
International Journal of Trend in Scientific Research and Development (IJTSRD)  
Volume 9 Issue 4, Jul-Aug 2025 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470 

 

@ IJTSRD   |   Unique Paper ID – IJTSRD97330   |   Volume – 9   |   Issue – 4   |   Jul-Aug 2025 Page 739 

Quantum Computing in Climate Modeling: 

Advances and Innovations 

Dr. Hemen Kakati 

Assistant Professor, Department of Physics, Nalbari College, Nalbari, Assam, India 

 

ABSTRACT 

Quantum computing offers transformative potential for climate 
modeling by leveraging quantum mechanical principles to address 
computational bottlenecks in classical systems. This article 
synthesizes advancements from 2023–2025, focusing on molecular 
simulations, atmospheric modeling, optimization, and quantum 
machine learning (QML). Key results include a 40% improvement in 
carbon capture material efficiency, accelerated solutions to Navier-
Stokes equations, and 92% accuracy in flood prediction using 
quantum support vector machines (QSVMs). Challenges such as 
limited coherence times, data throughput constraints, and hybrid 
system integration persist. Near-term applications with noisy 
intermediate-scale quantum (NISQ) devices and long-term prospects 
with fault-tolerant systems are explored, emphasizing 
interdisciplinary collaboration to align quantum solutions with 
climate challenges. 
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1. INTRODUCTION 

Climate modeling is a highly complex task due to the 
intricate processes governing Earth’s systems, such as 
molecular interactions in materials used for carbon 
capture, turbulent air movements in the atmosphere, 
and the dynamic behavior of ecosystems. Traditional 
supercomputers, despite their power, face significant 
limitations when dealing with these processes. For 
example, modeling fine-scale phenomena like cloud 
formation or optimizing renewable energy grids 
becomes computationally overwhelming because the 
calculations grow exponentially with system size [1]. 
Quantum computing offers a promising solution by 
leveraging unique properties like superposition, 
entanglement, and quantum tunneling, which allow it 
to solve certain problems much faster than classical 
computers, potentially achieving exponential speed 
improvements [2]. 

Research conducted between 2023 and 2025 has 
shown practical ways quantum computing can help 
address climate challenges. These include discovering 
better materials for capturing carbon and improving 
the accuracy of high-resolution weather forecasts [3]. 
This article provides a comprehensive review of these 
advancements, focusing on key achievements,  

 
ongoing challenges, and future possibilities. The 
methodology section explains how quantum 
computing is applied through three main approaches: 
quantum simulation, which models physical systems 
at the molecular level; quantum optimization, which 
improves efficiency in tasks like energy grid 
management; and quantum machine learning (QML), 
which enhances data analysis for climate predictions. 

The results and discussion sections analyze the 
outcomes of these applications, such as more efficient 
carbon capture materials and faster weather modeling, 
while also addressing limitations like the current 
constraints of Noisy Intermediate-Scale Quantum 
(NISQ) devices, which have short coherence times 
and limited data processing capabilities. The 
conclusion looks ahead, outlining how quantum 
computing could lead to practical climate solutions in 
the coming decades. It emphasizes the importance of 
collaboration between quantum computing experts 
and climate scientists to overcome technical barriers 
and develop innovative tools for tackling global 
environmental challenges, from reducing greenhouse 
gas emissions to preparing for extreme weather 
events. 

 
 

IJTSRD97330 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD97330   |   Volume – 9   |   Issue – 4   |   Jul-Aug 2025 Page 740 

2. Methodology 

This research examines the role of quantum 
computing in enhancing climate modeling, organizing 
its applications into three key domains: quantum 
mechanical system simulation, optimization 
techniques, and quantum machine learning (QML). 
The study adopts a comprehensive approach, 
synthesizing theoretical progress, empirical findings, 
and advancements in quantum hardware to evaluate 
the potential of quantum computing in addressing 
complex climate challenges. 

In the first domain, quantum mechanical system 
simulation, quantum computers offer significant 
advantages in modeling molecular interactions and 
chemical processes critical to understanding climate 
dynamics. Unlike classical computers, which struggle 
with the exponential complexity of quantum systems, 
quantum algorithms can efficiently simulate these 
processes, enabling more accurate predictions of 
phenomena like greenhouse gas interactions or 
atmospheric chemistry. 

The second domain, optimization, leverages quantum 
computing to tackle computationally intensive 
problems in climate modeling, such as optimizing 
energy systems or resource allocation for climate 
mitigation strategies. Quantum optimization 
algorithms, including quantum annealing and 
variational quantum eigensolvers, demonstrate 
potential to outperform classical methods, providing 
faster and more efficient solutions to large-scale 
optimization challenges. 

