

QSAR Modeling of Bisbenzofuran Compounds using 2D-Descriptors as Antimalarial Agents

Tripti Kaushal

Department of Chemistry, Technocrats Institute of Technology and Science, Bhopal, Madhya Pradesh

Bashirulla Shaik

Dept. of Applied Science, National Institute of Technical Teachers Training and Research, Shamla Hills, Bhopal, Madhya Pradesh, India Anita K Department of Chemistry, Career College, Bhopal, Madhya Pradesh

Vijay K. Agrawal Department of Chemistry, APS University, Rewa, Madhya Pradesh, India

ABSTRACT

In the present study we have performed Quantitative structure activity relationship (QSAR) analysis for 43bisbenzofuran derivatives estimate the to antimalarial activity using some 2D descriptors. Several significant QSAR models has been calculated for predicting the antimalarial activity (-logIC₅₀) of these molecules by using the multiple linear regression (MLR) technique. Among the obtained QSAR models, a four parametric model was most significant having $R^2=0.9502$. An external set was used for confirming the predictive power of the models. High correlation between experimental and predicted antimalarial activity values, was obtained in the validation approach that displayed the good modality of the derived OSAR models.

Keywords; bisbenzofuran derivatives, antimalarial activity, 2D descriptors, QSAR, MLR

Introduction

According to the World Health Organization (WHO), malaria is globally recognized as serious problem of public health, mainly in the tropical and subtropical regions of the world. Thus Malaria is an infectious disease which is caused by the protozoa of the genus *Plasmodium*. Commonly four species of the parasite cause infection, *i.e.*, *Plasmodium ovale*, *P. vivax*, *P. malariae* and *P. Falciparum*. Among them P.

Falciparum being the most virulent to humans. The introduction of parasites in human organism can be through the bite of a female Anopheles mosquito, and it can also be injection or transfusion of infected blood and through the hypodermic syringes. It effects 40% population of more than a hundred countries and considered as one of the diseases that caused already great damage to millions of people [1-5]. Due to this about 300 million cases and at least one million consequent deaths are estimated annually. About 40% of malaria cases are registered in the world and about 90% deaths are mainly caused due to P. falciparum. For the treatment of malaria drugs such as chloroquine, mefloquine, pyrimethamine, dapsone, and cycloguanil are being used for years. But the resistance against malaria parasite strain is increasing continuously producing big obstacle а chemotherapy of malaria disease[6-15]. The massive use of classical antimalarials promoted fast selection of drug-resistant strains of P. falciparum, which requires an urgent development of new antimalarial drugs. Soidentification and design of novel drug molecules specifically affecting these targets could lead to better treatment of malaria. Recently the antimalarial activity of bisbenzofuran has generated interest among the drug researchers which has displayed activityagainst several strains of malaria. It has limited role to treat the diseases because of protonation of its amidine group at physiological pH, pentamidineand also shows low oral availability. Drugrequiresparentral administration which makes the treatment less practical in rural areas. Pentamidine is tolerated by most patients in spite of some reported serious adverse effects [16, 17, 18]. In this context it is very appropriate to search for options to find a potent antimalarial compound with improved potency and oral availability. Computational chemistry is an important tool to rational drug design. The quantitative structure-activity relationship (QSAR) approach by Hansch et al. helps to correlate the specific biological activities of compounds with the molecular properties of the compounds. The authors have successfully reported use of topological parameters for modeling antimalarial activity of 4pyridones against *P. falciparum* T9-96 strains[19].

Materials and Methods

In the present work an attempt was made to find out a mathematical model which correlates the possible structural requirements and biological activity of in order to design of new and more potent compounds with strengthened biological activities. An analysis using the MLR method is applied to a series of 43bisbenzofurans derivatives with known biological activity[20]. The biological activity has been given in terms of negative log of IC₅₀ in order to convert the data into free energy change related values. Structural details of the compound having antimalarial activity (bisbenzofurancation) used in present studyare given in Table-1. The parameters used for modeling the activity are VE1 D, VE1 B(e), GATS7p, GATS8p , CATS2D 04 DA, CATS2D 06 PL, B10[N-N], F08[C-C], DLS 07, Psychotic-80 and cRo5. Here DLS 07, Psychotic-80, cRo5 are Drug-like indices descriptors, CATS2D 04 DA, CATS2D 06 PL, B10[N-N], F08[C-C] are 2D Atom Pairs parameters, GATS7p, GATS8p are 2D- autocorrelation parameters [21]and VE1 D, VE1 B(e) are 2D matrix-based descriptors. All these have been calculated using DRAGON software[22] and for regression purpose NCSS was used [23]. The calculated values along with biological activity -log IC₅₀are given inTable-2.The entire data set given in table 1 has been divided into training and test set and efforts have been made for obtaining the best suitable model for modeling the $-\log IC_{50}$ value. We have taken 31 compounds for training set and 12 compounds as test set. The generation of training and test sets is done on random basis. For statistical validation, variety of statistical parameters was

calculated. All these statistically significant correlation models for the training set have been reported below along with their statistical parameters. **RESULT AND DISCUSSION:**

The correlation matrixes of these parameters arereportedin Table-3 which clearly reveals that F08[C-C] is highly correlated with VE1_D and similarly B10[N-N] is highly correlated with CATS2D_06_PL and Psychotic-80 is highly correlated F08[C-C]. Hence while dealing with these parameters the collinearity defect should be checked. Now, we will discuss the results obtained in successive regression analysis. It is pertinent to mention that the parameter which are auto-correlated

should not be used in multiparametric analysis because they may result in to some defect in the model.

