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ABSTRACT

Web applications are typically developed with hard 
time constraints and are often deployed with security 
vulnerabilities. Automatic web vulnerability scanners 
can help to locate these vulnerabilities and are popular 
tools among developers of web applications. Their 
purpose is to stress the application from
point of view by issuing a huge amount of interaction 
within it. Two of the most widely spread and 
dangerous vulnerabilities in web applications are SQL 
injection and cross site scripting (XSS), because of 
the damage they may cause to the victim business. 
The most common types of software faults are 
injected in the web application code which is then 
checked by the scanners. The results are compared by 
analyzing coverage of vulnerability detection and 
false positives. Added to this it checks 
domain or URL gives is present in any of the domain 
blacklist sites. It also provides   I Category
category classification for the given domain. So this 
gives the analyst an advantage of having the Domain 
rating for the given domain with a lookup on top 
blacklist providing sites and also the Category 
Classification for the given domain. Three leading 
commercial scanning tools are evaluated and the 
results show that in general the coverage is low and 
the percentage of false positives is very 
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Web applications are typically developed with hard 
time constraints and are often deployed with security 
vulnerabilities. Automatic web vulnerability scanners 
can help to locate these vulnerabilities and are popular 
tools among developers of web applications. Their 
purpose is to stress the application from the attacker's 
point of view by issuing a huge amount of interaction 
within it. Two of the most widely spread and 
dangerous vulnerabilities in web applications are SQL 
injection and cross site scripting (XSS), because of 

ictim business. 
The most common types of software faults are 
injected in the web application code which is then 
checked by the scanners. The results are compared by 
analyzing coverage of vulnerability detection and 
false positives. Added to this it checks whether the 
domain or URL gives is present in any of the domain 
blacklist sites. It also provides   I Category- the 
category classification for the given domain. So this 
gives the analyst an advantage of having the Domain 

lookup on top 
blacklist providing sites and also the Category 
Classification for the given domain. Three leading 
commercial scanning tools are evaluated and the 
results show that in general the coverage is low and 

 high. 

Interarea oscillation, Kalman filter, model 
prediction, multisensor data fusion, phasor 
measurement unit (PMU), power system stability, 

level measurement fusion 

NOMENCLATURE 

Acronyms and Abbreviations of 
Formulations 

KLPF    Kalman like particle filter.
MHE     Moving horizon estimate.
PMU     Phasor measurement unit.
TFMP    Track-level fusion-based model prediction.
TFC       Track fusion center. 
α          Constant matrix with compatible dimension                     
f (.)         Nonlinear function for state transition
x0           Initial condition of the oscillation state.
w            Random process noise.
t              Time instant. 
T             Number of time instants.
z             Observation vector. 
p             Number of synchrophasor observations.
X             State matrix for oscillations.
Υ           Observation noise. 
N            Number of sensors. 
 
I. INTRODUCTION 

Modern electrical grids demand accurate sensor 
measurements and communication channels to 
perform effective coordinated operations. Recent 
deployment of PMUs in transmission networks 
enables real-time grid dynamics to be recorded and 
transmitted to local data acquisition se
Subsequently, signal processing algorithms can be 
applied to extract system information for online grid 
operations. However, the close coupling between 
cyber and physical operations can make system 
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based model prediction. 
 

Constant matrix with compatible dimension                     
Nonlinear function for state transition model. 
Initial condition of the oscillation state. 
Random process noise. 

Number of time instants. 

Number of synchrophasor observations. 
State matrix for oscillations. 

grids demand accurate sensor 
measurements and communication channels to 
perform effective coordinated operations. Recent 
deployment of PMUs in transmission networks 

time grid dynamics to be recorded and 
transmitted to local data acquisition servers. 
Subsequently, signal processing algorithms can be 
applied to extract system information for online grid 
operations. However, the close coupling between 
cyber and physical operations can make system 
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operations vulnerable to cyberattacks[1], [2].  In this 
paper, the focus is toward cyberattacks in the form of 
data injections [1]–[10]. Abnormal data superimposed 
into collected synchrophasor measurements can cause 
false system information to be interpreted by installed 
monitoring algorithms. This can then lead to delays in 
mitigation actions. Among monitoring schemes using 
PMU measurements, state estimation and oscillation 
detection are more popular applications. Despite 
several methods are proposed for bad data detection in 
state estimation [4]–[6], none explored in the field of 
oscillation detection. Thus, the motivation of this 
paper improves the immunity of oscillation detection 
schemes against data injections. 

