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ABSTRACT

The aim of this project is to develop an understanding 
of the mathematics and physics involved in a bungee 
jump, in order to gain a better understanding of the 
concepts involved. We will use Newton’s law and 
utilize techniques needed to solve seco
differential equations. For simplicity; we will regard 
the jumper as a point mass in one dimension and we 
will make the assumption that wind resistance has a 
linear relationship to speed. We will also assume that 
the bungee cord obeys Hooke’s laws
break. 
 
Keywords: Newton’s second law; Hooke’s law; 
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Modeling the Motion 

With a bungee jump, the model of the motion in one 
dimension with respect to time can be broken into 
different sections: the free fall from the ledge and the 
time when the bungee cord is pulling on the jumper. 
To model both sections we need Newton's second law 
of motion. It says that the total of all the forces acting 
on an object is equal the mass of the object multiplied 
by its acceleration. 
 
𝛴F = ma 
 
To describe how the bungee cord will pull on a 
bungee jumper we will use Hooke's law.Hooke's law 
says that the force exerted by a spring is proportional 
to the distance that it has been stretched from 
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The aim of this project is to develop an understanding 
of the mathematics and physics involved in a bungee 
jump, in order to gain a better understanding of the 
concepts involved. We will use Newton’s law and 
utilize techniques needed to solve second order 
differential equations. For simplicity; we will regard 
the jumper as a point mass in one dimension and we 
will make the assumption that wind resistance has a 
linear relationship to speed. We will also assume that 
the bungee cord obeys Hooke’s laws and doesn’t 

Newton’s second law; Hooke’s law; 
Young’s modulus; Wind resistance; Driving force; 

With a bungee jump, the model of the motion in one 
dimension with respect to time can be broken into two 
different sections: the free fall from the ledge and the 
time when the bungee cord is pulling on the jumper. 
To model both sections we need Newton's second law 
of motion. It says that the total of all the forces acting 

the object multiplied 

To describe how the bungee cord will pull on a 
bungee jumper we will use Hooke's law.Hooke's law 
says that the force exerted by a spring is proportional 
to the distance that it has been stretched from its 

equilibrium point. The relationship is said to be F = 
kx, where k is a constant that is specific to the spring. 
The negative is in the equation so that the force is in 
opposite direction of the stretch (pushing/pulling 
toward the resting point of the 
we assume that a bungee cord will behave like aspring 
described by Hooke's law. The spring constant k can 
be found experimentally by hanging a known weight 
on a spring and measuring how far it stretches. also, k 
can be found by rearranging the Young's modulus 
formula. The Young's modulus formula
objects that have a constant cross
thickness throughout) and objects that have the same 
material all throughout, the formula also only applies
for forces that compress or stretch the object. The 
formula says that any material has
relates the stress on an object to the strain on the 
object. The stress is said to be the force applied on the 
object divided by the cross
object, F/A. The strain is said to be the change in 
length divided by the initial length, dL/L. The 
Young's modulus formula is: 
 

                         Y=
ி/஺

ௗ௅/௅
 

 
where Y is the Young's modulus, a constant for a 
given material. F is the force being
cross-sectional area. L is the length of unstretched 
cord, and dL is the change in the length of the cord 
once it has been stretched. This can be rearranged
look like Hooke's law, if we remember that dL and the 
x from hook's law have the same me
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equilibrium point. The relationship is said to be F = -
kx, where k is a constant that is specific to the spring. 
The negative is in the equation so that the force is in 
opposite direction of the stretch (pushing/pulling 

point of the spring). For our model, 
we assume that a bungee cord will behave like aspring 
described by Hooke's law. The spring constant k can 

by hanging a known weight 
on a spring and measuring how far it stretches. also, k 

ranging the Young's modulus 
formula. The Young's modulus formula applies to 
objects that have a constant cross-sectional area (same 

and objects that have the same 
material all throughout, the formula also only applies 

compress or stretch the object. The 
formula says that any material has constant that 
relates the stress on an object to the strain on the 
object. The stress is said to be the force applied on the 
object divided by the cross-sectional area of the 

