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ABSTRACT 

ECG arrhythmia-type classification is an important task in 
cardiovascular healthcare. The imbalance among the classes in ECG 
datasets constitutes a major hurdle for the development of an accurate 
classification model, especially for rare idiosyncratic arrhythmia 
types relevant clinically. The paper presents a novel method using 
generative adversarial networks to mitigate class imbalance in the 
MIT-BIH Arrhythmia Database. We create an LSTM-GAN-based 
model to generate synthetic ECGs for minority classes, with which 
we create a balanced dataset for training. We compare several 
algorithms (LightGBM, XGBoost, Random Forest) on the original 
imbalanced dataset versus the Balanced Dataset obtained after GANs 
augmentation. Our findings indicate substantial enhancement in the 
classification performance across all metrics, with extremely 
favorable outcomes for minority arrhythmia class detection. Using 
the balanced dataset, the macro-averaged F1-score is improved by 
27.3%, underscoring the use of GAN-based data augmentation in 
overcoming class imbalance in medical datasets. This method has 
vast implications for building more accurate and dependably 
arrhythmia detection systems in clinical practice. 
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I. INTRODUCTION 

Cardiovascular diseases are the primary cause of 
death worldwide, among them arrhythmias contribute 
to sudden cardiac death [1]. Arrhythmia detection and 
diagnoses are performed primarily by ECG 
monitoring, and hence, efficient patient care requires 
an efficient classification of ECGs. The classification 
has proved difficult to achieve owing to the class 
imbalance present in ECG datasets, with the number 
of normal heartbeats far outweighing that of abnormal 
ones [2]. 

The problem of class imbalance is glaringly evident 
in the MIT-BIH Arrhythmia Database [3], otherwise 
the popular dataset for arrhythmia classification. The 
dataset consists of around 89.5% normal (N) beats, 
while clinically important arrhythmia classes like 
ventricular ectopic beats (VEB), supraventricular 
ectopic beats (SVEB), fusion beats (F), and unknown 
beats (Q) represent only 7.0%, 2.8%, 0.8%, and 
0.01% of the data, respectively. Such a drastic  

 
imbalance tends to produce classification models that 
perform exceedingly well on the majority class at the 
expense of the minority classes that are often most 
clinically relevant. 

Common ways of addressing class imbalance include 
re-sampling methods such as random oversampling, 
random undersampling, and SMOTE [4]. Yet, each of 
these methods is not flawless: undersampling leads to 
the drawback of losing potentially useful information, 
whereas simple oversampling methods can cause 
overfitting. On the other hand, SMOTE and its 
derivatives generate synthetic samples by 
interpolating with existing minority examples, which 
may not truly model the complicated temporal 
dynamics of an ECG signal. 

The deep learning era brought with it the promise of 
Generative Adversarial Networks (GAN) [5] for the 
task of generating realistic synthetic data. A GAN 
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consists of two neural networks that are trained 
adversarially: the generator network creates synthetic 
samples whose features resemble those of the real 
data; the discriminator tries to distinguish between 
real and synthesized data. This adversarial setup 
allows the GAN framework to learn complex data 
distributions and produce superior-quality synthetic 
samples. 

This paper proposes a rather novel approach 
incorporating Long Short-Term Memory GANs 
(LSTM-GANs) to com-bat class imbalance in the 
MIT-BIH Arrhythmia Database. Because of their 
capacity to store long-term dependencies, LSTM-MN 
technology, when coupled with GANs, can syn-the 
size ECG sample signals retaining the temporal 
properties of real arrhythmia patterns. 

Our contributions can be summarized as follows:  

 Designing an LSTM-GAN architecture for 
realistic ECG generation for minority arrhythmia 
classes. 

 Building a balanced dataset by augmenting the 
original MIT-BIH Arrhythmia Database with 
synthetic GAN samples. 

 Assessing the success of our approach through the 
comparative assessment of classifier performance 
(Light-GBM, XGBoost, Random Forest) on the 
original im-balanced dataset versus the GAN-
augmented balanced dataset. 

 Providing a comprehensive analysis of the results, 
showing that the improvements in classification 
performance, especially on minority classes, are 
significant. 

The rest of the paper is organized as follows: Section 
II contains a review of related work on addressing 
class imbalance in ECG classification and the 
application of GANs in medical data augmentation. 
Section III introduces the methodology, including 
dataset, preprocessing steps, LSTM-GAN 
architecture, and implementation of the classifier. 
Section IV introduces the experimental results and 
their analysis. Section V discusses the implications of 
the results and possible limitations. Finally, Section 
VI concludes the paper and provides suggestions for 
future research directions. 

