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ABSTRACT

A new low-power (LP) scan-based built
(BIST) technique is proposed based on weighted 
pseudorandom test pattern generation and reseeding. 
A new LP scan architecture is proposed, which 
supports both pseudorandom testing and deterministic 
BIST. During the pseudorandom testing phase, an LP 
weighted random test pattern generation scheme is 
proposed by disabling a part of scan chains. During 
the deterministic BIST phase, the design
testability architecture is modified slightly while 
short. Built in Self-Test (BIST) is a design technique 
that allows a circuit to test itself .The proposed 
method of a built-in self-test (BIST) design for fault 
detection and fault diagnosis of static-RAM (SRAM)
based field-programmable gate arrays (FPGAs). can 
test both the interconnect resources [wire channels 
and programmable switches (PSs)] and lookup tables 
(LUTs) in the configurable logic blocks (CLBs).The 
test pattern generator and output response analyzer
configured by CLBs in FPGAs. The target fault 
detection/diagnosis of the proposed BIST structure are 
open/short and delay faults in the wire channels, stuck 
on/off faults in PSs, andstuck-at-0/1 faults in LUTs. 
The testing process is performed by conf
Test Pattern Generator (TPG), Output Response 
Analyzer (ORA) and Block under Test (BUT) in each 
test block. 
 
Keywords: low-power, fault detection and fault 
diagnosis, field-programmable gate arrays
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based built-in self test 
(BIST) technique is proposed based on weighted 
pseudorandom test pattern generation and reseeding. 
A new LP scan architecture is proposed, which 

pports both pseudorandom testing and deterministic 
BIST. During the pseudorandom testing phase, an LP 
weighted random test pattern generation scheme is 
proposed by disabling a part of scan chains. During 
the deterministic BIST phase, the design-for-

lity architecture is modified slightly while 
Test (BIST) is a design technique 

that allows a circuit to test itself .The proposed 
test (BIST) design for fault 

RAM (SRAM)-
programmable gate arrays (FPGAs). can 

test both the interconnect resources [wire channels 
and programmable switches (PSs)] and lookup tables 
(LUTs) in the configurable logic blocks (CLBs).The 
test pattern generator and output response analyzer are 
configured by CLBs in FPGAs. The target fault 
detection/diagnosis of the proposed BIST structure are 
open/short and delay faults in the wire channels, stuck 

0/1 faults in LUTs. 
The testing process is performed by configuring the 
Test Pattern Generator (TPG), Output Response 
Analyzer (ORA) and Block under Test (BUT) in each 

power, fault detection and fault 
programmable gate arrays 

INTRODUCTION 

1.1 FIELD-PROGRAMMABLE GATE 

Field programmable gate arrays (FPGA) have been 
widely utilized in digital system design; FPGAs offer 
programmability at relatively low development cost 
and good performance. An FPGA consists of logic 
and interconnect resources that permit to config
uncommitted chip into the desired functions for 
different applications. The common FPGA 
architecture consists of a two
configurable logic blocks (CLBs), a programmable 
interconnect (made of nets and switches) and 
programmable input/outputs (IOs). Currently, the 
programmable interconnect accounts for more than 80 
percent of the FPGA programmable resources 
(usually stacked up in eight metal layers). Therefore, 
nets in the interconnect resources are very vulnerable 
to faults both at manufacturing as well as run time. 
For interconnect resources, FPGA testing 
methodologies are broadly classified as application
dependent and application-independent. Application
independent testing (also known as manufacturing 
test) utilizes nearly exhaustive test sets such that all 
programmable resources are tested for faults.
 
Field-Programmable Gate Arrays (FPGAs) to 
implement complex logic functions in digital 
applications has become increasingly common. 
FPGAs are regular structures of logic modules that 
communicate through an interconnected architecture 
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PROGRAMMABLE GATE ARRAYS 

Field programmable gate arrays (FPGA) have been 
widely utilized in digital system design; FPGAs offer 
programmability at relatively low development cost 
and good performance. An FPGA consists of logic 
and interconnect resources that permit to configure an 
uncommitted chip into the desired functions for 
different applications. The common FPGA 
architecture consists of a two-dimensional array of 
configurable logic blocks (CLBs), a programmable 
interconnect (made of nets and switches) and 

put/outputs (IOs). Currently, the 
programmable interconnect accounts for more than 80 
percent of the FPGA programmable resources 
(usually stacked up in eight metal layers). Therefore, 
nets in the interconnect resources are very vulnerable 

manufacturing as well as run time. 
For interconnect resources, FPGA testing 
methodologies are broadly classified as application-

independent. Application-
independent testing (also known as manufacturing 

stive test sets such that all 
programmable resources are tested for faults. 

Programmable Gate Arrays (FPGAs) to 
implement complex logic functions in digital 
applications has become increasingly common. 
FPGAs are regular structures of logic modules that 
communicate through an interconnected architecture 



International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD  |  Available Online @ www.ijtsrd.com |  Volume – 2  |  Issue – 2  | Jan-Feb 2018    Page: 718 

of lines and switches. The logic modules and the 
interconnect structures are programmed to select a 
particular function of each logic module and specific 
interconnect paths to realize the global function of the 
FPGA. 
  