A. The strain is said to be the change in 
length divided by the initial length, dL/L. The 

 

where Y is the Young's modulus, a constant for a 
given material. F is the force being applied, A is the 

sectional area. L is the length of unstretched 
the change in the length of the cord 

once it has been stretched. This can be rearranged to 
look like Hooke's law, if we remember that dL and the 

same meaning. 
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F=
஺௒

௅
𝑥 

 
The Young's modulus constant, the cross-sectional 
area, and unstretched cord length will not change for 
any given cord, so we can say that the spring constant 
in Hooke's law is: 

k=
஺௒

௅
(1) 

 
In order to keep the math doable, we will also stick 
with a wind resistance that is linearly proportional to 
the velocity. There are more accurate and complicated 
formulas to account for wind resistance, but for this 
paper we will be using:  
 

𝐹௪௜௡ௗ = −𝛽𝑣 
 
In this paper, we will define the positive x direction to 
be going down. 
  
Free fall 

When the bungee jumper first jumps off of the bridge, 
they will have the forces of gravity and wind 
resistance acting on them. The force of gravity is 
positive because we've defined the positive x direction 
to be going down. The wind resistance is −𝛽𝑣because 
the force of wind resistance is always in the opposite 
direction of the velocity and because we decided that 
making the force of wind resistance proportional to 
velocity was appropriate for this paper. Using 
Newton's second law: 
 
mg−𝛽𝑣 = ma 
 
using the fact that a = dv/dt ; v = dx/dt and a little 
algebra, we can put this into the form of an 
inhomogeneous equation. 
 

𝑑ଶ𝑥

𝑑𝑡ଶ
+

𝛽

𝑚

𝑑𝑥

𝑑𝑡
= 𝑔                         (2)   

 
 
Solving the homogeneous equation 

To find the general solution of the inhomogeneous 
equation, we must first find the solutions to the 
equivalent homogeneous equation. In other words, we 
will set the driving force g to zero. (Note: there are 
other easier ways, but we will solve our 
inhomogeneous equation this way so that the process 
is the same as the process needed in the next section.) 

 
𝑑ଶ𝑥

𝑑𝑡ଶ
+

𝛽

𝑚

𝑑𝑥

𝑑𝑡
= 0 

 
The characteristic equation for the homogeneous 
equation is: 
 

p(𝜆) = 𝜆ଶ +
ఉ

௠
 𝜆 

 
We set p(𝜆) to 0 to find that the roots of the equation 
are: 
 

𝜆ଵ = 0   ,   𝜆ଶ = −
𝛽

𝑚
 

 
The solution to homogeneous equation is: 
 

𝑥௛ = 𝐶ଵ𝑒ఒభ௧ + 𝐶ଶ𝑒ఒమ௧ 
 
Substituting in our values for 

𝑥௛ = 𝐶ଵ + 𝐶ଶ𝑒ି
ఉ௧
௠  

 
Solving for the particular solution 

Now that the homogeneous equation has been solved, 
the only thing left to find is the particular solution. If 
we look at equation (2) and we look at the driving 
force that is on the right-hand side, then we see that 
the driving force is a polynomial of zero'thdegree (a 
constant). The particular solution to the equation 
should be a polynomial. If we say a particular solution 
is: 
 

𝑥௣ = at + b ,
ௗ

ௗ௧
𝑥௣ = 𝑎 𝑎𝑛𝑑 

ௗమ௫

ௗ௧మ
𝑥௣ = 0  

 
Then we can plug this into (2) and solve for a 
 

(0) +
𝛽

𝑚
(𝑎) = 𝑔           

 
𝛽

𝑚
(𝑎) = 𝑔 

 

𝑎 =
𝑚𝑔

𝛽
 

 
Our general solution is: 
 

𝑥 = 𝐶ଵ + 𝐶ଶ𝑒ି
ഁ೟

೘ +
௠௚

ఉ
𝑡+b 
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𝐶ଵandb are both constants. because𝐶ଵ is an arbitrary 
constant, we say that it 
accounts for b. 
 