Through variable selection four parameters were selected and the data presented in Table-2 was subjected to regression analysis which yields significant models. These models along with their quality are reported in Table-5.

ONE-PARAMETRIC MODEL:

Among all the models, the best one parametric model contains B10 [N-N], having R² value equal to 0.8459. The model is as below:

-logIC₅₀=2.0051(±0.1589) B10[N-N]+0.1149 (4.1.1) N=31, Se = 0.1563, $R^2 = 0.8459$, $R^2_{Adj} = 0.8406$, Fratio = 159.185, Q =5.8830

Here and here after N is total number of compounds ; Se is the standard error of estimation; R^2 is the square of correlation coefficient; R^2_{Adj} is the adjusted R^2 ; F is the Fisher's ratio and Q is the Pogliani's quality factor[24] which is the ration of R/Se (Pogliani, 1994,1996)

TWO-PARAMETRIC MODEL:

When cRo5 is added to the mono-parametric model, two parametric models are resulted with improved R^2 value. For this model R^2 comes out to be 0.9211and R^2_{Adj} also enhances from 0.8406 to 0.9154. The model is reported as under

N=31 , Se = 0.1138, R² = 0.9211, R²_{Adj}=0.9154, F-ratio = 163.392 , Q =8.4292

THREE-PARAMETRIC MODEL:

F08[C-C] has also been found to be an effective parameter in modeling log IC_{50} . When higher parametric models were tried with B10 N N, F08[C-C]as correlating parameters along with VE1 D in modeling the antimalarial activity, a improvement in the quality of the model is observed. For this model, R^2 comes out to be 0.9318. The value of R^2_{Adi} changes from 0.9154 to 0.9242 suggesting that the added parameter is favorable .The model is given below:

 $IC_{50}=2.1541(\pm 0.1176)$ B10 N N $\pm 0.0241(\pm 0.0044)$ F08[C-C]-0.5575(±0.1052) VE1 D+2.2910

N= 31, Se = 0.1078, R^2 = 0.9318, R^2_{Adj} = 0.9242, Fratio = 122.890, O = 8.9532

FOUR -PARAMETRIC MODEL:

autocorrelation Finally, by adding 2DparametersGATS7p atetra - parametric model having $R^2=0.9502$ is found to be the best model for modeling IC₅₀ activity. The model contains B10 [N-N], F08[C-C], GATS7p and VE1 D as correlating parameter. The lowest values of SE and also highest value of Fratio and Q-value further confirm our results. Addition of GATS7p is justified as R²_{Adj} changes from 0.9242 to 0.9425. The model is found as under: B10[N-N]+0.0197 $IC_{50=} 1.9399 (\pm 0.1235)$ F08[C-C]-0.9062(±0.2920) (± 0.0041) GATS7p -0.5498(±0.0916) VE1 D+3.3488 N=31, Se =0.0939, $R^2 = 0.9502$, $R^2_{Adj} = 0.9425$, F-ratio

=124.031, Q =10.3859

A close look at this model revels that out of four parameters contained, two (GATS7p, VE1 D) are having negative coefficients, while two of them are positive (B10 [N-N], F08[C-C]). The predictive potential of the model has been obtained by plotting a graph between observed and estimated activity values and such graph is demonstrated in Fig. 1.

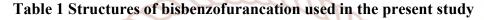
PREDICTIVE POWER BASED ON CROSS VALIDATION:

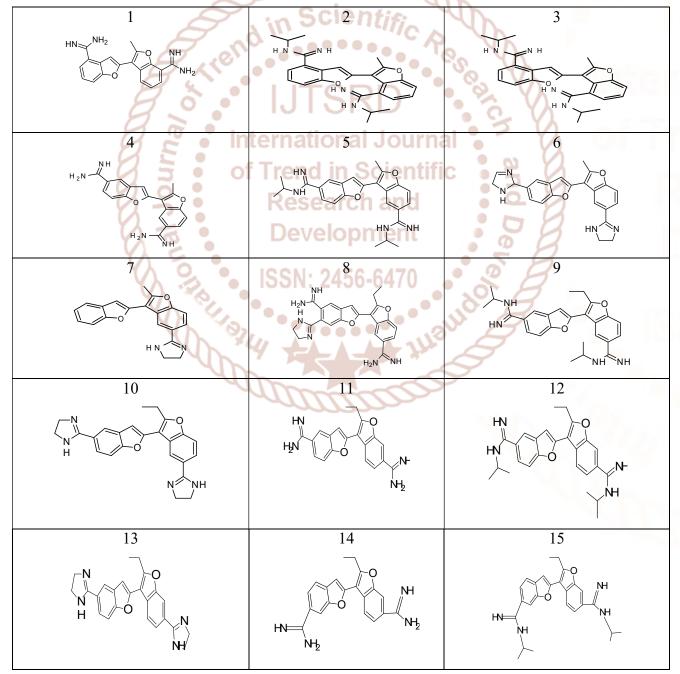
Leave -one -out cross (leave -one -out) validation procedure" (Chaterjeeet al ., 2000) is being widely used to examine the suitability of predictive power of the model[25]. The obtained results are reported in Table-6 .As stated earlier the predicted residual sum of square (PRESS) is the most important crossvalidation parameter accounting for good estimate of the real predictive error of the model. Its value less

than SSY (sum of squares of response value) indicates that the model predicts better than the chance and can be considered statically significant. In our study, the value of PRESS is much lower than SSY indicating that all the models obtained are statically significant. The ration of PRESS/SSY can be used to calculate approximate confidence intervals of prediction of new compounds. To be a reasonable and significant QSAR model, the ratio PRESS/SSY should be less than 0.4 (PRESS/SSY < 0.4) and the value of this ratio 0.1 indicates an excellent model. A close observation of Table-6 shows that except the one parametric model (model1, Table4)all other models have the PRESS/SSY ratio more or less or nearer to 0.1 indicating thereby all the proposed models are having best predicting capacity.