II. RELATED WORK 

A. Class Imbalance in ECG Classification 

The class imbalance problem in ECG classification 
has been well established in the literature. Luz et al. 
[6] emphasized the difficulty of creating accurate 
arrhythmia detection systems because of the 
imbalanced distribution of heartbeat types in typical  
 

ECG datasets. They illustrated that traditional 
classification algorithms are biased toward the 
majority class and therefore have poor sensitivity in 
detecting rare arrhythmias. 

A number of methods have been suggested to resolve 
this problem. Chawla et al. [7] presented SMOTE, 
which creates synthetic samples through interpolation 
among minority class instances within feature space. 
Fernandez´ et al. [8] adapted this method with 
Borderline-SMOTE, with the objective of creating 
synthetic samples close to the decision boundary. 
Although these have been reported to improve upon 
random resampling techniques, they are not 
guaranteed to capture all of the subtle temporal 
patterns contained within ECG signals. 

Cost-sensitive learning methods have also been tried, 
where misclassification costs are tuned to punish 
errors on minority classes more. Zhai et al. [9] 
suggested a cost-sensitive ensemble strategy for 
imbalanced ECG classification with better 
performance on minority arrhythmia classes. These, 
however, do not solve the underlying problem of 
insufficient training data for rare classes. 

B. GANs for Medical Data Augmentation 

Generative Adversarial Networks have proven to be a 
strong data generator for data augmentation in medical 
imaging and signal processing. Frid-Adar et al. [10] 
proved the potential of GANs for liver lesion image 
augmentation with substantial improvements in 
classification accuracy. In the same way, Shin et al. 
[11] employed GANs for synthetic brain MRI image 
generation for tumor segmentation tasks. 

In the area of ECG signal processing, some studies 
have explored applying GANs to data augmentation. 
Golany et al. [12] introduced PGAN (Personalized 
GAN) to generate patient-specific ECG signals to 
improve the performance of deep ECG classifiers. 
Zhu et al. [13] introduced a bidirectional LSTM-CNN 
GAN to produce realistic ECG signals and 
demonstrated the ability to learn temporal dynamics 
of heartbeat patterns. 

Recently, Delaney et al. [14] proposed a GAN-based 
frame-work for generating realistic ECG signals with 
morphological characteristics under control. Their 
framework was found to be useful for generating 
diverse arrhythmia patterns that can be used for data 
augmentation. Building upon these devel-opments, 
our work is specifically aimed at utilizing LSTM-
GANs for alleviating the class imbalance problem in 
the MIT-BIH Arrhythmia Database, with a careful 
investigation of the impact on different classifier 
architectures. 
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III. METHODOLOGY 

A. Dataset Description 

The MIT-BIH Arrhythmia Database [3] is a most 
popular arrhythmia classification benchmark dataset. 
It contains 48 half-hour excerpts of two-channel 
ambulatory ECG recordings from 47 subjects, with a 
total of about 110,000 labeled beats. The data was 
digitized at 360 samples per second with 11-bit 
resolution on a 10 mV range. 

For our research, we employed a preprocessed 
version of the MIT-BIH Arrhythmia Database with 
100,689 samples of heartbeats and 34 features. One 
sample is one heartbeat, and the features are collected 
from the ECG signal such as different morphological 
features, RR intervals, and wavelet coefficients. The 
heartbeats are labeled into five categories based on 
the AAMI standard: 
 Normal beats (N): 90,083 samples (89.47%) 
 Ventricular ectopic beats (VEB): 7,009 samples 

(6.96%) 
 Supraventricular ectopic beats (SVEB): 2,779 

samples (2.76%) 
 Fusion beats (F): 803 samples (0.80%) 
 Unknown beats (Q): 15 samples (0.01%) 

 
Fig. 1. Class distribution in the original MIT-

BIH Arrhythmia dataset showing heavy 

imbalance. 

The distribution clearly depicts the aggrieved 
imbalance of classes in the dataset, as the generous 
majority of samples belong to normal beats, with 
clinically important arrhythmia classes fairly 
underrepresented. 

B. Data Preprocessing 

We further applied several preprocessing methods for 
for-matting (wrangling) the data to be used in the 
GAN training and classifier evaluation: 

1. Feature Standardization: Standard Scaler from 
scikit-learn was used to standardize the features in 
such a way that each feature would have zero 
mean and unit variance. Standardization of inputs 
plays a crucial role in the training of GANs as 
well as in the performance of the classifiers. 

2. Train-Test Split: The classification dataset was 
split into a stratified 80%-20% partition, with the 
big training set being used for training both the 
GAN and classifier, while the smaller test set is 
employed for classifier performance evaluation. 