𝑥 = 𝐶ଵ + 𝐶ଶ𝑒ି
ഁ೟

೘ +
௠௚

ఉ
𝑡                (3) 

 
Below the equilibrium point for the cord 
So far, an equation for the motion of the bungee 
jumper has been found. Now, we need to find an 
equation of motion for when the bungee jumper is 
below the equilibrium point. To do this we look back 
to Newton’s second law: 
                              ΣF=ma 
 
When the jumper is below the equilibrium point, they 
still have gravity and wind resistance acting on them. 
But, now they also have the force of the cord pulling 
on them. We will say that the force applied by the 
bungee cordis−kx (from Hooke’s law). Using this 
with Newton’s second law: 
 

mg - 𝛽
ௗ௫

ௗ௧
− 𝑘𝑥 = 𝑚

ௗమ௫

ௗ௧మ
 

 
Once again, this need to be rearranged algebraically to 
look like an inhomogeneous equation 

𝑑ଶ𝑥

𝑑𝑡ଶ
+

𝛽

𝑚

𝑑𝑥

𝑑𝑡
+

𝑘

𝑚
𝑥 = 𝑔 

 
Solving the homogeneous equation 

The first step to solving the inhomogeneous equation 
is to solve the equivalent homogeneous equation. 

𝑑ଶ𝑥

𝑑𝑡ଶ
+

𝛽

𝑚

𝑑𝑥

𝑑𝑡
+

𝑘

𝑚
𝑥 = 0 

 
The characteristic equation is 
 

P(𝜆) = 𝜆ଶ +
ఉ

௠
𝜆 +

௞

௠
 

 
We set P(𝜆) to 0 and use the quadratic to find that the 
roots of the characteristic equation are: 
 

 𝜆=
ିఉ/௠±ඥ(ఉ/௠)మିସ(௞/௠)

ଶ
              (4) 

 
 
At this point, the solution to the homogeneous 
equation can go in three directions, depending on the 
discriminant. There are three cases, when 

(𝛽/𝑚)ଶ − 4(𝑘/𝑚)is greater than zero, equal to zero, 
or less than zero. 
 
Case 1 

(𝛽/𝑚)ଶ − 4 ൬
𝑘

𝑚
൰ > 0 

 
This is said to be over damped, and the solution will 
not oscillate. If bungee cord 
and jumper system fall into this category then there is 
a problem, because the bungee jumper will likely 
experience too much acceleration. In this case, the 
characteristic equation has two distinct real roots. The 
solution will take the form, 
 

  𝑥௛ = 𝐶ଵ𝑒ఒభ௧ + 𝐶ଶ𝑒ఒమ௧ 
 
We can plug in our expression for 𝜆 to get, 

𝑥௛= 𝐶ଵ𝑒
(ିఉ/௠±ට൫ఉ/௠)మିସ(௞/௠)൯௧/ଶ

+

𝐶ଶ𝑒
(ିఉ/௠±ට൫ఉ/௠)మିସ(௞/௠)൯௧/ଶ

 
 
Case 2 

(𝛽/𝑚)ଶ − 4(𝑘/𝑚) = 0 
 
This case is said to be critically damped, and its 
solution appears very similar to the over damped 
case.The characteristic equation has one real root, and 
the solution will have the form. 
 

𝑥௛ = 𝐶ଵ𝑒ఒ௧ + 𝐶ଶ𝑡𝑒ఒ௧  
 Or 

𝑥௛ = (𝐶ଵ + 𝐶ଶ𝑡)𝑒ఒ௧ 
 
Remembering that in this case 
(𝛽/𝑚)ଶ − 4(𝑘/𝑚) = 0, we say that 𝜆 = −𝛽/2𝑚 and 
thatour solution is, 
 

𝑥௛ = (𝐶ଵ + 𝐶ଶ𝑡)𝑒ିఉ௧/ଶ௠ 
 
 
Case 3 

(𝛽/𝑚)ଶ − 4 ൬
𝑘

𝑚
൰ < 0 

 
This case is said to be under damped, and it's solution 
oscillates. The solution in this case will be a 
combination of the real and imaginary parts of 𝑒ఒ௧. To 
find this, we need to know what the real and 
imaginary parts of 𝑒(௔ା௜௕)௧ are. To do this we first 
split up the exponent. 
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𝑒(௔ା௜ )௧ = 𝑒௔௧𝑒(௕௜)௧ 
 
𝑒௕௜௧splits up into cos bt + i sin bt, so we get: 
 