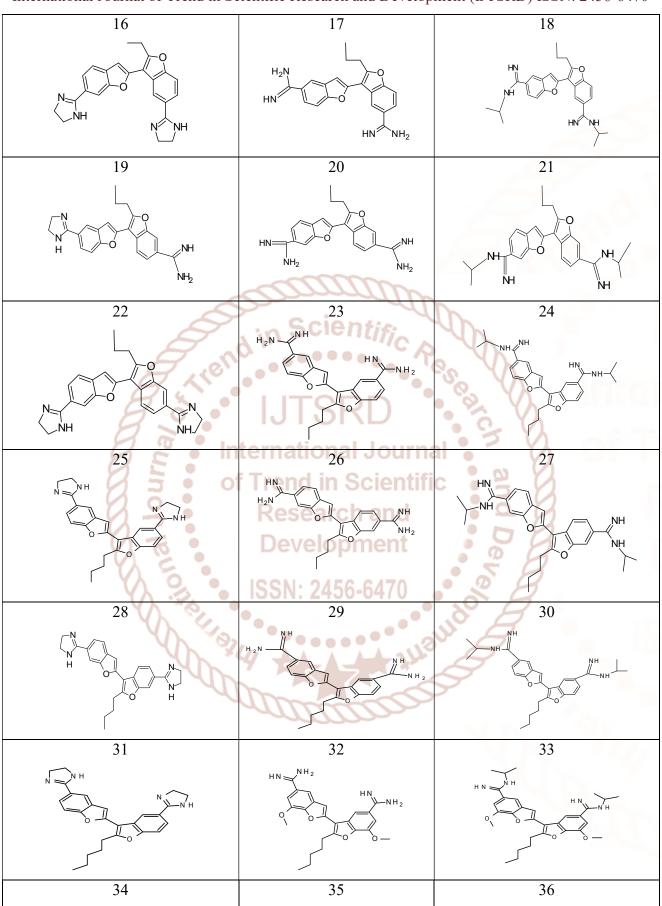
 R^2_{cv} is the cross validation squared correlation coefficient. The highest R²_{cv} values 0.948 for four parametric model [(Model-30 and Table-4);Fig.1] confirms our findings. The two important crossvalidation parameters uncertainty in prediction (S_{PRESS}) and predictive squared error (PSE) were also calculated. For this model, the value of SSY is highest, whereas, the values of PRESS, PRESS/SSY, SPRESS, and PSE have been lowest, conforming our findings. un and

> Final confirmation is obtained by calculating the estimated values of -log IC₅₀ for the entire set of compounds using tetra parametric model and the same has been reported in Table-5. These values are in good agreement with the estimated value. Further confirmation is obtained by plotting a graph between observed and estimated -log IC₅₀ values using four parametric model, the predictive power for the model comes out to be 0.9502, suggesting that 95 % variance in the data could be explained using this model. Therefore, this is the best model for modeling iogIC₅₀ values of the compound used in this study. The external predictive power of the model is assessed by predicting pIC50 value of the 9 test set molecules, which are not included in the QSAR model development.

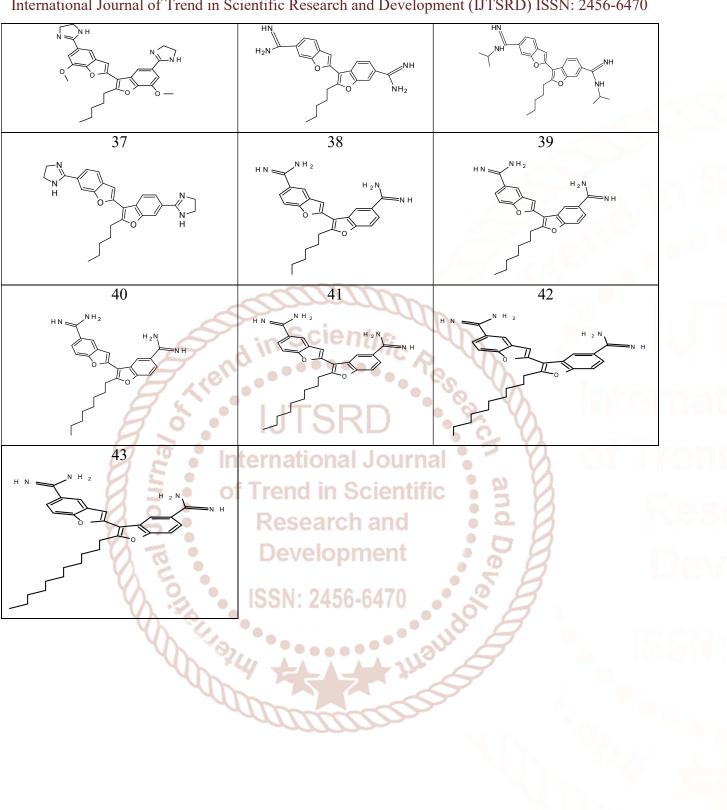

> Further, VIF (variance inflation factor), Eigen values (λi) , condition number (k), tolerance (T) for all the independent parameters have been calculated or all the independent parameters used in the proposed models and they are reported in Table-7.The collinearity is observed if the value of VIF is greater than 10. In the table all the combination have VIF less