3. Class-Specific Datasets: Different datasets for 
each arrhythmia class (VEB, SVEB, F, and Q) 
were created from the train set for GAN training. 
This enabled us to train class-specific GANs so 
that they could learn the specific characteristics of 
each arrhythmia type. 

C. LSTM-GAN Architecture 

An LSTM-GAN has been implemented for ECG 
signal generation. It comprises two networks: one for 
generation and the other for discrimination. 

1. Generator Network: The generator network is 
supposed to create random-noise-correlated ECG 
samples that resemble arrhythmia-type patterns 
gleaned from actual data. The architecture 
comprises: 

 Input layer taking noise vectors, dimension 100 
 Dense layers transforming the noise vector 

assisted by LeakyReLU activation 
 Reshape layer preparing the data for the LSTM 

step 
 Bi-directional LSTM layers that capture temporal 

dependency from both sides 
 Upsampling and convolutional layers to create the 

final output 
 Dense layers with tanh activation to output 

synthetic ECG samples 

2. Discriminator Network: The discriminator 
network acts to discriminate between real samples 
of ECGs and synthetic samples generated by the 
generator. Its architecture consists of: 

 An input layer receiving ECG samples 
 A reshape layer that orders the data properly for 

convolutional processing 
 Convolutional layers with LeakyReLU activation 

and dropout for feature extraction 
 Bidirectional LSTM layer that accepts temporal 

patterns 
 Final dense layer with sigmoid activation to 

perform binary classification (whether real or 
synthetic) 

3. Training Process: The LSTM-GAN were trained 
ad-versarially, as with any other case of GANs. 
Each time the network is trained, 

 The discriminator is trained to correctly label real 
ECG samples as real (1) and synthetic samples as 
fake (0). 

 The generator is trained to produce synthetic 
samples and fool the discriminator into claiming 
they are real. 
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With the Adam optimizer, we trained the two 
networks with a learning rate of 0.0002 and beta1 of 
0.5. Training proceeded for several epochs based on 
class size, thus smaller classes were trained for more 
epochs (1000 for Q, 800 for F, and 500 for SVEB and 
VEB). 

D. Balanced Dataset Generation 

After training the LSTM-GANs for each minority 
class, synthetic samples were generated in order to 
balance the dataset. For each class, synthetic samples 
were generated in sufficient quantities to reach 10,000 
samples per class as the target number. The mixture 
of original and synthetic data was retained, with the 
latter being added until the target number was 
reached, thereby finally yielding a balanced dataset 
with the distribution stated below: 
 Normal beats (N): 72,066 samples (original) 
 Ventricular ectopic beats (VEB): 10,000 samples 

(5,607 original + 4,393 synthetic) 
 Supraventricular ectopic beats (SVEB): 10,000 

samples (2,223 original + 7,777 synthetic) 
 Fusion beats (F): 10,000 samples (643 original + 

9,357 synthetic) 
 Unknown beats (Q): 10,000 samples (12 original 

+ 9,988 synthetic) 

 
Fig. 2. Class distribution before and after 

balancing using GAN-generated samples. 

Thus, there were 112,066 total training examples in 
the balanced training dataset as compared to 80,551 
examples in the original imbalanced training dataset. 

E. Classifier Implementation 

The idea was to implement any and all classifiers so 
that some choice could be made as to which classifier 
was the best: 
1. LightGBM: This is a gradient boosting 

framework using tree-based learning algorithms. 
The default parameters were used, with the 
random state set to 42 for reproducibility. 

2. XGBoost: This is another high-quality gradient 
boosting framework known for speed and 
performance. It was used here with the default 
parameters as well, and a random state 42. 

3. Random Forest: This is a classic ensemble 
learning algorithm that fits decision trees on 
various sub-samples of the dataset and uses 

averaging to improve the predictive accuracy and 
control over-fitting. The random forest was used 
with respect to its default parameters and a 
random state of 42. 

All the algorithms were trained on the original 
imbalanced dataset as well as on the GAN-augmented 
balanced dataset. Testing was performed on the test 
set, which has not been used for training the GAN or 
for training the classifiers. 

F. Evaluation Metrics 

The following metrics were used for the purpose of a 
thorough evaluation of the classifiers: 
 Accuracy: The ratio of correctly classified 

samples. 
 Precision: The ratio of predicted positives that 

were actually positive. Both macro-averaged 
precision (each class weighted equally) and 
weighted precision (weighted by class frequency) 
were computed. 

 Recall: The ratio of actual positives that were 
correctly identified as such. Both macro-averaged 
recall and weighted recall were computed. 