𝑒௔௧𝑒(௕௜)௧ = 𝑒௔௧(cos 𝑏𝑡 + 𝑖 𝑠𝑖𝑛 𝑏𝑡) 
 = 𝑒௔௧ cos 𝑏𝑡 + 𝑖𝑒௔௧  𝑠𝑖𝑛 𝑏𝑡) 
 
The real part of the equation above is 𝑒௔௧cosbt while 
the imaginary part is 𝑒௔௧sin bt. If plug in the 𝜆 value 
that we got from equation (4), and we use the same 
process to separate out the real and imaginary part, 
then we get that the real part of 𝑒ఒt is: 
 

𝑒ିఉ௧/ଶ௠ cos 𝑡 
ඥ|(𝛽/𝑚)ଶ − 4(𝑘/𝑚)|

2
 

 
While the imaginary part is: 
 

𝑒ିఉ௧/ଶ௠ sin 𝑡 
ඥ|(𝛽/𝑚)ଶ − 4(𝑘/𝑚)| 

2
 

 
The homogeneous solution will be a combination of 
the real and imaginary parts of 𝑒ఒ௧ 

𝑥௛

= 𝐶ଵ𝑒ି
ఉ௧
ଶ௠ cos 𝑡 

ඥ|(𝛽/𝑚)ଶ − 4(𝑘/𝑚)|

2
               

+ 𝐶ଶ𝑒ି
ఉ௧
ଶ௠ sin 𝑡 

ඥ|(𝛽/𝑚)ଶ − 4(𝑘/𝑚)| 

2
 

 
Solving for the particular solution 
The next step is to get the particular solution of the 
inhomogeneous equation. 
 

𝑑ଶ𝑥

𝑑𝑡ଶ
+

𝛽

𝑚

𝑑𝑥

𝑑𝑡
+

𝑘

𝑚
𝑥 = 𝑔 

 
Fortunately, the particular solution does not have 
multiple cases to consider. In addition, the driving 
force is a polynomial of zero'th degree just like it was 
for the free fall equation. We can assume that the 
solution is some polynomial with unknown 
coefficients and then plug the solution into the 
equation above to find those coefficients. 

𝑥௣ = 𝑎𝑥 + 𝑏,     
𝑑

𝑑𝑡
𝑥௣ = 𝑎,    

𝑑ଶ

𝑑𝑡ଶ
𝑥௣ = 0  

 
plugging these into the inhomogeneous equation we 
get, 

(0) + 
ఉ

௠
𝑎 +

௞

௠
(𝑎𝑥 + 𝑏) = 𝑔 

 

Because there is no t term the coefficient a must be 
zero and as a result: 
 

𝑘

𝑚
𝑏 = 𝑔 

 
 b =

௚௠

௞
 

 
So the particular solution is: 
 

𝑥௣ =
𝑔𝑚

𝑘
 

 
PROBLEMS 
 
1. Solving without a numerical solverSetting 

variables 
Before we can take the last steps to solving for the 
position as a function of time, we need some initial 
conditions and parameters. We are going to model an 
80kg man jumping of a bridge with a height of 100m 
with a 30 meter long bungee cord with adiameter of 
.00635 meters (quarter inch). 
 
We measured a bungee cord that had the same 
thickness and a length of 1.31m and found that when 
a force of 10N was applied the cord stretched .16m. 
The bungee cordcould stretch to a maximum of 220 
 
SOLUTION 

                                Y =
୊/୅

ୢ୐/୐
 

 

                                Y = 
ଵ଴(஠(଴.଴଴଺ଷହ/ଶ)మ

଴.ଵ଺/ଵ.ଷଵ
 

 
                                    = 2.59 ×  10଺ 
 
We will assume that the cord that we measured is 
suitable for bungee jumping. We will also assume that 
they could will stretch linearly with the force applied 
so that we can use the Young's modulus as well as 
Hooke's law. With these assumptions the k value that 
is used in Hooke's law will now be determined. 
Pulling from equation (1): 
 

K = 
஺௒

௅
 

 