than 10 means all the proposed models are free from collinearity. And if λi , (Eigen value) is found to be greater than 5 then the model will suffer from collinearity. Here all the models have λi value less than 5 so all the models are free from the defect of collinearity. Condition number is another test forcollinearity if its value is found to be >100 then the collinearity exists but results indicate that values always <100 likewise. Tolerance value equal to 1 or less indicates absence of collinearity Table-7 indicates that all the above mentioned parameters or models discussed in the study are free from multi-collinearity. The ridge traces are recorded in fig.-2 and fig.-3 respectively.

CONCLUSION:


1. Positive coefficient of B10[N-N] suggests that presence/absence of N - N at topological distance 10 plays a dominant role in deciding the antimalarial activity of present set of compounds.

2. The coefficient of both the GATS7p and VE1_D parameters are negative. Therefore molecules having higher value of polarizability and topological distance matrix should be avoided in designing synthesizing new compounds for better activity. Compounds with low value of these parameters will certainly give better activity.



@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Page: 773

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

S.	IC ₅₀	VE1 D	VE1 B	GATS7p	GATS8p	CATS2D	CATS2D	B10	F08	DLS 07	Psychotic-	cRo5
No.			(e)			04 DA	_06_PL	[N-N]	[C-C]		80	
1*	0.068	4.617	4.07	0.978	1.078	2	2	0	10	1	1	1
2*	0.918	5.084	4.05	1.13	1.092	0	0	1	21	1	1	1
3	2.12	4.647	3.939	0.917	1.14	0	3	1	11	1	1	1
4*	0.028	4.541	3.844	1.087	1.054	0	0	0	11	1	1	1
5	0.102	4.987	3.941	1.047	1.102	0	0	0	20	1	1	1
6	0.034	4.843	3.789	1.14	0.98	0	0	0	17	1	1	1
7	0.022	4.294	3.641	1.127	1.032	0	0	0	12	1	1	1
8*	0.003	5.131	3.844	0.987	1.064	0	0	0	18	0.5	1	1
9	0.003	5.045	3.962	1.044	1.153	0	0	0	22	1	0	1
10	0.011	4.908	3.909	1.115	1.028	2010		0	19	1	1	1
11	0.002	4.599	3.892	1.144	1.223	0	•1	0	13	1	1	1
12	0.006	5.038	3.99	1.082	1.087	0	0	00	22	1	0	1
13	0.046	4.894	3.935	1.071	1.09			0	19	1	1	1
14	0.004	4.599	3.728	1.236	1.176	ationa	Jour	0	13	1	1	1
15	0.005	5.038	3.817	1.104	0.96	0	0	0	24	1	0	1
16	0.034	4.908	3.761	1.012	1.161	0		0	19		1	1
17*	0.041	4.714	3.873	1.109	1.118	eseoarc	n and	0	16	B^1	1	1
18*	0.009	5.109	3.97	1.071	1.135	evølop	ment	0	25	B^1	0	1
19*	0.004	4.866	3.873	1.224	1.081	0	1	0	18	1	1	1
20	0.037	4.683	3.736	1.256	1.142	0.430	0-04 <u>2</u> / U	0	16	1	1	1
21*	0.036	5.095	3.825	1.127	0.969	0	0	0	27	1	0	1
22	0.353	4.958	3.784	1.006	1.194	0	0	0	22	1	1	1
23*	0.032	4.817	3.877	1.145	1.15	0	0	0	20	1	1	1
24	0.01	5.182	3.974	1.097	1.157	0	-0	0	29	1	0	1
25	0.026	5.062	3.922	1.168	1.057	0	0	0	26	1	1	1
26*	0.058	4.779	3.74	1.282	1.171	0	2	0	20	1	1	1
27	0.076	5.159	3.829	1.152	1.004	0	0	0	31	1	0	1
28*	0.164	5.031	3.788	1.043	1.213	0	0	0	26	1	1	1
29	0.067	4.926	3.878	1.087	1.181	0	0	0	23	1	1	1
30	0.02	5.266	3.976	1.063	1.18	0	0	0	32	0.5	0	1
31	0.067	5.156	3.923	1.118	1.088	0	0	0	29	1	0	1
32	0.066	5.329	3.861	1.06	1.043	0	0	0	29	0.5	1	1
33*	0.133	5.661	3.945	1.025	1.129	0	0	0	42	0.5	0	1
34	0.11	5.56	3.9	1.041	1.161	0	0	0	35	1	0	1

 $@ \ IJTSRD \ | \ Available \ Online \ @ \ www.ijtsrd.com \ | \ Volume-2 \ | \ Issue-2 \ | \ Jan-Feb \ 2018 \\ \\$

