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ABSTRACT 

This paper investigates the stability of a class of uncertain interval 
continuous-time dynamic systems. Combining linear algebra and 
time-domain analysis, we derive a sufficient condition for a class of 
uncertain interval continuous time systems to achieve global 
exponential stability. We also derive the exponential convergence 
rate of such uncertain interval systems. Finally, a computer numerical 
simulation example is provided to illustrate and verify the correctness 
of the main theorem. 
 

 

KEYWORDS: Global exponential stability, interval systems, 

continuous-time systems, exponential convergence rate. 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 

 

 

 

 

How to cite this paper: Yeong-Jeu Sun | 
Wei-Chun Liao | Cheng-Fu Huang "A 
Sufficient Condition for the Global 
Exponential Stability of Uncertain 
Interval Continuous-Time Systems" 
Published in 
International Journal 
of Trend in 
Scientific Research 
and Development 
(ijtsrd), ISSN: 2456-
6470, Volume-9 | 
Issue-4, August 
2025, pp.1134-1138, URL: 
www.ijtsrd.com/papers/ijtsrd97362.pdf 
 
Copyright © 2025 by author (s) and 
International Journal of Trend in 
Scientific Research and Development 
Journal. This is an 
Open Access article 
distributed under the 
terms of the Creative Commons 
Attribution License (CC BY 4.0) 
(http://creativecommons.org/licenses/by/4.0) 

 

1. INTRODUCTION 

In recent years, stability analysis and robust controller 
design for interval systems have been extensively 
discussed and researched; see, for example, [1]-[8] 
and the references therein. Based on practical needs, 
the uncertainty within the system should be taken into 
account, which also increases the difficulty of 
stability analysis. 

This paper proposes a simple criterion for 
guaranteeing global exponential stability for a class of 
uncertain interval continuous-time systems. 
Furthermore, the exponential convergence rate of 
such uncertain interval continuous-time systems is 
calculated. Finally, several numerical computer 
simulation results are presented to illustrate the 
effectiveness of the main theorem. 

This paper is structured as follows: Chapter 1 is an 
introduction to uncertain interval continuous-time 
systems, Chapter 2 is an analysis of the global 
exponential stability of uncertain interval continuous-
time systems, Chapter 3 is the computer numerical  

 
simulation results of uncertain interval continuous-
time systems, and Chapter 4 is the conclusion. 

This paper will use the chaotic characteristics of the 
laser dynamic system to design a new master-slave 
chaotic secure communication system. Based on the 
control theory, it is deduced that such a secure 
communication system can achieve the goal of global 
exponential tracking. Besides, the guaranteed 
exponential convergence rate of this secure 
communication system will be calculated 
simultaneously. Finally, several computer simulation 
results will demonstrate the effectiveness of this main 
theorem. In particular, throughout the paper, 

xxx
T ⋅=:  represents the Euclidean norm of the 

column vector x, and a  represents the absolute value 

of a real number a. 

2. DYNAMIC SYSTEMS DESCRIPTION AND 

MAIN RESULTS 

Terminology and notation 
nℜ    the n-dimensional real space; 
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a   the modulus of a complex number a; 

[ ]ba,   the set of { }bxax ≤≤ ; 

T
A   the transport of the matrix A ; 

x   the Euclidean norm of the vector n
x ℜ∈ ; 

( )λRe  the real part of a complex number λ . 

In this paper, we consider the following uncertain 
interval continuous-time dynamic systems: 
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for 0≥t . Besides, ( ) ( ) ( ) ( )[ ] 1
21: ×ℜ∈= nT

n txtxtxtx L  is 

the state vector, ib∆  and jia ,∆  represent the uncertain 

parameters of the systems, with [ ]iii bbb ,∈∆ , 

[ ]jijiji aaa ,,, ,∈∆ , and [ ]ii bb ,0 ∉ , { }nji ,,3,2,1, L∈∀ . For the 

sake of convenience, we define the following 
parameters:  
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 { }nMax ααααα ,,,,: 321 L= ,  (4.1) 

 { }nMax βββββ ,,,,: 321 L= .  (4.2) 

The definition of the uncertain continuous-time 
interval systems (1) as globally exponentially stable 
systems is as follows. 

Definition 1. 

