

@ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Image Processing in MATLAB 9.3

Shete S. G.
School of Mathematical Sciences,

S.R.T.M.University, Nanded, Maharashtra

ABSTRACT

In this paper we introduce how to handle different
kinds of image formats in MATLAB 9.3 by using
Matlab Workspace & its Various Commands. Also we
illustrated example of processing the images

Keywords: Image Processing, Image Formats,
reading Images

Introduction

This worksheet is an introduction on how to handle
images in MATLAB 9.3. When working with images

For further reference on image handling in MATLAB
9.3 you are recommended to use MATLAB 9.3's help
browser. There is an extensive on-line manual for the

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

Image Processing in MATLAB 9.3

School of Mathematical Sciences,
Maharashtra, India

Ghadge Nagnath G.
Assistant Professor, Department o

Computer Science, Mahatma Basweshwar,
Mahavidyalaya, Latur, Maharashtra

In this paper we introduce how to handle different
kinds of image formats in MATLAB 9.3 by using
Matlab Workspace & its Various Commands. Also we
illustrated example of processing the images.

Image Processing, Image Formats,

This worksheet is an introduction on how to handle
images in MATLAB 9.3. When working with images

in MATLAB 9.3, there are many things to keep in
mind such as loading an image, using the right format,
saving the data as different data types, how to display
an image, conversion between different image
formats, etc. This worksheet presents some of the
commands designed for these operations. Most of
these commands require you to have the
processing tool box installed with MATLAB 9.3. To
find out if it is installing, type ver at the MATLAB
9.3 prompt. This gives you a list of what tool boxes
that are installed on your system.

For further reference on image handling in MATLAB
9.3 you are recommended to use MATLAB 9.3's help

line manual for the

Image processing tool box that you can access via
MATLAB 9.3's help browser.

Feb 2018 Page: 925

6470 | www.ijtsrd.com | Volume - 2 | Issue – 2

Scientific
(IJTSRD)

International Open Access Journal

Ghadge Nagnath G.
ssistant Professor, Department of

Computer Science, Mahatma Basweshwar,
, Maharashtra, India

in MATLAB 9.3, there are many things to keep in
mind such as loading an image, using the right format,
saving the data as different data types, how to display
an image, conversion between different image
formats, etc. This worksheet presents some of the

mmands designed for these operations. Most of
these commands require you to have the Image

installed with MATLAB 9.3. To
find out if it is installing, type ver at the MATLAB
9.3 prompt. This gives you a list of what tool boxes

installed on your system.

Image processing tool box that you can access via
MATLAB 9.3's help browser.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 926

The first sections of this worksheet are quite heavy.
The only way to understand how the presented
commands work is to carefully work through the
examples given at the end of the worksheet. Once you
can get these examples to work, experiment on your
own using your favorite image!

Fundamentals

A digital image is composed of pixels which can be
thought of as small dots on the screen. A digital image
is an instruction of how to color each pixel. We will
see in detail later on how this is done in practice. A
typical size of an image is 512-by-512 pixels. Later on
in the course you will see that it is convenient to let
the dimensions of the image to be a power of 2. For
example, 24.=16 In the general case we say that an
image is of size m-by-n if it is composed of m pixels
in the vertical direction and n pixels in the horizontal
direction.

Let us say that we have an image on the format 512-
by-1024 pixels. This means that the data for the image
must contain information about 524288 pixels, which
requires a lot of memory! Hence, compressing images
is essential for efficient image processing. You will
later on see how Fourier analysis and Wavelet
analysis can help us to compress an image
significantly. There are also a few "computer
scientific" tricks (for example entropy coding) to
reduce the amount of data required to store an image.

Image formats supported by MATLAB 9.3

The following image formats are supported by
MATLAB 9.3:
 BMP
 PNG
 SCT
 GIF

 HDF
 JPEG
 PCX
 TIFF
 XWB

Most images you find on the Internet are JPEG-
images which is the name for one of the most widely
used compression standards for images. If you have
stored an image you can usually see from the suffix
what format it is stored in. For example, an image
named myimage.jpg is stored in the JPEG format and
we will see later on that we can load an image of this
format into MATLAB 9.3.