35	0.057	4.888	3.741	1.214	1.202	0	2	0	23	1	1	1
36	0.018	5.233	3.83	1.115	1.037	0	0	0	34	0.5	0	1
37	0.133	5.116	3.789	0.998	1.237	0	0	0	29	1	0	1
38	0.364	4.989	3.879	1.056	1.125	0	0	0	26	1	1	1
39	0.279	4.822	3.879	1.049	1.093	0	0	0	27	1	0	0
40	0.694	4.419	3.879	1.042	1.084	0	0	0	28	1	0	0
41	0.296	4.674	3.879	1.037	1.076	0	0	0	29	0.5	0	0
42	0.287	4.952	3.879	1.032	1.069	0	0	0	30	0.5	0	0
43	0.219	5.146	3.879	1.028	1.063	0	0	0	31	0.5	0	0

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

VE1_D =coefficient sum of the last eigenvector from topological distance matrix (2D matrix-based descriptors) VE1_B(e)= coefficient sum of the last eigenvector from Burden matrix weighted by Sanderson electronegativity(2D matrix-based descriptors)

GATS7p =Geary autocorrelation of lag 7 weighted by polarizability (2D autocorrelations)

GATS8p =Geary autocorrelation of lag 8 weighted by polarizability (2D autocorrelations)

CATS2D_04_DA= CATS2D Donor-Acceptor at lag 04 (CATS 2D)

CATS2D_06_PL= CATS2D Positive-Lipophilic at lag 06 CATS (2D Atom Pairs)

B10[N-N] =Presence/absence of N - N at topological distance 10 (2D Atom Pairs)

F08[C-C] =Frequency of C - C at topological distance 8 (2D Atom Pairs)

DLS_07= modified drug-like score from Veber et al. (2 rules)(Drug-like indices)

Psychotic-80= Ghose-Viswanadhan-Wendoloski antipsychotic-like index at 80% (Drug-like indices)

cRo5 =Complementary Lipinski Alert index (Drug-like indices)

•

Research and

۲

۲

Table 4.1.3 Correlation matrix

	IC ₅₀	VE1_D	VE1_B(e)	GATS7p	GATS8p	CATS2D_	B10
						06_PL	[N-N]
IC ₅₀		•		•	B	0	e e
VE1_D	-0.290	1		US ~	8		
VE1_B(e)	0.166	0.424	7				
GATS7p	-0.561	-0.170	-0.402				
GATS8p	0.084	-0.014	0.026	-0.111	1		
CATS2D_06_PL	0.512	-0.403	-0.251	0.261	0.360	1	
B10[N-N]	0.920	-0.206	0.170	-0.432	0.085	0.628	1
F08[C-C]	-0.214	0.718	0.329	-0.218	-0.123	-0.557	-0.356
DLS_07	0.036	-0.285	-0.131	0.205	0.204	0.203	0.089
Psychotic-80	0.079	-0.394	-0.356	0.257	0.147	0.401	0.177
cRo5	-0.200	0.237	-0.090	0.296	0.189	0.182	0.080

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

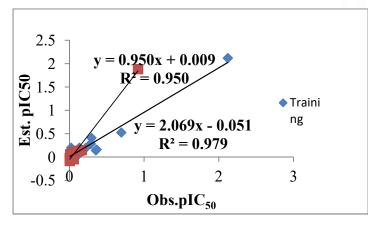
	F08[C-C]	DLS_07	Psychotic-80	cRo5
F08[C-C]	1			
DLS_07	-0.517	1		
Psychotic-80	-0.723	0.343	1	
cRo5	-0.341	0.451	0.453	1

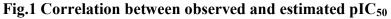
Table 4 Regression Parameters and Quality of Correlation

Model	Parameters	$A_i = (1 4)$	В	SE	\mathbf{R}^2	R ² _{Adj}	F-ratio	Q=R/SE
no	Used							
01	DLS_07	0.0710 (±0.3618)	0.1155	0.3980	0.0013	0.0000	0.038	0.0906
02	Psychotic_80	0.0609 (±0.1427)	0.1482	0.3970	0.0062	0.0000	0.182	0.1983
03	GATS8p	0.4605 (±1.0130)	-0.3303	0.3968	0.0071	0.0000	0.207	0.2123
04	VE1_B_e_	0.7731 (±0.8536)	-2.8061	0.3927	0.0275	0.000	0.820	0.4223
05	cRo5	-0.2091(±0.1906)	0.3550	0.3902	0.0399	0.0068	1.204	0.5119
06	F08[C-C]	-0.0125(±0.0106)	0.4773	0.3891	0.0456	0.0127	1.386	0.5489
07	VE1_D	-0.4217(±0.2582)	2.2654	0.3811	0.0842	0.0526	2.667	0.7614
08	CATS2D_06_PL	0.2536 (±0.0789)	0.0978	0.3420	0.2626	0.2372	10.327	1.4985
09	GATS7p	-3.0310(±0.8296)	3.4705	0.3296	0.3152	0.2916	13.348	1.7036
10	B10[N-N]	2.0051 (±0.1589)	0.1149	0.1563	0.8459	0.8406	159.185	5.8830
11	B10[N-N]	2.1527 (±0.2031)	0.1274	0.1554	0.8529	0.8424	81.195	5.9418
	CATS2D_06_PL	-0.0534(±0.0461)	N: 2456	6470		B		
12	B10[N-N]	2.0383 (±0.1604)	0.1482	0.1553	0.8531	0.8426	81.313	5.9462
	Psychotic_80	$-0.0665(\pm 0.0567)$		1 1 1	on P	7		
13	B10[N-N]	1.9578 (±0.1595)	0.8738	0.1535	0.8565	0.8463	83.582	6.0286
	VE1_D	-0.1531(±0.1063)	7777	2077				
14	B10[N-N]	2.1064 (±0.1645)	-0.0703	0.1512	0.8608	0.8508	86.559	6.1352
	F08[C-C]_	0.0076 (±0.0044)						
15	B10[N-N]	1.8150 (±0.1588)	1.3047	0.1409	0.8791	0.87 <mark>04</mark>	101.768	6.6524
	GATS7p	-1.0902(±0.3934)						
16	B10[N-N]	2.0531 (±0.1161)	0.3550	0.1139	0.9211	0.9154	163.392	8.4292
	cRo5	$-0.2881(\pm 0.0558)$						
17	B10[N-N]	2.0441 (±0.1161)	0.0110	0.1135	0.9243	0.9159	109.961	8.4688
	cRo5	-0.2993(±0.0566)						
	GATS8p	0.3194 (±0.2959)						