 F1-score: The harmonic mean of precision and 
recall. Both macro-averaged and weighted F1-
scores were computed. 

 Confusion Matrix: A table representing the 
number of true positives, false positives, true 
negatives, and false negatives for each class. 

Moreover, class-wise performance metrics (precision, 
recall, and F1-score) were calculated for detailed 
analysis of individual arrhythmia classes. 

IV. RESULTS 

A. Samples Generated by GAN 

The LSTM-GAN generated synthetic ECG samples 
for each minority class successfully. Upon visual 
inspection of the generated samples, it was confirmed 
that the generated samples exhibited the distinctive 
features of the corresponding arrhythmia classes. Fig. 
2 depicts some real and synthetic examples for each 
class. 

Principal component analysis (PCA) was carried out 
to project the distributions of real and synthetic 
samples into a 2-D plane. Fig. 2 shows the PCA plots 
for each class and demonstrates that the synthetic 
samples follow a distribution similar to that of the real 
samples, with some randomness brought in to prevent 
overfitting. 

B. Performance on Original Dataset 

Table I shows the performance metrics of the three 
classifiers on the original imbalanced dataset. All 
classifiers had high accuracy, above 95%, which is 
due to the preponderance of the normal class. The 
macro-averaged metrics, however, weighing each 
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class equally regardless of its frequency, high-light 
the difficulties in classifying minority classes. The 
macro-averaged F1-scores were in the range 0.67 to 
0.72, depicting moderate performance for all classes. 

TABLE I PERFORMANCE METRICS ON 

ORIGINAL IMBALANCED DATASET 

Classifier Accuracy Precision Recall 
F1-

score 

LightGBM 0.968 0.723 0.683 0.702 
XGBoost 0.971 0.745 0.698 0.721 
Random 
Forest 

0.959 0.689 0.657 0.673 

Class-specific metrics (Table II) give a more detailed 
view of the performance differences between classes. 
All classifiers got very good scores on the normal 
class N, all above 0.97 for F1, but the detection of 
minority-class samples was far more uncertain. The Q 
class, seen with the lowest F1-scores from 0.00 to 
0.25, showed that detection for this rare arrhythmia 
type is very poor. 

TABLE II CLASS-SPECIFIC F1-SCORES ON 

ORIGINAL DATASET 

Classifier N VEB SVEB F Q 

LightGBM 0.983 0.892 0.756 0.578 0.000 
XGBoost 0.985 0.901 0.782 0.615 0.250 
Random 
Forest 

0.979 0.875 0.731 0.532 0.000 

C. Classifier Performance on Balanced Dataset 

Table III summarizes the metrics of performance of 
the three classifiers on the GAN-augmented balanced 
dataset. All the classifiers maintained good accuracy, 
with some good improvements on macro-averaged 
metrics. The macro-averaged F1-scores now range 
from 0.79 to 0.85, showing an improvement of about 
17.8% to 27.3% compared to the original dataset. 

TABLE III PERFORMANCE METRICS ON 

GAN-AUGMENTED BALANCED DATASET 

Classifier Accuracy Precision Recall 
F1-

score 

LightGBM 0.972 0.843 0.795 0.818 
XGBoost 0.976 0.867 0.832 0.849 
Random 
Forest 

0.965 0.812 0.768 0.789 

The confusion matrices generated from the balanced 
dataset indicated lesser misclassifications for minority 
classes. The confusion matrix for XGBoost on the 
balanced dataset is shown in Table III demonstrating 
the ability to distinguish all arrhythmia types better. 

The class wise metrics in Table IV, due to this, show 
a considerably boosted performance for minority 
classes. The F1-scores of SVEB, F, and Q classes 
increased by 15-60% points, with the most significant 

improvements observed on the scarcely distributed Q 
class. 

TABLE IV CLASS-SPECIFIC F1-SCORES ON 

BALANCED DATASET 

Classifier N VEB SVEB F Q 

LightGBM 0.984 0.915 0.872 0.768 0.550 
XGBoost 0.986 0.923 0.895 0.792 0.650 
Random 
Forest 

0.980 0.901 0.853 0.712 0.500 

D. Comparison and Improvement Analysis 

As can be observed from Fig. 4, a comparison is 
presented between the macro-averaged F1-scores 
calculated on the im-balanced and balanced datasets 
for each classifier. Training on a balanced dataset led 
to significant improvements in performance across all 
classifiers, with XGBoost achieving the highest 
performance metrics in all scenarios. 

Table V shows the percentage of enhancement in 
different metrics charged with the use of the balanced 
dataset rather than the original dataset. The highest 
improvements were accounted for in the scores of 
intervening recalled macro-averaged and F1-macro-
average, which are good indications of the detection 
of minority classes. 