Power oscillations are electromechanical dynamics 
between synchronous generators in an interconnected 
grid. The frequency of local oscillation ranges from 
0.8 to 2 Hz, while the frequency of intraarea mode are 
from 0.1 to 0.8 Hz [11], [12]. Interarea oscillations are 
difficult to monitor and are prone in systems that are 
operating near their technical transfer capacity. As a 
result, monitoring algorithms to detect interarea 
oscillation using synchrophasor measurements are 
proposed in recent time [12]–[18]. The objective is to 
detect lightly damped oscillations at early stage before 
they trigger angular and voltage instabilities. Interarea 
oscillation was responsible for the North America 
northwestern blackout [12]. The present research 
trend is moving toward recursively monitoring 
oscillations under ambient situations. Recursive 
techniques can be categorized into: 1) curve-fitting; 
and 2) an a priori knowledge-based. The first refers to 
publications that extract oscillatory parameters 
directly from measurements [14]–[16]. The latter are 
associated with methods that approximate parameters 
using previous knowledge of the system as well as the 
collected measurements [17]. An a priori knowledge 
based approach provides higher estimation accuracy 
under ambient or noisy conditions when accurate 
model is provided [18]. In this case, approximating 
electromechanical oscillations as a sum of 
exponentially damped sinusoidal signals is considered 
an accurate model representation in oscillation 
monitoring research [13]. Hence, the emphasis of this 
paper is toward enhancing a priori knowledge-based 
techniques. Despite published methods in oscillation 
detection can operate under noisy conditions, they are 
not proven to be resilient against data-injection 
attacks. Such attack is an emerging threat due to the 
increasing dependency of digital measurements for 
monitoring and control applications in recent years 

[7]. Majority of published monitoring methods are 
formulated based on the assumption of the 
measurements are not contaminated by human 
interventions. According to [3] and [8], cyberattacks 
through introducing periodic or continuous bias to 
system measurements are possible. There are no 
guarantees that all cyberattacks can be prevented. Any 
successful attack will cause existing monitoring 
schemes to generate inaccurate system information, 
which may then lead to cascading failures [7], [9], 
[10]. In recent literature, several methods are 
proposed to identify abnormal data segments and 
isolate attacked sensors [4], [7]–[10]. However, they 
usually require a large data batch and are 
computational intensive. Although an attacked sensor 
can be eventually identified, the time between the 
start of the attack until successful isolation can be in 
minutes or hours. This is a significant time window to 
trigger wide-area blackouts as operators are still being 
fed with false information. Referring to [12] and [19], 
it only takes minutes to make interarea oscillation 
become lightly damped and generate wide-area 
angular and voltage instabilities. Coming from the 
system operational perspective, the key objective is to 
minimize the potential damage of data-injection attack 
through novel processing of information collected 
from distributed sensors. To the authors’ knowledge, 
such enhancement in oscillation monitoring 
algorithms has not been proposed. Therefore, this 
paper contributes toward proposing a signal 
processing solution to enhance the resilience of 
existing oscillation monitoring methods against 
contaminated measurements. Since data-injection 
attacks in electrical grids can be considered as a 
regional event, the use of distributed architecture such 
as [18] is an adequate option against data 
contaminations. However, given the uncertainties of 
datainjection attack in the prescribed error statistics, it 
can be inappropriate to spend a huge amount of 
computational power to filter erroneous information 
as used by the algorithmic structure. Referring to [13], 
monitoring algorithms shall meet: 1) robustness 
against random fluctuations and bias; and 2) the 
computational cost of the propagation of estimation 
of each electromechanical oscillations. To achieve the 
robustness, while optimizing the computational 
complexity, constraints of perturbation and random 
fluctuations shall be considered. The aim is to 
maintain the accuracy of extracting oscillatory 
parameters as well as detecting potential monitoring 
nodes that are being attacked. In this paper, we 
integrated a modified KLPF-based smoother from 
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[18] into the proposed TFMP approach. This concept 
is inspired from multisensory data fusion theory [21] 
and derived to support the formulation of providing 
immunity toward data-injection attacks. Here, the 
TFC represents the collection of measurements from 
all local sensors. The concept is developed in a 
distributed feedback environment. 
 