Working formats in MATLAB 9.3

If an image is stored as a JPEG-image on your disc
we first read it into MATLAB 9.3. However, in order
to start working with an image, for example perform a
wavelet transform on the image, we must convert it
into a different format. This section explains four
common formats.

Intensity image (GSI)

This is the equivalent to a "Gray Scale Image (GSI)"
and this is the image we will mostly work with in this
course. It represents an image as a matrix where every
element has a value corresponding to how bright/dark
the pixel at the corresponding position should be
colored. There are two ways to represent the number
that represents the brightness of the pixel: The double
class (or data type). This assigns a floating number ("a
number with decimals") between 0 and 1 to each
pixel. The value 0 corresponds to black and the value
1 corresponds to white. The other class is called uint8
which assigns an integer between 0 and 255 to
represent the brightness of a pixel. The value 0
corresponds to black and 255 to white. The class uint8
only requires roughly 1/8 of the storage compared to
the class double. On the other hand, many
mathematical functions can only be applied to the
double class. We will see later how to convert
between double and uint8.

Binary image

This image format also stores an image as a matrix
but can only color a pixel black or white (and nothing
in between). It assigns a 0 for black and a 1 for white.

Indexed image

This is a practical way of representing color images.
(In this course we will mostly work with Gray Scale
Image (GSI) but once you have learned how to work
with a Gray Scale Image (GSI) you will also know the
principle how to work with color images.) An indexed
image stores an image as two matrices. The first
matrix has the same size as the image and one number
for each pixel. The second matrix is called the color
map and its size may be different from the image. The
numbers in the first matrix is an instruction of what
number to use in the color map matrix.

RGB image

This is another format for color images. It represents
an image with three matrices of sizes matching the

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 927

image format. Each matrix corresponds to one of the
colors red, green or blue and gives an instruction of
how much of each of these colors a certain pixel
should use.

Multiframe image

In some applications we want to study a sequence of
images. This is very common in biological and
medical imaging where you might study a sequence of
slices of a cell. For these cases, the multiframe format
is a convenient way of working with a sequence of
images. In case you choose to work with biological

imaging later on in this course, you may use this
format.

How to convert between different formats

The following table shows how to convert between
the different formats given above. All these commands
require the Image processing tool box!

Image format conversion

(Within the parenthesis you type the name of the
image you wish to convert.)

Operation: Matlab Command

Convert between intensity format to indexed format.gray2ind()
Convert between indexed format to intensity format. ind2gray()
Convert between indexed format to RGB format. ind2rgb()
Convert a regular matrix to intensity format by scaling . mat2gray()
Convert between RGB format to intensity format. rgb2gray()
Convert between RGB format to indexed format. rgb2ind()

The command mat2gray is useful if you have a matrix
representing an image but the values representing the
gray scale range between, let's say, 0 and 1000. The
command mat2gray automatically re scales all entries
so that they fall within 0 and 255 (if you use the uint8
class) or 0 and 1 (if you use the double class).

How to convert between double and uint8

When you store an image, you should store it as a
uint8 image since this requires far less memory than
double. When you are processing an image (that is
performing mathematical operations on an image) you
should convert it into a double. Converting back and
forth between these classes is easy.

I=im2double(I);
converts an image named I from uint8 to double.

I=im2uint8(I);
converts an image named I from double to uint8.

How to read files

When you encounter an image you want to work with,
it is usually in form of a file (for example, if you
down load an image from the web, it is usually stored
as a JPEG-file). Once we are done processing an
image, we may want to write it back to a JPEG-file so

that we can, for example, post the processed image on
the web. This is done using the imread and imwrite
commands. These commands require the Image
processing tool box!

Reading and writing image files

Operation: MATLAB 9.3
command:

Read an image.
(Within the parenthesis you type the
name of the image file you wish to
read. Put the file name within single
quotes ' '.)

imread()

Write an image to a file.
(As the first argument within the
parenthesis you type the name of
the image you have worked with. As
a second argument within
the parenthesis you type the name of
the file and format that you
want to write the image to. Put the
file name within single quotes ' '.)

imwrite(,)

Make sure to use semi-colon ; after these commands,
otherwise you will get LOTS OF number scrolling on
your screen... The commands imread and imwrite

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 928

support the formats given in the section "Image
formats supported by MATLAB 9.3" above.