The uncertain continuous-time interval systems (1) 
are said to be globally exponentially stable if there 
exist two positive constants K  and τ  satisfying 

( ) 0, ≥∀⋅≤ − teKtx tτ . 

Meanwhile, the positive number τ  is called the 
exponential convergence rate. 

Now, we are in a position to present the main result 
for the global exponent stability of uncertain 
continuous-time interval systems (1). 

Theorem 1. 

The uncertain continuous-time interval systems (1) 
are globally exponentially stable provided that  

{ } 0,min: <= βαδ .    (5) 

At the same time, the guaranteed exponential 
convergence rate is given by 

,εδα −−=      (6) 

where ε  is any positive number such that δε −< . 
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Proof. Clearly, the uncertain continuous-time interval 
systems of (1) can be rewritten into the following 
types. 
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the eigenvalue and eigenvector of the uncertain 
matrix of H∆ , respectively. Thus, one has 
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From (7) and (4.1), one has  

( ) αλ ≤Re .     (8) 

Using the same analysis process and combining the 
fact that matrices T

H∆  and H∆  have the same 
eigenvalues, we can also deduce that 

( ) βλ ≤Re .     (9) 

As a consequence, from (5), (8), and (9), we have 
( ) 0Re <≤ δλ . This means that the uncertain 

continuous-time interval systems (1) with (5) are 
globally exponentially stable with guaranteed 
exponential convergence rate ,εδα −−=  where ε  is 

any positive number with δε −< . This completes the 
proof.  

3. NUMERICAL SIMULATIONS 

Consider the following uncertain continuous-time 
interval systems: 
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where 

[ ] [ ] [ ] ,2,1,9,10,2,1 2,11,11 ∈∆−−∈∆∈∆ aab  (10.5) 

[ ] [ ] ,1,0,0,1 4,13,1 ∈∆−∈∆ aa    (10.6) 

[ ] [ ] ,1,01,2 1,22 ∈∆−−∈∆ ab    (10.7) 

[ ] [ ] ,0,1,10,9 3,22,2 −∈∆∈∆ aa   (10.8) 

[ ] [ ] ,3,2,1,2 34,2 ∈∆−−∈∆ ba   (10.9) 

[ ] [ ] ,4,3,1,2 2,31,3 ∈∆−−∈∆ aa   (10.10) 

[ ] [ ] ,0,1,11,12 4,33,3 −∈∆−−∈∆ aa   (10.11) 

[ ] [ ] ,0,1,2,3 1,44 −∈∆−−∈∆ ab   (10.12) 

[ ] [ ] ,3,2,2,1 3,42,4 ∈∆∈∆ aa    (10.13) 

[ ] .11,104,4 ∈∆a     (10.14) 

Comparing system (1) and system (10), it can be 
readily obtained that 4=n . From (10) with (2)-(4), it 
is easy to see that 
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Therefore, by Theorem 1, the uncertain continuous-
time interval systems (10) are globally exponentially 

stable, in view of { } 0
6

1
,min <−== βαδ . Besides, from 

(6) and selecting 
15

1
=ε , the guaranteed exponential 

convergence rate of the uncertain continuous-time 
interval systems (10) can be calculated as 1.0=α . The 
typical state trajectories of the uncertain continuous-
time interval systems (10) are shown in Figure 1 and 
Figure 2. As shown in Figure 1 and Figure 2, all state 
variable signals of uncertain continuous-time interval 
systems of (10) will eventually approach zero. 

4. CONCLUSION 

In this paper, a class of uncertain interval continuous-
time dynamic systems has been studied. Combining 
linear algebra and time-domain analysis, a sufficient 
condition for a class of uncertain interval systems to 
achieve global exponential stability has been derived. 
In addition, the exponential convergence rate of the 
above uncertain interval systems has also been 
calculated in detail. At last, some computer numerical 
simulation results have been provided to show and 
verify the correctness of the main theorem. 
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Figure 1: Typical state trajectories of the uncertain 

continuous-time interval systems of (10) with 
( ) [ ]Tx 11330 −−= . 
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Figure 2: Typical state trajectories of the uncertain 

continuous-time interval systems of (10) with 
( ) [ ]Tx 1055100 −−= . 

 