 K = 
(గ൫଴.଴଴଺ଷହ)మ൯ଶ.ହଽ×ଵ଴ల

ଷ଴
 

 
 K = 2.73 
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Now we have all but one variable, 𝛽. To get this 
variable we can solve for based on accepted values for 
the terminal velocity of a person. To do this, we go 
back to 
∑ 𝐹 = ma and look at free fall. 
 

mg - βv = m
ௗ௩

ௗ௧
 

 
Because we looking at when the person has reached 
terminal velocity (no change invelocity), we can set 
dv=dt to zero and solve for 𝛽. 
 
mg – βv = 0 
 
β = 

௠௚

௩
 

 
In solving for β we had already assumed that the 
person was at terminal velocity, so we can plug in the 
value that we looked up for v. According to 
hypertextbook.com, a good approximate of the 
terminal velocity of a person is 60m/s. with this we 
get: 
 

β = 
(଼଴)(ଽ.଼ଵ)

଺଴
 

 
β = 13.08 
 
RESULT 
 
YOUNG’S MODULUS (Y) = 2.59 × 10଺ 
HOOK’S CONSTANT (K) = 2.73 
VARIABLE (β) = 13.08 
 
2. At the start of the jump 

Now that we have all of the variables, we can use the 
use the general solutions that we found earlier. First 
we will use the initial conditions of x(0) = -30 (30m 
above the equilibrium point of the unstretched cord) 
and v(0) = 0. Since we are using x(0) and y(0), the 
initial t value has to be zero. We have the equation (3) 
with the unknowns 𝐶ଵ and 𝐶ଶ. To solve for both 
unknowns we will have to use equation (3) and its 
derivative. 
 
SOLUTION   

x(t) = 𝐶ଵ + 𝐶ଶ𝑒ି
ഁ೟

೘ +
௠௚

ఉ
𝑡 

 

Let's replace -β/m with A to make the next few steps 
easier 
 
x(t) = 𝐶ଵ + 𝐶ଶ𝑒ି஺ +

௠௚

ఉ
𝑡 

 
Differentiating we get, 
 

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑣(𝑡) =  −𝐶ଶ𝐴𝑒ି஺ +

𝑚𝑔

𝛽
 

 
If we use the initial conditions 
 
x(0) =𝐶ଵ + 𝐶ଶ𝑒ି஺(଴) +

௠௚

ఉ
(0) 

 
v (0) = −𝐶ଶ𝐴𝑒ି஺(଴) +

௠௚

ఉ
 

 
This simplifies to, 
 
x (0) = 𝐶ଵ + 𝐶ଶ 
 
v (0) = −𝐴𝐶ଶ +

௠௚

ఉ
 

 
Solving for  𝐶ଵ and  𝐶ଶ 
 

 𝐶ଵ = 𝑥(0) −  𝐶ଶ 
 

𝐶ଶ = -
௩(଴)ି(௠௚)/(ఉ))

஺
 

 

𝐶ଵ =  𝑥(0) +  
𝑚(𝑣(0) – (𝑚𝑔)/(𝛽))

𝛽
 

 

𝐶ଶ =  − 
𝑚(𝑣(0) – (𝑚𝑔)/(𝛽))

𝛽
 

 
If we plug in the known values for our parameters and 
conditions 
 

𝐶ଵ =  −30 +  
80(0 − (80)(9.81)/(13.08))

13.08
 

 

𝐶ଶ = - 
଼଴(଴ି(଼଴)(ଽ.଼ଵ)/(ଵଷ.଴଼))

ଵଷ.଴଼
 

 
From this we get that 𝐶ଵ = -396:97 and that 𝐶ଶ = 
366:97. So, the equation for free fall becomes 
 
x(t) = 366.97𝑒ି଴.ଵ଺ଷହ௧ + 60𝑡 − 396.97 
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From this position function we need two things. First, 
we need to find when x is greater than zero because 
this is when we need a new equation to represent the 
bungee jumper. Second, we need to find the 
acceleration as a function of time. From the graph of 
the position function it seems that x(t) = 0 when t = 
2.67. If we plug this and all of our knowns into the 
velocity function: 
 
v (t) = −𝐶ଶ𝐴𝑒ି஺௧ +

௠௚

ఉ
 

 
Then we get that v(2.67) = 21.22. We will need this 
velocity as well as t = 2.67 for the initial conditions of 
the next equation. 
 