Loading and saving variables in MATLAB 9.3

This section explains how to load and save variables
in MATLAB 9.3. Once you have read a file, you
probably convert it into an intensity image (a matrix)
and work with this matrix. Once you are done you
may want to save the matrix representing the image in
order to continue to work with this matrix at another
time.

This is easily done using the commands save and
load. Note that save and load are commonly used
MATLAB 9.3 commands, and works independently
of what tool boxes that are installed.

Loading and saving variables

Operation MATLAB 9.3
Command

Save the Variable X. save x
Load the Variable X load x

Examples

In the first example we will down load an image from
the web, read it into MATLAB 9.3, investigate its
format and save the matrix representing the image.

Example 1

Down load the following image (by clicking on the
image using the right mouse button) and save the file
as cell1.jpg.

This is an image of a cell taken by google Images
from robinsonimagelibrary.com

Now open Matla and make sure you are in the same
directory as your stored file. (You can check what
files your directory contains by typing ls at the
MATLAB 9.3 prompt. You change directory using
the command cd.) Now type in the following
commands and see what each command does. (Of
course, you do not have to type in the comments
given in the code after the % signs.)

I=imread('cell1.jpg'); % Load the image file and store
it as the variable I.
whos % Type "whos" in order to find out the size and
class of all stored variables.
save I % Save the variable I.
ls % List the files in your directory.
There should now be a file named "I.mat" in you
directory containing your variable I.

Note that all variables that you save in MATLAB 9.3
usually get the suffix .mat.

Next we will see that we can display an image using
the command imshow. This command requires the
image processing tool box. Commands for displaying
images will be explained in more detail in the section
"How to display images in MATLAB 9.3" below.

clear % Clear MATLAB 9.3's memory.
load I % Load the variable I that we saved above.
whos % Check that it was indeed loaded. imshow(I)
% Display the image
I=im2double(I); % Convert the variable into double.
whos % Check that the variable indeed was converted
into double
% The next procedure cuts out the upper left
corner of the image
% and stores the reduced image as Ired.
for i=1:256
for j=1:256
Ired(i,j)=I(i,j);
end
end
whos % Check what variables you now have stored.
imshow(Ired) % Display the reduced image.

How to display an image in MATLAB 9.3

Here are a couple of basic MATLAB 9.3 commands
(do not require any tool box) for displaying an image.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 929

Displaying an image given on matrix form

Operations MATLAB 9.3
Command

Display an image represented as
the matrix X.

imagesc(X)

Adjust the brightness. s is a
parameter such that -1<s<0 gives
a darker image, 0<s<1 gives a
brighter image.

brighten(s)

Change the colors to gray. colormap(gray)

Sometimes your image may not be displayed in gray
scale even though you might have converted it into a
Gray Scale Image (GSI). You can then use the
command colormap(gray) to "force" MATLAB 9.3 to
use a gray scale when displaying an image.

If you are using MATLAB 9.3 with an Image
processing tool box installed, I recommend you to use
the command imshow to display an image.

Displaying an image given on matrix form (with
image processing tool box)

Operations MATLAB 9.3
Command

Display an image Represented
as a matrix X

Imshow (X)

zoom in zoom on
Turn off the zoom function. Zoom off

Conclusion:

Thus here various components of this MATLAB9.3
based image Processing have been discussed. The
authors have tried their level best to make the image
operations in MATLAB 9.3 user based as possible.
The purpose of the image processing is to bring the
various image editing functions available in
MATLAB9.3 tool box under one common platform
and to make it easier for the understanding of any
user. Future work can be aimed to expand the set of
applications than what has been used here.

References:

1. Digital Image Processing using Matlab By Rafael
C. Gonzalez, Richard E. Woods & Steven L.
Eddins , Pearson Education, Inc. Pearson Prentice-
Hall ISBN - 0-13-008519-7.

2. Digital Image Processing 6th revised & extended
edition, Springer-Verlag Berlin Heidelberg 2005,
ISBN - 3-540-24035-7.

3. https://in.mathworks.com/support/books/search.ht
ml?q=&fq=book-category:image-and-video-
processing&page=1

4. Digital Image Processing: A Signal Processing
and Algorithmic Approach by D sundarajan,
ISBN – 978-981-10-6112-7.