1			researen				11.210001	10
18	B10[N-N]	1.6839 (±0.1503)	2.8947	0.1266	0.9059	0.8955	86.651	7.5179
	GATS7p	-1.3914(±0.3696)						
	VE1_D	-0.2545(±0.0917)						
19	B10[N-N]	2.0441 (±0.1161)	0.0110	0.1135	0.9243	0.9159	109.961	8.4688
	cRo5	-0.2993(±0.0566)				_		
	GATS8p	0.3194 (±0.2959)						
20	B10[N-N]	2.0418 (±0.1128)	0.2238	0.1104	0.9284	0.9205	116.710	8.7250
	cRo5	-0.3331(±0.0605)						
	DLS_07	0.1874 (±0.1127)				·		
21	GATS7p	-0.5630(±0.330)	0.3466	0.1102	0.9287	0.9208	117.279	8.7461
	cRo5	-0.2518(±0.0580)	ىدر	m	m			
	B10[N-N]	1.9489 (±0.1280)	Scie	ntifi	AP.			
22	B10_N_N	2.1541 (±0.1176)	2.2910	0.1078	0.9318	0.9242	122.890	8.9532
	F08[C-C]	0.0241 (±0.0044)			. 0	YY -		
	VE1_D	-0.5575(±0.1052)	ISF	RD -		NA I		
23	B10[N-N]	1.9040 (±0.1308)	1.0557	0.1087	0.9332	0.9229	90.733	8.8833
	cRo5	-0.2806(±0.0614)	nd in S	Scienti	Fig.	o B		
	GATS7p	-0.6753(±0.3374)				3 2		
	Psychotic_80	0.0602 (±0.0459)	searc	h and		58		
24	B10[N-N]	2.1076 (±0.1180)	-0.0005	0.1077	0.9344	0.9243	92.610	8.9744
	cRo5 🚫	-0.3207(±0.0595)	N· 2456	5-6470	. 0	B		
	DLS_07	0.2707 (±0.1225)	1. 2.100		• 20	A		
	F08[C-C]	0.0057(±0.0037)			ant -	7		
25	B10[N-N]	1.8582 (±0.1373)	1.8367	0.1073	0.9349	0.9249	93.381	9.0117
	cRo5	-0.2114(±0.0621)			5			
	GATS7p	-0.8065(±0.3573)	m	عددر			100	
	VE1_D	-0.1343(±0.0854)						
26	B10[N-N]	2.1734 (±0.1174)	2.1885	0.1067	0.9357	0.9258	94.543	9.0678
	DLS_07	0.1452 (±0.1155)						
	F08[C-C]	0.0272 (±0.0050)						
	VE1_D	-0.5780(±0.1054)						
27	B10[N-N]	2.1271 (±0.1163)	1.7237	0.1053	0.9373	0.9277	97.182	9.1933
	cRo5	-0.1239(±0.0817)						
	F08[C-C]	0.0166(±0.0066)						

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470


	VE1_D	-0.3850(±0.1533)						
28	B10[N-N]	2.1824 (±0.1155)	2.3142	0.1047	0.9380	0.9285	98.405	9.2508
	F08[C-C]	0.0308 (±0.0060)						
	Psychotic_80	0.0926 (±0.0571)						
	VE1_D	-0.6044(±0.1062)						
29	B10[N-N]	1.9208 (±0.1222)	0.8730	0.1045	0.9383	0.9288	98.803	9.2698
	cRo5	-0.2982(±0.0597)						
	DLS_07	0.2156 (±0.1075)						
	GATS7p	-0.6447(±0.3162)						
30	B10[N-N]	1.9399 (±0.1235)	3.3488	0.0939	0.9502	0.9425	124.031	10.3859
	F08[C-C]	0.0197 (±0.0041)	ىدر	m	m			
	GATS7p	-0.9062(±0.2920)	Scie	ntifi	AP.			
	VE1_D	-0.5498(±0.0916)			Pe, V	5		


Table 5 observed and estimated IC₅₀ values Using model 30 (Table 4)