RESULT 
 
TIME (t) = 2.67 
VELOCITY v(2.67) = 21.22 
 
3. After the cord starts to pull 

To solve this part of the situation we still use the same 
parameters, but different initial conditions and 
equations. To make the solution easier to find we will 
say that the time 2.67s for the previous equation is at 
0s for the new equation. The position and velocity 
stay unchanged, however. For this part of problem, 
we need to decide which case to use. If we plug 
known values into (𝛽/𝑚)ଶ − 4(𝑘/𝑚) then we get – 
0.1098 which means that we must use case 3. Our 

solution for x is a combination of both the solution in 
case three and the particular solution. 

SOLUTION 

x(t)= 

𝐶ଵ𝑒ି
ഁ೟

మ೘ cos 𝑡 
ඥ|(ఉ/௠)మିସ(௞/௠)|

ଶ
+

              𝐶ଶ𝑒ି
ഁ೟

మ೘ sin 𝑡 
ඥ|(ఉ/௠)మିସ(௞/௠)|

ଶ
+

௚௠

௞
 

 
This is a lot easier to deal with if we let  
A = 𝛽/2m and  
B = (sqrt | (𝛽/𝑚)ଶ – 4(k/m)| ) / 2 
 
x(t)=𝐶ଵ𝑒ି஺௧ cos(𝐵𝑡)+𝐶ଶ𝑒ି஺௧ sin(𝐵𝑡) +

௚௠

௞
 

 
We differentiate this and get that: 
 
v(t)=𝐶ଵ(−𝐴𝑒ି஺௧ cos(𝐵𝑡) −
𝐵𝑒−𝐴𝑡sin𝐵𝑡)+𝐶2(−𝐴𝑒−𝐴𝑡sin𝐵𝑡+ 𝐵𝑒−𝐴𝑡cos𝐵𝑡) 

 
If we put x and v in terms of an initial condition then 
we get 
 
x(𝑡௜)=𝐶ଵ𝑒ି஺௧೔ cos(𝐵𝑡௜) +  𝐶ଶ𝑒ି஺௧೔ sin(𝐵𝑡௜) 
 
v(𝑡௜)=𝐶ଵ(−𝐴𝑒ି஺௧೔ cos(𝐵𝑡௜) −
𝐵𝑒−𝐴𝑡𝑖sin𝐵𝑡𝑖)+𝐶2(−𝐴𝑒−𝐴𝑡𝑖sin𝐵𝑡𝑖+ 
𝐵𝑒−𝐴𝑡𝑖cos𝐵𝑡𝑖) 
 

 
Now we can put this into a matrix and row reduce 
 

𝑒ି஺௧೔ cos(𝐵𝑡௜) 𝑒ି஺௧೔ sin(𝐵𝑡௜) x(𝑡௜)

(−𝐴𝑒ି஺௧೔ cos(𝐵𝑡௜) − 𝐵𝑒ି஺௧೔ sin ൬𝐵𝑡௜

Aite
൰) (−𝐴𝑒ି஺௧೔ sin(𝐵𝑡௜) +  𝐵𝑒ି஺௧೔ cos(𝐵𝑡௜)) v (𝑡௜)

 

 
 
From this we get that 𝐶ଵ = -315:94 and that 𝐶ଶ = -
168.61. The position function after the bungee jumper 
has gone past the equilibrium point of the cord is 
x(t) = -
315.94𝑒ି଴.ଵ଺ cos(0.1636𝑡) −
168.61𝑒ି଴.ଵ଺ଷହ sin(0.1636𝑡) + 287.5603 
 
Alternatively, we could have made solving for the 
initial conditions on the second equation easier by 
saying it started at time zero. The constants 𝐶ଵ and 𝐶ଶ 
would turn out different, and the t would have to be 
replaced with t -2.67. The equation would still have  

 
the same time range. This turns out to be easier 
because all of exponential terms go to 1, all of the sine 
terms go to zero, and all of the cosine terms go to 1. 
 