To understand the integration of data-injection attacks 
into the oscillation monitoring application, an 
overview of the proposed multisensor TFMP is 
illustrated in Fig. 1. The considered scenario assumed 
that the attacker is smart enough to inject data that can 
imitate regular variations of small-signal system 
dynamics. TFMP can resolve this concern by 
manipulating estimated oscillation parameters from 
all local sensor monitoring nodes. In this paper, a 
local sensor monitoring node refers to a site where 
KLPF-based smoother will be applied to extract 
oscillation parameters from PMU measurements 
collected at a substation. Furthermore, each 
monitoring node is assumed to be able to interact with 
its neighbors through substation communication 
channels. The estimated parameters are then 
communicated to the TFC and followed by track 
association and track fusion at the global level. Note 
the TFC is developed to compute and minimize the 
errors of filtering, prediction, and smoothing within 
each local sensor monitoring node. 

 
Fig 1: Proposed TFMP scheme to estimate and detect 

data-injection attacks during power oscillations 
monitoring 

The paper is organized as follows. The proposed 
scheme is formulated in Section II. In Section III, the 
implementation and evaluation on a test case is 
discussed, and finally the conclusions are drawn in 
Section IV.  
 
II. LITERATURE SURVEY 

 
1. T. T. Kim and H. V. Poor, “Strategic 

protection against data-injection attacks on 
power grids,” IEEE Trans. Smart Grid, vol. 2, 
no. 2, pp. 326–333, Jun. 2016. 

Data injection attacks to manipulate system state 
estimators on power grids are considered. A unified 
formulation for the problem of constructing attacking 
vectors is developed for linearized measurement 
models. Based on this formulation, a new low-
complexity attacking strategy is shown to 
significantly outperform naive ℓ1 relaxation. It is 
demonstrated that it is possible to defend against 
malicious data injection if a small subset of 
measurements can be made immune to the attacks. 
However, selecting such subsets is a high-complexity 
combinatorial problem given the typically large size 
of electrical grids. To address the complexity issue, a 
fast greedy algorithm to select a subset of 
measurements to be protected is proposed. Another 
greedy algorithm that facilitates the placement of 
secure phasor measurement units (PMUs) to defend 
against data injection attacks is also developed. 
Simulations on the IEEE test systems demonstrate the 
benefits of the proposed algorithms. 
 
2. O. Kosut, L. Jia, R. J. Thomas, and L. Tong, 
“Limiting false data attacks on power system state 
estimation,” J. Fourier Anal. Appl., vol. 14, pp. 
877–905, Dec. 2016 
Malicious attacks against power system state 
estimation are considered. It has been recently 
observed that if an adversary is able to manipulate the 
measurements taken at several meters in a power 
system, it can sometimes change the state estimate at 
the control center in a way that will never be detected 
by classical bad data detectors. However, in cases 
when the adversary is not able to perform this attack, 
it was not clear what attacks might look like. An 
easily computable heuristic is developed to find bad 
adversarial attacks in all cases. This heuristic recovers 
the undetectable attacks, but it will also find the most 
damaging attack in all cases. In addition, a Bayesian 
formulation of the bad data problem is introduced, 
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which captures the prior information that a control 
center has about the likely state of the power system. 
This formulation softens the impact of undetectable 
attacks. Finally, a new L∞ norm detector is 
introduced, and it is demonstrated that it outperforms 
more standard L2 norm based detectors by taking 
advantage of the inherent sparsity of the false data 
injection. 
 
3. M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. 
Kulkarni, and H. V. Poor, “Sparse attack 
construction and state estimation in the smart 
grid: Centralized and distributed models,” IEEE J. 
Sel. Areas Commun., vol. 31, no. 7, pp. 1306–1318, 
Jul. 2015. 
New methods that exploit sparse structures arising in 
smart grid networks are proposed for the state 
estimation problem when data injection attacks are 
present. First, construction strategies for unobservable 
sparse data injection attacks on power grids are 
proposed for an attacker with access to all network 
information and nodes. Specifically, novel 
formulations for the optimization problem that 
provide a flexible design of the trade-off between 
performance and false alarm are proposed. In 
addition, the centralized case is extended to a 
distributed framework for both the estimation and 
attack problems. Different distributed scenarios are 
proposed depending on assumptions that lead to the 
spreading of the resources, network nodes and 
players. Consequently, for each of the presented 
frameworks a corresponding optimization problem is 
introduced jointly with an algorithm to solve it. The 
validity of the presented procedures in real settings is 
studied through extensive simulations in the IEEE test 
systems. 
 