Model No.	Obs. pIC ₅₀	Est. pIC ₅₀	Residual
1*	0.068	0.12111	-0.0531
• 2*	0.918	1.88321	-0.9652
3	2.12	2.12	0
4*	0.028	0.08382	-0.0558
5	S 0.102 _ 5	0.053	0.049
6	0.034	-0.011	0.045
7 3	0.022	0.204	-0.182
8*	0.003	-0.012	0.01504
940	0.003	0.063	-0.06
10	0.011	0.015	-0.004
11	0.002	0.04	-0.038
12	0.006	0.033	-0.027
13	0.046	0.063	-0.017
14	0.004	-0.043	0.047
15	0.005	0.052	-0.047
16	0.034	0.108	-0.074
17*	0.041	0.06727	-0.0263
18*	0.009	0.06183	-0.0528

19* 0.004 -0.0811 0.08512 20 0.037 -0.048 0.085 21* 0.036 0.05818 -0.0222 22 0.353 0.146 0.207 23* 0.032 0.05681 -0.0248 24 0.01 0.078 -0.068 25 0.026 0.021 0.005 26* 0.058 -0.0464 0.10444 27 0.076 0.081 -0.005 28* 0.164 0.14979 0.01421 29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204				
21* 0.036 0.05818 -0.0222 22 0.353 0.146 0.207 23* 0.032 0.05681 -0.0248 24 0.01 0.078 -0.068 25 0.026 0.021 0.005 26* 0.058 -0.0464 0.10444 27 0.076 0.081 -0.005 28* 0.164 0.14979 0.01421 29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28	19*	0.004	-0.0811	0.08512
22 0.353 0.146 0.207 23* 0.032 0.05681 -0.0248 24 0.01 0.078 -0.068 25 0.026 0.021 0.005 26* 0.058 -0.0464 0.10444 27 0.076 0.081 -0.005 28* 0.164 0.14979 0.01421 29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.133 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 0.001 40 0.694 0.528	20	0.037	-0.048	0.085
23* 0.032 0.05681 -0.0248 24 0.01 0.078 -0.068 25 0.026 0.021 0.005 26* 0.058 -0.0464 0.10444 27 0.076 0.081 -0.005 28* 0.164 0.14979 0.01421 29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 0.001 40 0.694 0.528 0.166 41 0.296 0.412	21*	0.036	0.05818	-0.0222
24 0.01 0.078 -0.068 25 0.026 0.021 0.005 26* 0.058 -0.0464 0.10444 27 0.076 0.081 -0.005 28* 0.164 0.14979 0.01421 29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283	22	0.353	0.146	0.207
25 0.026 0.021 0.005 26* 0.058 -0.0464 0.10444 27 0.076 0.081 -0.005 28* 0.164 0.14979 0.01421 29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	23*	0.032	0.05681	-0.0248
26* 0.058 -0.0464 0.10444 27 0.076 0.081 -0.005 28* 0.164 0.14979 0.01421 29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	24	0.01	0.078	-0.068
27 0.076 0.081 -0.005 28* 0.164 0.14979 0.01421 29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	25	0.026	0.021	0.005
28* 0.164 0.14979 0.01421 29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	26*	0.058	-0.0464	0.10444
29 0.067 0.11 -0.043 30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	27	0.076	0.081	-0.005
30 0.02 0.122 -0.102 31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	28*	0.164	0.14979	0.01421
31 0.067 0.074 -0.007 32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	29	0.067	0.11	-0.043
32 0.066 0.031 0.035 33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	30	0.02516	0.122	-0.102
33* 0.133 0.13493 -0.0019 34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	31	0.067	0.074	-0.007
34 0.11 0.04 0.07 35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	32	0.066	0.031	0.035
35 0.057 0.015 0.042 36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	33*	0.133	0.13493	-0.0019
36 0.018 0.133 -0.115 37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	34 Inte	ern@tiona	0.04	0.07
37 0.133 0.204 -0.071 38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	35 of	0.057 m	Sc ^{0.015}	0.042
38 0.364 0.162 0.202 39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	36	R 0.018	0.133	-0.115
39 0.279 0.28 -0.001 40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	37	0.133	0.204	-0.071
40 0.694 0.528 0.166 41 0.296 0.412 -0.116 42 0.287 0.283 0.004	38	0.364	0.162	0.202
41 0.296 0.412 -0.116 42 0.287 0.283 0.004	39	0.279 45	6-60.28	-0.001
42 0.287 0.283 0.004	40	0.694	0.528	0.166
	41 %	0.296	0.412	-0.116
43 0.219 0.2 0.019	42	0.287	0.283	0.004
	43	0.219	0.2	0.019

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Model	Parameters used	PRESS	SSY	PRESS/SSY	R ² _{cv}	S _{PRESS}	PSE
no							
10	B10[N-N]	0.709	3.891	0.182	0.818	0.156	0.071
16	B10[N-N]	0.363	4.236	0.086	0.914	0.114	0.061
	cRo5						
22	B10[N-N]	0.314	4.286	0.073	0.927	0.108	0.059
	VE1_D			<pre>//</pre>			
	F08_C_C_						
30	B10_N_N_	0.229	4.37	0.052	0.948	0.094	0.055
	F08_C_C_	مدرح	i	10m			
	VE1_D	in So	cien <i>ti</i> i	in the			- 1.
	GATS7p	in So		Pe	S		

Table 6 Cross validated parameters for the best obtained models

Table 7 Ridge regression parameters for the best obtained models.