The third domain, QML, explores the integration of 
quantum computing with machine learning to 
improve climate predictions. QML algorithms can 
process vast datasets, such as satellite observations or 
climate model outputs, with enhanced efficiency, 
uncovering patterns that classical machine learning 
might miss. This capability is particularly valuable for 
refining long-term climate forecasts and extreme 
weather event predictions. 

The methodology combines insights from theoretical 
quantum computing frameworks, experimental 
outcomes from current quantum hardware, and 
ongoing hardware innovations. By bridging these 
areas, the study highlights how quantum computing 
could transform climate modeling, offering tools to 
address pressing environmental issues with 
unprecedented precision and speed, while 
acknowledging challenges like hardware scalability 
and error correction that must be overcome for 
practical implementation.  

 

 

2.1. Simulation of Quantum Mechanical Systems 

Quantum computers outperform classical systems in 
simulating molecular interactions for climate 
technologies, such as carbon capture and energy 
storage. The Variational Quantum Eigensolver (VQE) 
accurately determines ground-state energies of 
complex molecules, capturing multi-electron 
dynamics that exceed classical approximations [3]. 
For atmospheric modeling, quantum linear systems 
algorithms, such as the Harrow-Hassidim-Lloyd 
(HHL) algorithm, solve Navier-Stokes equations, 
while hybrid quantum-classical methods discretize 
spatial domains to handle turbulent flows [2]. 
Quantum phase estimation has been utilized to 
analyze molecular dynamics in materials like metal-
organic frameworks (MOFs) [4]. Furthermore, recent 
experiments have explored quantum Monte Carlo 
methods to model photochemical reactions in 
atmospheric systems [5]. 

2.2. Optimization in Climate Science 

Quantum computing offers powerful tools for 
addressing complex optimization challenges in 
climate-related applications through techniques like 
quantum annealing and variational algorithms, such 
as the Quantum Approximate Optimization 
Algorithm (QAOA). These methods excel at solving 
problems that involve large combinatorial spaces, 
providing potential advantages over classical 
optimization approaches. Several key applications 
demonstrate the transformative potential of quantum 
optimization in tackling pressing environmental and 
societal challenges. 

One significant application is in renewable energy 
grid management, where quantum annealing 
optimizes wind farm layouts and power distribution. 
By formulating these problems as Quadratic 
Unconstrained Binary Optimization (QUBO) models, 
quantum annealing efficiently identifies 
configurations that maximize energy output while 
minimizing infrastructure costs and environmental 
impact [6]. This capability is critical for enhancing 
the efficiency and scalability of renewable energy 
systems. 

Another important use case is parameter calibration in 
climate models. Quantum-enhanced optimization 
streamlines the tuning of hundreds of parameters, 
significantly reducing computational costs compared 
to traditional methods. This efficiency enables more 
accurate and timely climate simulations, which are 
essential for predicting long-term environmental 
changes and informing policy decisions [7]. 
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In disaster preparedness, QUBO-based quantum 
algorithms address routing problems for emergency 
responses during extreme weather events. These 
algorithms optimize evacuation routes and resource 
allocation, ensuring rapid and effective responses to 
mitigate the impacts of natural disasters [8]. Such 
applications highlight quantum optimization’s 
potential to save lives and reduce economic losses in 
crisis scenarios. 

Finally, quantum optimization contributes to 
sustainable supply chain logistics by minimizing 
carbon footprints in renewable energy supply chains. 
By optimizing transportation routes and production 
schedules, these algorithms support the transition to 
low-carbon economies while maintaining economic 
viability [9]. Together, these applications underscore 
the role of quantum optimization in advancing 
climate resilience and sustainability. 

2.3. Quantum Machine Learning (QML) 

Hybrid quantum-classical quantum machine learning 
(QML) approaches provide innovative solutions for 
addressing data-intensive challenges in climate 
science. By combining the computational power of 
quantum systems with classical machine learning 
frameworks, these methods enable efficient 
processing of complex datasets and enhance 
predictive capabilities. Several applications highlight 
the potential of QML in transforming climate 
modeling and analysis. 

One key application is subgrid-scale 
parameterization, where quantum neural networks 
(QNNs) utilizing 4–16 qubit circuits model turbulent 
processes, such as cloud microphysics and aerosol 
interactions. These QNNs capture intricate dynamics 
at scales too fine for traditional climate models, 
improving the accuracy of simulations critical for 
understanding atmospheric behavior [10]. 

In climate data analysis, quantum kernel methods, 
including quantum support vector machines 
(QSVMs), efficiently process petabyte-scale satellite 
datasets to detect extreme weather events. By 
leveraging quantum-enhanced feature spaces, these 
methods identify patterns in vast datasets that 
classical approaches struggle to analyze, enabling 
timely and precise weather event predictions [7]. 
Generative modeling also benefits from QML through 
quantum Boltzmann machines and quantum 
generative adversarial networks (qGANs). These 
techniques synthesize high-resolution climate 
projections, generating realistic scenarios for future 
climate conditions. Such models are invaluable for 
planning adaptation strategies and assessing potential 
climate impacts [11]. 

