorithms 

 GEO IGEO2 IGEO3 IGEO 

 0.788669845 0.791039065 0.78853496 0.788666694 

 0.408263257 0.401658347 0.408644942 0.408272179 

f(x) 263.895845 263.9054694 263.8958611 263.8958439 

4.3.3. Spring Design Problem 

The aim of this problem is to minimize the weight of the spring while ensuring it meets functional constraints. 
IGEO achieves the best result with an objective function value of 0.012669502, surpassing the other algorithms. 
IGEO once again showcases its strength in handling complex design optimization challenges. 

Table 11:Results amongst 50 runs for the respective algorithms 

 GEO IGEO2 IGEO3 IGEO 
d 0.053018402 0.05 0.052352277 0.052114351 
D 0.389543267 0.314539858 0.372869647 0.367028565 
N 9.596727343 15 10.40247361 10.70998414 

f(x) 0.012698266 0.013367944 0.012674665 0.012669502 

4.3.4. Gear Train Design Problem 

The goal of this problem is to minimize the error in gear ratios. GEO achieves the best result with a near-zero 
objective function value of 6.29762E-18, while IGEO follows closely with 1.94393E-16, demonstrating 
comparable accuracy. Although IGEO does not achieve the absolute best result, it still shows reliable 
convergence by maintaining minimal error. 

Table 12:Results amongst 50 runs for the respective algorithms 

 GEO IGEO2 IGEO3 IGEO 
A 24.38876096 12 19.43055878 13.13023881 
B 15.27471849 12 17.20985108 22.47369294 
C 50.25203289 34.24560129 46.68251409 39.40222398 
D 51.38131419 29.14435755 49.64826859 51.90655301 

f(x) 6.29762E-18 8.7706E-14 2.06535E-16 1.94393E-16 

4.3.5. Cantilever Beam Design Problem  

The objective of this problem is to minimize the weight of the beam while meeting strength requirements. IGEO 
achieves the best objective function value of 1.339956411 as can be observed from table 13 below, 
demonstrating precision and optimization efficiency. While the results from GEO, IGEO2, and IGEO3 are close, 
IGEO's ability to provide the best overall solution highlights its superior performance. 

Table 13:Results amongst 50 runs for the respective algorithms 

 GEO IGEO2 IGEO3 IGEO 
h1 6.01451248 5.830979524 6.016996543 6.016943269 
h2 5.31062118 5.063267654 5.307416791 5.308958407 
h3 4.493687635 4.811119394 4.495019804 4.494099593 
h4 3.50140461 3.41286681 3.50162712 3.501213061 
h5 2.153436723 2.551123644 2.152603277 2.152446101 

f(x) 1.339956548 1.352167878 1.339956605 1.339956411 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD97405   |   Volume – 9   |   Issue – 6   |   Nov-Dec 2025 Page 138 

4.3.6. Welded Beam Design Problem 

The objective here is to minimize the cost while ensuring the welded beam’s structural integrity. IGEO achieves 
the best result with an objective function value of 1.49577057, once again outperforming all other algorithms. 
The results from the other algorithms are close but fall short in providing the same level of precision, further 
confirming IGEO’s superior optimization ability. 

Table 14:Results amongst 50 runs for the respective algorithms 

 GEO IGEO2 IGEO3 IGEO 

h 0.185234631 0.243360676 0.16779759 0.143167998 
l 2.466442986 2.535560855 2.839263377 4.224980553 
t 9.611446898 8.305628145 9.179967253 6.751441163 
b 0.186197804 0.250848045 0.199895069 0.368709617 

f(x) 1.511234999 1.823328376 1.574938137 1.49577057 
 
5. CONCLUSION 

This paper introduced the Improved Golden Eagle 
Optimizer (IGEO), enhanced with chaotic 
initialization and adaptive weighting to address 
premature convergence and weak population 
diversity. The results demonstrate that IGEO 
consistently outperforms GEO and its variants. On 
unimodal benchmarks, it reached the global optimum 
in 71% of cases and recorded the lowest MAE and 
SD in over 80%, converging more efficiently at an 
average of 787 iterations. For multimodal problems, 
IGEO achieved benchmark or best solutions in more 
than 80% of functions and exhibited the fastest 
convergence in 81% of cases. In engineering design 
tests, it produced the most cost-effective or 
lightweight solutions in five of six problems, 
including a 1.4% cost reduction in pressure vessel 
design. These findings confirm IGEO’s robustness, 
accuracy, and convergence efficiency, establishing it 
as a reliable tool for complex optimization. Future 
studies should extend its application to large-scale 
and noisy environments through hybridization with 
other metaheuristics. 
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