Model no	Parameters used	VIF	Т	λ_i	K
10	B10[N-N]	1.0000	1.0000	1.0000	1.0000
16	B10[N-N]	1.0065	0.9936	1.080064	1.00
83	cRo5	1.0065	0.9936	0.919936	1.17
22	B10[N-N]	1.1520	0.8680	1.895320	1.00
N I	VE1_D SN:	2.0735	0.4823	0.840262	2.26
	F08_C_C_	2.2741	0.4397	0.264419	7.17
30	B10[N-N]	1.6753	0.5969	1.903822	1.00
	F08_C_C_	2.5824	0.3872	1.420041	1.34
	VE1_D	2.0750	0.4819	0.449074	4.24
	GATS7p	1.5276	0.6546	0.227063	8.38

VIF = Variance Inflation Factor

- T = Tolerance
- $\lambda_i = Eigen values$
- k = Condition number

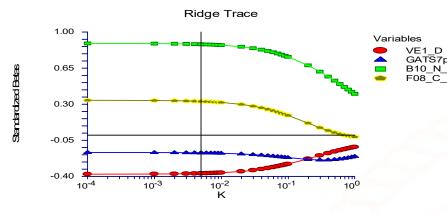
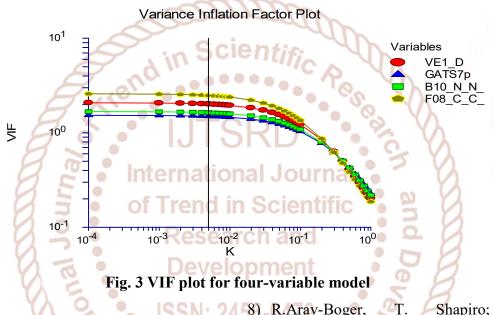



Fig.2 Ridge trace for four variable model

REFERANCE:

- F.Nosten, F. TerKuile, T.Chogsuphajaisiddhi,C.Luxemburger,H.K.Webst er&M.Edstein, L.Phaipun,K. L.Thew& N. J. White; *Lancet*;1982,331,1140.
- 2) A.M.Oduola,W.K.Milhous,L.A.Salako&O.Walker ; *Lancet*;1987,2,1304.
- 3) P. Carson, C. Flanagan, C.E.Lekes& A. Alvin; *Science*; 1956,124,484.
- 4) P.E. Carson, C.I.Flanagan, C.E.Lakes, A.S. Alvin; *Science*; 1982, 31, 427.
- 5) H.L. Schmdt,R.Frank,C.S.Genther, R.N.Rossan&W.I. Squires; *Am J Trop Med Hvg*;1982,31,612.
- 6) J.L.Bras,R. Durand; *FundanClinPharmacol*;2003,17,147.
- 7) J.E. Hyde; Trends Parasitol; 2005, 21, 494.

- 8) R.Arav-Boger, T. Shapiro; A.Anna;*Rev PharmacolToxicol*;2005,45,565.
 - 9) B.P. Das, D.W. Boykin; JMedChem; 1977, 20, 531.
 - 10) J. Anne, E.D. Cierec, H.Eyssen&O. Dann; *AntimicrobAgentsChemother*; 1980, 18, 231.
 - 11) R.R.Tidwell, C.A. Bell, J.E. Hall, D.E.Kyle, M. Grogl; *Antimicob Agent Chemother*; 1990, 34, 1381.
 - 12) R.R.Tidwell,S.K.Jones,J.D.Geratz, K.A.Ohemeng, M. Cory, J.E. Hall; *JMedChem*; 1990,33,1252.
 - 13) J.J.Brendle, A. Outlaw, A. Kumar, D.W. Boykin, D.A.Patrick, R.R.Tidwel, K.A.Werbovetz; *Antimicr* ob Agents Chemother; 2007, 46, 4761.
 - 14) P.G. Bray, M.P.Barrett, S.A.Ward, H.P. De Koning; *Trends Parasitol;* 2003, 19.232.
 - 15) M.Stead, P.G. Bray, I.G. Edward, H.P. De Koning, B.C.Elford, P.A. Stocks & S.A. Wardol; *Pharmacol*, 2001, 59, 2001, 1298.
 - 16) A.H.Fairlamb; Trends Parasitol; 2003, 19, 488.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

- 17) R. Docampo, S.N. Moreno; *Parasitol, Res;*2003,90,510.
- 18) R.J.Burchomore, P.O. Ogbunude, B. Enanga, M.P. Barrett; *curr Pharm LDes*; 2002, 8, 256.
- 19) B.Shaika, T.Kaushal and V. K. Agrawal ; J. Indian Chem. Soc., 2016,93,876.
- 20) S.Paliwal, J.Sharma and S.Paliwal ; *Indian J. Chem.*, 2012,51B,617.
- 21) D. Legros, G.Ollivier, M.E. Gastellu, C. Paquet, C. Burri, *lancetI*nfec Dis, 2002, 2, 437
- 22) Dragon Software for calculation of Topological Indoses, www.disat.unimib, it.
- 23) NCSS, statistical analysis software,www.ncss.com (Accessed May 2005)
- 24) S.Cheterjee, A.S.Hadi, B. Price; Regression analysis by Examples,3rd.ed.; Wiley &Sons:New York;6,141-153.
- 25) L. Pogliani, Structure Property Relationship Of Amino Acids and Some Dipeptide, Amino acids; 1994, 6, 141-15

International Journal of Trend in Scientific Research and Development

SSN: 2456-6470