Additionally, QML enhances time-series forecasting 
with quantum-enhanced Markov Chain Monte Carlo 
(QMCMC) methods. These approaches improve 
convergence rates for long-term climate predictions, 
offering more reliable forecasts for variables like 
temperature and precipitation over extended periods. 
This capability supports better decision-making for 
climate policy and resource management [12]. 
Collectively, these QML applications demonstrate 
significant promise in advancing climate science 
through enhanced computational efficiency and 
predictive power. 

2.4. Hardware and Algorithmic Considerations 

Experiments use NISQ devices (<1000 qubits) with 
error mitigation techniques like zero-noise 
extrapolation and probabilistic error cancellation [13]. 
Hybrid workflows integrate quantum processors with 
classical high-performance computing (HPC) systems 
via quantum software frameworks [14]. Data loading 
into quantum RAM (qRAM) remains a bottleneck, 
with recent tests exploring efficient encoding schemes 
[10]. Advances in ion-trap and superconducting qubit 
platforms have improved gate fidelities, enabling 
more complex climate simulations [15]. Emerging 
topological qubit designs show promise for reducing 
error rates in future systems [16]. 

3. Results and Discussion 

Advancements in quantum computing for climate 
modeling demonstrate significant progress, though 
scalability remains a challenge. 

3.1. Simulation of Quantum Mechanical Systems 

Quantum simulations are speeding up advancements 
in climate technology. A 2024 study used the 
Variational Quantum Eigensolver (VQE) on a 20-
qubit system to study materials called metal-organic 
frameworks (MOFs) for capturing carbon, improving 
their absorption efficiency by 40% compared to 
traditional methods [4]. Similarly, VQE on a 16-qubit 
processor helped design catalysts for pulse 
electrolysis, achieving nearly 100% efficiency in 
producing hydrogen, which could lower costs by 35% 
[17]. In atmospheric modeling, quantum algorithms 
solved complex equations called Navier-Stokes 
equations 100 to 1,000 times faster than classical 
supercomputers in controlled tests, improving models 
of how clouds form [2]. Quantum phase estimation 
enhanced simulations of chemical reactions in the 
stratosphere, leading to better models of ozone 
depletion [5]. Additionally, quantum Monte Carlo 
methods provided highly accurate simulations of how 
aerosols interact, refining models of how aerosols 
affect clouds [16]. However, applying these 
techniques to full Earth system models will require 
advanced, error-free quantum systems with millions 
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of qubits, which are likely not available until after 
2035 [13]. 

3.2. Optimization Outcomes 

Quantum optimization is bringing real improvements 
to various fields. The Quantum Annealing 
Continuous Optimization (QuAnCO) method boosted 
wind farm layout efficiency by 10–15%, increasing 
energy production even with changing weather [6]. 
The Quantum Approximate Optimization Algorithm 
(QAOA) cut the time needed to fine-tune climate 
models by half, adjusting over 200 settings with 
greater precision [7]. Routing algorithms based on 
Quadratic Unconstrained Binary Optimization 
(QUBO) improved emergency response efficiency by 
20–25% in simulated hurricane scenarios, helping 
deliver faster aid [8]. In solar panel supply chains, 
quantum optimization reduced carbon emissions by 
18% by streamlining logistics [9]. However, current 
Noisy Intermediate-Scale Quantum (NISQ) systems 
can only handle problems with up to 50 variables, 
limiting their use for larger, more complex tasks [13]. 

3.3. Quantum Machine Learning Achievements 

Quantum machine learning (QML) is making a big 
impact in handling large datasets for climate science, 
offering better accuracy and efficiency than 
traditional methods. In a 2024 study, a quantum 
support vector machine (QSVM) running on a 16-
qubit system achieved 92% accuracy in predicting 
floods using satellite data, performing 10% better 
than classical support vector machines [7]. This 
improvement helps provide more reliable flood 
warnings, which can save lives and property. 

Quantum neural networks (QNNs) using 8 to 16 
qubits have also improved how we model tiny 
processes in clouds, like how water droplets form. 
These models enhance the accuracy of simulations for 
storm and weather patterns, making predictions about 
convective processes more precise [10]. This is 
crucial for understanding how clouds affect climate 
and weather. 