4. O. Vukovic, K. C. Sou, G. Dan, and H. 
Sandberg, “Network-aware mitigation of data 
integrity attacks on power system state 
estimation,” IEEE J. Sel. Areas Commun., vol. 30, 
no. 6, pp. 1108–1118, Jul. 2016. 
Critical power system applications like contingency 
analysis and optimal power flow calculation rely on 
the power system state estimator. Hence the security 
of the state estimator is essential for the proper 
operation of the power system. In the future more 
applications are expected to rely on it, so that its 
importance will increase. Based on realistic models of 
the communication infrastructure used to deliver 
measurement data from the substations to the state 
estimator, in this paper we investigate the 

vulnerability of the power system state estimator to 
attacks performed against the communication 
infrastructure. We define security metrics that 
quantify the importance of individual substations and 
the cost of attacking individual measurements. We 
propose approximations of these metrics, that are 
based on the communication network topology only, 
and we compare them to the exact metrics. We 
provide efficient algorithms to calculate the security 
metrics. We use the metrics to show how various 
network layer and application layer mitigation 
strategies, like single and multi-path routing and data 
authentication, can be used to decrease the 
vulnerability of the state estimator. We illustrate the 
efficiency of the algorithms on the IEEE 118 and 300 
bus benchmark power systems. 
 
III. PROPOSED SYSTEM 

his section derives the formulation of the proposed 
scheme. It begins with outlining the assumed system 
model, followed by the state representation of 
electromechanical oscillations. The TFMP algorithm 
is then built on it for calculating the estimates. An 
overview of the formulation framework of this section 
is illustrated in Fig. 2. It summarizes the formulation 
and equations involved at each step while tackling 
random data-injection attacks.  
 
Note the formulation is derived from a perspective of 
a data-based approach. It is not restricted to linearized 
differential equations, which is merely a simplified 
model of the true system. In the field of real-time 
dynamic monitoring, especially for wide-area 
monitoring system applications, the notion is to 
become less dependent on classic models and  
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Fig 2: Formulation framework of the proposed 
scheme. 

 
adopt real-time system identification techniques. The 
reason Fig. 2. Formulation framework of the proposed 
scheme is classic differential equations are less 
representative of continuous random load variations, 
line temperature variations, and other operational 
uncertainties. Although using differential equation-
based models are suitable for some steady-state or 
static applications like state estimation or automatic 
generation control, it is not suitable for monitoring 
electromechanical interactions of synchronous 
generators [13]. Therefore, system parameters are not 
extracted from offline predetermined power system 
models. Instead, the proposed method extracts desired 
parameters from PMU measurements. A. State 
Representation of Observation Model A power grid 
prone to data-injection attacks can be expressed as a 
nonlinear dynamical system model. Perturbations and 
random fluctuations are part of noise induced 
transitions in a nonlinear system with dynamics. It is 
expressed as αxt+1 = f (xt,wt), t = 0, 1, . . . , T (1) 

where α is the constant matrix with compatible 
dimensions to the model dynamics, f (.) is the 
nonlinear function representing the state transition 
model, x0 ∈ IRr is the initial condition of the 
oscillation state, and superscript r is the size of the 
oscillation state vector in the subspace IR. In addition, 
wt ∈ IRr is the random process noise, t is the time 
instant, and T is the number of time instants. Note (1) 
represents the equation of a systemwhich has 
nonlinear dynamics. Perturbations and random 
fluctuations are part of noise-induced transitions in a 
nonlinear system. These can be from load variations 
or switching transients of installed devices. Equation 
(1) can also be represented by any other dynamical 
system model. It is not only limited to power systems. 
It is assumed that the power grid described in (1) will 
be monitored by N number of synchronized sensors in 
a track-level measurement fusion environment. 
Computation is conducted at a central station, i.e., 
TFC, which involves control signals at each local 
node and predictive estimation sequences are 
generated in the presence of random noise 
fluctuations. These local sensors will basically be 
PMUs installed in highvoltage substations, and all 
will operate at the same sampling rate. The 
observations vector for extracting electromechanical 
oscillations at the ith node possibly affected by the 
attack can be defined as 
zit 
= hit 
(xt) + υi 
t , i = 1, . . . , N (2) 
where zit ∈ IRpi , pi is the number of synchrophasor 
observations made by the i-sensor, hi(.) is a nonlinear 
function representing the local observation matrix of 
ith sensor, xt is the state matrix for oscillations, and 
υi t ∈ IRpi is the observation noise of the ith sensor. 
A dynamical power grid will be governed by the 
following constraints: xt ∈ Xt,wt ∈ Wt, υt ∈ Vt 
(3) where Xt, Vt, and Wt are assumed to have 
Gaussian probability distribution function. 
 