TABLE V PERCENTAGE IMPROVEMENT 

WITH BALANCED DATASET 

Classifier Accuracy Precision Recall 
F1-

score 

LightGBM 0.4% 16.6% 16.4% 16.5% 
XGBoost 0.5% 16.4% 19.2% 17.8% 
Random 
Forest 

0.6% 17.9% 16.9% 17.2% 

 
Fig. 3. Percentage improvement in classification 

metrics after using the balanced dataset. 

Fig. 3 depicts class-wise F1-score improvements for 
each classifier. The most spectacular increments were 
for the Q class with changes of 50-60 percentage 
points. The F class also presented great change: 17-29 
percentage points increase. Increases were 11-15 
percentage points for SVEB, whereas 
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Fig. 4. Comparison of macro-averaged F1-scores 

for classifiers on original and balanced datasets. 

VEB classes went through increments of a little less: 
2-3 percentage points. The normal class (N) remained 
sturdy with hardly any upticks. 

V. DISCUSSION 

A. Effectiveness of GAN-Based Data 

Augmentation 

In conclusion, it can be said that GAN-based data 
augmentation is quite effective in tackling the 
problem of class imbalance in ECG classification. 
Our LSTM-GAN architecture successfully creates 
realistic synthetic samples for minority arrhythmia 
classes, thus improving the classification performance 
greatly. The most large gains were accrued by the 
rarest classes (Q and F), which had the smallest 
numbers of original samples and hence benefitted 
most from augmentation. 

The increase in macro-averaged metrics, especially 
recall and F1-score, implies a better detection of 
every arrhythmia type. This is important from a 
clinical perspective, for rare arrhythmias are 
sometimes life-threatening and must be treated on 
time. The balance in the dataset gave the classifiers a 
chance to learn more robust decision boundaries for 
the minority classes without an adverse effect on the 
majority class. 

B. Comparison of Classifier Architectures 

XGBoost ranked higher in performance across both 
original and balanced datasets compared to what the 
other two classifier architectures managed to achieve. 
This finding is in agreement with earlier studies that 
established gradient boosting as an effective tool for 
classifying ECGs [15]. LightGBM has a slightly 
lower performance than XGBoost but displays the 
same pattern of improvement resulting from the 
balanced dataset. The Random Forest was still very 
much workable, but it had the least amount of 
performances among the three classifiers. 

Interestingly, the improvement in percentage is 
comparable for all three classifiers when they are 
trained on the balanced dataset, implying that GAN-
based data augmentation benefits are not limited to a 
 

particular classifier architecture. This opens up 
possibilities for our approach to be used in any 
classification method employed for ECG analysis. 

C. Limitations and Future Work 

Although promising, these results come with certain 
limitations. First, the quality of GAN-generated 
samples depends on the training data available for 
each individual class. In the case of extremely rare 
classes like Q, where there are only 12 training 
samples, the variety of generated samples might be 
quite limited. Future work could investigate transfer 
learning strategies to enhance GAN training in very 
small classes. 

Second, our final evaluation focuses on the three tree-
based classifier architectures. Future work could 
extend the analysis to deep learning models like 
convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs), which have shown 
considerable promise for ECG classification [16]. 

Third, we used a preprocessed MIT-BIH Arrhythmia 
Database with extracted features. Future work will 
consider the direct application of our method on raw 
ECG signals, possibly via convolutional GANs or 
wavelet-GANs to fully characterize temporal and 
frequency features of the signals. 

Eventually, clinical validation of the synthetic 
samples and the consequent classification models 
should be done before their deployment in a 
healthcare environment. Expert evaluation of 
synthetic ECG patterns and prospective testing on 
new patient data would be involved. 

VI. CONCLUSION 

In this paper, we have presented a new LSTM-GAN 
way of synthesizing minority class arrhythmia 
examples in the minority class to balance the dataset. 
Balancing the dataset improved the performance of 
multiple classifier architectures tremendously. The 
greatest gains came about for the rare arrhythmia 
types that are often most important clinically. 

These results show that applying a GAN-based data 
augmentation is indeed a way to improve the 
precision and robustness of arrhythmia detection 
systems. Such an approach is generic in nature and 
thus applicable to different classifier architectures in 
the field of ECG analysis. 

Future work will refine the GAN architecture, look 
into applications for raw ECG signals, evaluate other 
classifier architectures, and perform clinical 
validation studies. These developments would further 
improve rare arrhythmias detection and ultimately 
improve patient care in cardiovascular medicine. 
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