RESULT 

𝐶ଵ = -315.94 

𝐶ଶ = -168.61 
x(t)= -
315.94𝑒ି଴.ଵ଺ଷହ௧ cos(0.1636𝑡) −
168.61𝑒ି଴.ଵ଺ sin(0.1636𝑡) + 287.5603 
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4. A cord s 20m long un-stretched if its elasticity is 
50% and the spring constant is 20N/m, what is the 
maximum force that can he held? 

 
SOLUTION 

Use the formula F = kx 

X is calculated by taking 50% of theun-stretched cord. 
Therefore x=10m. 
simply plug the values into the formula. 
F= (20N/m)(10m) 
F=200N 
 
RESULT 

This is the maximum force that the cord can hold is 
200N. 

Using a Numerical Solver to find the Motion of the 
Jumper 

In order to get the correct motion of the jumper, we 
need to find a way to model the position as they move 
up and down due to the bungee cord after they leap. 
Using the origin as the equilibrium point of the 
weighted bungee, when x > 0 the motion of the 
jumper can be modeled as the sum of the forces 
equals the mass multiplied by the acceleration. To 
model the oscillation, we will treat the bungee cord as 
a spring, and employ Hooke's Law to model the force 
of the bungee on the jumper. Hooke's Law is used for 
calculating the force imparted by a spring on an 
attached object and is defined as F=kx .where x is the 
displacement from the force. The spring constant k is 
given by dividing the force in Newtons by the 
displacement caused by that amount of force.  

There are three forces acting on the jumper when they 
are under the influence of the bungee. First, is the 
force of gravity, which is simply mg. Second, there is 
the force due to the bungee, which is modeled after a 
spring with a force F = - kx with k being the spring 
constant of the bungee cord. Third, the force of wind 
resistance, with a wind resistance constant 𝛽, whose 
value is determined above in equation (??), which has 
a linear relationship with the velocity of the jumper. 
The calculations involved in finding the true value for 
β are rather complicated and beyond the scope of our 
understanding, so we will use the calculated constant. 
Adding up the forces, we get 
 

𝐹௚௥௔௩௜௧௬ − 𝑘𝑥 −  𝛽𝑣 =  𝐹௡௘௧ 
 

Where - kx is the force of the bungee on the jumper, 
and βv is the force of the wind resistance. It makes 
sense that as the magnitudes of kx and βv increase, 
they will eventually overcome the force of gravity. 
When this happens the jumper will be at the end of 
the downward motion of the oscillation, and will be 
shot back up from the force of the bungee. 
 
Finding the Equation of Motion 

In order to find an equation of the motion of the 
jumper, the equation above must be broken down to 
components that make up each force. 

mg-kx-βv= ma 
 
Moving the terms around, we get the expression 
 

𝑥ᇱᇱ +  
𝛽

𝑚
𝑥ᇱ +  

𝑘

𝑚
𝑥 = 𝑔                  

 
This gives a differential equation with a forcing term 
g, which can be solved with 
relative ease. In order to utilize MATLAB's pplane8 
utility, we must have two first order differential 
equations to relate to one another. These equations 
were found using the following steps: 
substituting a = 𝛽/𝑚 and b = k/m, and isolating the 
𝑥ᇱᇱ we get 
 

𝑥ᇱᇱ = 𝑔 − 𝑎𝑥ᇱ − 𝑏𝑥                       
 
Now, the next step is to create two first order 
equations. 
 

𝑦ଵ = 𝑥 
 𝑦ଶ =  𝑥ᇱ 

 
Now we plug 𝑦ଵ and 𝑦ଶ into our equation, with the 
addition of 𝑦ଵ

ᇱ =  𝑦ଶ 
 

𝑦ଵ
ᇱ =  𝑦ଶ 

𝑦ଶ
ᇱ =  𝑔 − 𝑎𝑦ଶ − 𝑏𝑦ଵ 

 
When a and b are substituted back into the equation 
we get, 
 

𝑦ଵ
ᇱ =  𝑦ଶ 

𝑦ଶ
ᇱ =  𝑔 −

𝛽

𝑚
𝑦ଶ −

𝑘

𝑚
𝑦ଵ 
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RESULT: 
 

𝑦ଵ
ᇱ =  𝑦ଶ 

𝑦ଶ
ᇱ =  𝑔 −

𝛽

𝑚
𝑦ଶ −

𝑘

𝑚
𝑦ଵ 
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