Assumption 1: The noises wt and νt are all initially 
assumed to be uncorrelated zero-mean white Gaussian 
such that IE[wt] = IE[νt] = IE[wgνT h ] = 0, ∀ t. 
Note IE denotes the expectation operator, and 
superscript ∗ denotes the transpose operator. Also, 
IE[wgwTh ] = Rtδgh, IE[νgνT h ] = Qtδgh, ∀t, 
where Rt represents the residual covariance and δgh 
is a Kronecker delta which is one when variables g 
and h are the same. Qt is the process noise correlation 
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factor. Once the observation model is constructed 
from synchrophasor measurements collected from the 
affected location, the corresponding state 
representation of electromechanical oscillations can 
then be formulated in the frequency domain. B. 
Electromechanical Oscillation Model Formulation 
Suppose a measured noise-induced signal contained K 
number of electromechanical oscillations. Referring to 
(2), the observation output signal zit from an ith 
sensor at time t can be modeled in the frequency 
domain as zit = K _ k=1 ake(−σk+j2πfk)tTs + υi t , 
t = 1, 2, . . . . , T (4) where ak is the complex 
amplitude of kth mode, σk is the damping factor, fk is 
the oscillatory frequency, and Ts is the sampling time 
[17]. Equation (2) has been transformed to (4), i.e., 
time domain to the frequency domain, using the 
Laplace transform. The system’s poles and zeros are 
then analyzed in the complex plane. Moreover, it is 
especially important to transform the system into 
frequency domain to ensure whether the poles and 
zeros are in the left or right half planes, i.e., have real 
part greater than or less than zero. For convenience, 
the term −σk + j2πfk is represented in the 
rectangular form as λk. In this paper, the kth 
oscillation or eigenvalue within a mentioned signal is 
described by two states denoted as xk,t and xk+1,t, 
respectively. They can also be expressed for an ith 
sensor as xik ,t = e(−σk+j2πfk)tTs , xik +1,t = 
bk+1e(−σk+1+j2πfk+1)tTs . (5) The term bk 
represents the complex amplitude of the kth mode. 
Based on (5), a signal consisting of K number of 
exponentially damped sinusoids will be modeled by 
2K number of states. Note that the kth eigenvalue of a 
particular signal is described by two states denoted as 
xk,t and xk+1,t, i.e., for kth and k + 1th mode, 
respectively. The eigenvalue represents the 
electromechanical oscillations between synchronous 
generators in the physical world. Details can be 
referred to [12] and [13]. In addition, the damping 
factor σk and the corresponding frequency fk of each 
oscillation will be computed from the state xt. 
Estimating oscillatory parameters in the presence of a 
random data-injection attack will require the complete 
observability of the oscillation observation matrix. 
For a nominal case without data injections, this was 
previously achieved by using an expectation 
maximization (EM) algorithm that utilized the initial 
correlation information extracted from KLPF [18]. 
Initial correlation information can be defined as the 
information collected from the initial estimates of the 
observation model ˆH 0 t . The superscript 0 

represents the initial estimates. However, considering 
a datainjection attack situation, taking an averaged 
form of the log-likelihood function to improve 
estimate as in [18] is not sufficient. Instead, the initial 
correlation shall be iteratively calculated by: 1) using 
the first and second moments of the input model for a 
node i; 2) getting a priori information from the 
constraints; and 3) getting its observation estimates 
through time and frequency correlation for each ith 
sensor. Note in this paper, monitoring power 
oscillation is used as an application. The proposed 
scheme can be utilized by any other application 
as well. 
 