Quantum Boltzmann machines have been used to 
create high-resolution climate projections that are 
realistic and follow the laws of physics. However, 
training these models takes a lot of computing power, 
which is a challenge for researchers [11]. Meanwhile, 
quantum generative adversarial networks (qGANs) 
have produced lifelike rainfall patterns for regional 
climate models, cutting the computing effort needed 
by 30% [18]. This makes it easier and faster to predict 
local weather changes. 

Quantum-enhanced Markov Chain Monte Carlo 
(QMCMC) algorithms have sped up seasonal weather 
forecasting by reducing the time needed to sample 

data by 40% [12]. This means more accurate long-
term forecasts, like predicting rainy or dry seasons, in 
less time. However, to apply QML to massive global 
datasets, we need better quantum memory and error 
correction, which are still being developed [14]. 
These advancements show QML’s potential to 
revolutionize climate science, but scaling up remains 
a work in progress. 

3.4. Challenges and Limitations 

Quantum computing holds great promise for climate 
modeling, but several challenges must be addressed to 
make it practical for large-scale applications. These 
obstacles involve limitations in current technology, 
data handling, system integration, scalability, and 
algorithm performance. 

One major issue is coherence times, which refer to 
how long quantum bits (qubits) can maintain their 
quantum state before errors creep in. Current Noisy 
Intermediate-Scale Quantum (NISQ) devices only 
have coherence times of 1 to 10 milliseconds, which 
is too short for complex climate simulations that 
require many interconnected calculations [13]. 
Longer coherence times are needed to model systems 
like global weather or ocean currents accurately. 

Another challenge is data throughput. Climate models 
often rely on massive terabyte-sized datasets, but 
quantum processors struggle to handle this volume. 
Current quantum random access memory (qRAM) 
architectures can only manage small inputs, on the 
scale of kilobytes [10]. This bottleneck makes it 
difficult to feed large amounts of climate data, such as 
satellite observations, into quantum systems 
efficiently. 

Integrating quantum and classical high-performance 
computing (HPC) systems also poses problems. 
Coordinating these hybrid setups introduces delays 
because quantum and classical processors must work 
together seamlessly. While new software frameworks 
have cut these delays by 40 to 60%, latency remains a 
hurdle for real-time applications like weather 
forecasting [14]. 

Scalability is a significant barrier. To simulate the 
entire Earth system, including oceans, atmosphere, 
and land, quantum computers would need fault-
tolerant systems with over a million qubits. Such 
advanced hardware is not expected to be available 
until after 2035, delaying full-scale climate modeling 
applications [13]. 

Finally, algorithmic efficiency is a concern. Some 
quantum algorithms, like the Harrow-Hassidim-Lloyd 
(HHL) algorithm, require deep quantum circuits that 
are too complex for NISQ devices to handle reliably. 
As a result, hybrid quantum-classical approaches are 
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often used to bridge the gap [2]. Error mitigation 
techniques help improve the accuracy of quantum 
calculations, but large-scale climate modeling will 
depend on future hardware improvements to 
overcome these limitations [15]. 

3.5. Future Directions 

Near-term efforts (2025–2030) will focus on NISQ 
applications, such as aerosol-cloud interaction 
modeling, battery electrolyte optimization, and 
regional flood forecasting, using 50–200 qubit 
systems [2]. Long-term goals target fault-tolerant 
systems for comprehensive Earth system models by 
2035 [13]. Standardized benchmarking suites for 
climate-relevant quantum algorithms are under 
development, with prototypes expected by 2026 [1]. 
Advances in quantum error correction, such as 
surface codes, and hybrid frameworks will enhance 
scalability [15]. Emerging quantum hardware, like 
neutral-atom systems, could further improve 
coherence times [16]. Interdisciplinary collaboration 
among climate scientists, quantum algorithm 
developers, and hardware engineers is critical to tailor 
solutions to climate challenges [3]. 

4. Conclusion 

Quantum computing holds great potential to 
revolutionize climate modeling by tackling complex 
challenges in simulations, optimization, and data 
analysis. Its ability to deliver results like 92% 
accuracy in flood forecasting, 40% better efficiency 
in carbon capture materials, and 50% faster climate 
model tuning highlights its transformative power. 
These achievements show how quantum technology 
can improve our understanding and response to 
climate change. However, current quantum systems, 
known as Noisy Intermediate-Scale Quantum devices, 
face significant hurdles. They struggle with short 
coherence times, limited ability to process large 
datasets, and the need for error-free systems, making 
it hard to scale up for global climate models. In the 
near term, smaller quantum systems can address 
specific problems, such as optimizing renewable 
energy or emergency responses. Long-term progress 
depends on advancements in quantum hardware and 
algorithms, expected after 2035. Collaborative efforts 
among researchers, engineers, and policymakers will 
be crucial to drive innovation, ensuring quantum 
computing contributes to sustainable climate 
solutions, from reducing emissions to preparing for 
extreme weather events. 
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