PHP 6 AND UNICODE 

PHP received mixed reviews due to lacking native 
Unicode support at the core language level. In 2005, a 
project headed by Andrei Zmievski was initiated to 
bring native Unicode support throughout PHP, by 
embedding the International Components for Unicode 
(ICU) library, and representing text strings as UTF-16 
internally. Since this would cause major changes both 
to the internals of the language and to user code, it 
was planned to release this as version 6.0 of the 
language, along with other major features then in 
development. 

PHP 7 

As of 2014, work is underway on a new major PHP 
version named PHP 7. There was some dispute as to 
whether the next major version of PHP was to be 
called PHP 6 or PHP 7. While the PHP 6 unicode 
experiment had never been released, a number of 
articles and book titles referenced the old PHP 6 
name, which might have caused confusion if a new 
release were to reuse the PHP 6 name. After a vote, 
the name PHP 7 was chosen. 

To simulate deliberate attack scenarios, data 
injections are carried out in the collected 
synchrophasor measurements. Since all three 
electromechanical modes are observable at buses 16 
and 17, these two locals are selected as attack nodes. 
Their neighboring nature as shown in Fig. 3 helped to 
create a situation of regional attacks on measured 
data. Simulated attack scenarios at buses 16 and 17 
are as follows. 
 
1) First Injection: Random data injections are 
introduced at bus 16 from 7 to 12 s. 
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2) Second Injection: Signal with relatively high 
energy potency are injected at bus 16 from 22 to 27 s.  
 
3) Third Injection: Small signature of random 
sinusoidal waveforms are introduced at bus 16 from 
44 to 49 s. Also, ambient disturbance-like injections 
are introduced at bus 17 from 48 to 55 s. 
 
4) Fourth Injection: Small signature of random 
sinusoidal waveforms are introduced at bus 16 from 
44 to 49 s. Also, a data-repetition attack was 
introduced at bus 17 from 55 to 60 s. This attack 
replaces the normal oscillation behavior with those 
recorded at bus 17 from 40 to 45 s. 
 
IV. SYSTEM IMPLEMENTATION 

PHP is a server-side scripting language designed for 
web development but also used as a general-purpose 
programming language. As of January 2013, PHP was 
installed on more than 240 million websites (39% of 
those sampled) and 2.1 million web servers. 
Originally created by RasmusLerdorf in 1994, the 
reference implementation of PHP (powered by the 
Zend Engine) is now produced by The PHP Group. 
While PHP originally stood for Personal Home Page, 
it now stands for PHP: Hypertext Preprocessor, which 
is a recursive backronym. 

PHP code can be simply mixed with HTML code, or 
it can be used in combination with various templating 
engines and web frameworks. PHP code is usually 
processed by a PHP interpreter, which is usually 
implemented as a web server's native module or a 
Common Gateway Interface (CGI) executable. After 
the PHP code is interpreted and executed, the web 
server sends resulting output to its client, usually in 
form of a part of the generated web page; for 
example, PHP code can generate a web page's HTML 
code, an image, or some other data. 
 
My-SQL Database 

MySQL is the world's second most widely used 
relational database management system (RDBMS) 
and most widely used open-source RDBMS. It is 
named after co-founder Michael Widenius's daughter, 
The SQL acronym stands for Structured Query 
Language. 

The MySQL development project has made its source 
code available under the terms of the GNU General 
Public License, as well as under a variety of 

proprietary agreements. MySQL was owned and 
sponsored by a single for-profit firm, the Swedish 
company MySQL AB, now owned by Oracle 
Corporation. 
 
V. CONCULSION AND FUTURE WORK 

In this paper, the proposed TFMP-based monitoring 
scheme is proposed and demonstrated to estimate 
power oscillations modes during data-injection 
attacks. The model prediction property of the 
algorithm has helped to remove bias and noise while 
accurately extracting the system parameters. It is 
further facilitated by the derived diagonalized 
interaction filter, which tackles the error covariance in 
the form of subsystems, and thus improving the initial 
oscillatory state estimates. As a result, the 
incorporation of the proposed algorithm into 
oscillation detection has provided more accurate 
results than existing oscillation monitoring schemes in 
the presence of data-injection attacks. The immunity 
of monitoring applications against intentional data 
injections has been enhanced. In the future, studies to 
quantitatively verify the effectiveness and robustness 
of the proposed method to more adverse nonregional 
threats will be conducted. 
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