FPGAs are generally classified into two major types. 
One is one-time programmable FPGAs such as an 
antiques type. The other is unlimited reprogrammable 
FPGAs such as a static RAM (SRAM)-based FPGA. 
In SRAM-based FPGAs, logic elements and 
programmable switches (PSs) can be reprogrammed 
by loading a configuration bit stream, giving FPGAs 
incredible flexibility that is enough to implement any 
digital circuit on the same piece of silicon. Since 
FPGA results in a shorter time to market and 
increased flexibility for systems using logic circuits, 
many applications have been developed to make the 
best use of FPGA reprogram ability. 
 
Currently, very-large-scale integration (VLSI) 
technology keeps increasing circuit integration by 
ever greater degrees, and the rapid development in 
packaging technology greatly reduces the 
controllability and observability of internal nodes. 
This significantly complicates the testing of the 
system. Generally, FPGAs can be configured in an 
incredibly large number of ways. From the 
manufacturing testing point of view, it must be 
ensured that the part is functional under all 
configurations. Since the reconfiguration time (the 
time to load a configuration into an FPGA) ranges 
from milliseconds to entire seconds, depending on the 
size of the FPGA, it is impossible to map all possible 
configurations during a test. Therefore, a set of test 
configurations (TCs) must be developed to ensure that 
the part is defect free, regardless of any particular user 
application. In other words, FPGA testing is important 
to ensure the reliable performance of FPGA devices. 
In particular, SRAM based FPGA testing has been 
attracting the interest of a large number of researchers 
in the last decade since the complexity and the size of 
FPGA devices have increased.  
 
Several previous works extensively studied the testing 
of FPGAs assuming that only configurable logic 
blocks (CLBs) can be faulty. Similarly, others studied  
k2, and k3 the testing of only the interconnect 
resources, assuming that CLBs were fault free. To 
date, however, there has been relatively little research 
conducted on both interconnect resource and CLB 
testing. Although the synthesis algorithm for self-

checking the combinational logic of FPGAs can 
detect the faults within the combinational functional 
block of a CLB and on the interconnect lines 
connecting the functional blocks, the approach is short 
of the ability of fault diagnosis.  
 
In contrast, conventional BIST approaches introduce 
both area overhead (typically between 10% and 30%) 
and delay penalties. The BIST approach can be 
applied to any in-circuit reprogrammable SRAM-
based FPGAs. The only cost will be the additional 
memory for storing the data required to reconfigure 
the FPGA.  
 
1.2 SRAM-BASED FPGA ARCHITECTURE 

SRAM-based FPGAs are of special interest due to 
their compatibility with mainstream integrated circuit 
fabrication technology, as well as because of their 
wide use in practical applications. The SRAM-based 
FPGA consists of an array of n × n CLBs and 
local/global interconnect resources. The CLBs can be 
programmed with configuration cell data to generate 
logical functions. The set of all configuration cell data 
makes up an FPGA configuration. The basic internal 
architecture of a CLB is made up of three 
components: 1) lookup tables (LUTs); 2) multiplexers 
(MUXs); and 3) D-type flip-flops (DFFs). In figure.1, 
the LUTs implement either any logical function with 
k1 inputs or RAM. Every CLB is configured with 
configuration cells C1, . . . ,Cn. The number of 
outputs of LUTs is assumed to be k3, and the inputs 
k2 directly drive some MUXs or DFFs, producing the 
CLB outputs. Note that parameters k1,depend on the 
FPGA type. 

 
Fig. No 1: Fpga Architecture 

The local interconnects are associated with CLBs, 
including wire segments and connecting blocks. Note 
that a connecting block contains some programmable-
interconnect-point PSs (PIP-PSs) and multiplexer PSs 
(MUX-PSs) to bring signals into and out of CLBs. On 
the other hand, wire segments and programmable 
cross-point PSs (PCP-PSs) within the switch matrix 
(SM) in global interconnects form horizontal and 
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vertical routing channels that connect signals between 
CLBs. 
 
1.3 TESTING CONSIDERATIONS 

The FPGA test procedure is a two-part process. Each 
TC must be first loaded into the FPGA device, and 
then, test vectors must be applied. This process is 
repeated for a number of TCs. The PIP-PSs and 
MUX-PSs in the connecting block and the PCP-PSs in 
the SM are the essential components for programming 
TCs under FPGA testing. The SRAM cell can be 
programmed to open or close the pass transistor. An 
MUX-PS, illustrated as a set of unidirectional 
triangles over the horizontal and vertical wire 
segments, functions as a many-to-one MUX. An 
MUX-PS allows one of the inputs to be routed to the 
output for certain selection signals.  

The selection logic can only be set through the 
configuration bits during the configuration stage. In 
other words, a PCP-PS connects the wire segments in 
the west– east (W–E), north–south (N–S), north–west 
(N–W), south–west (S–W), north–east (N–E), and 
south–east (S–E) directions.  
 
Generally, the TCs are fault graded. If the desired 
fault coverage is not achieved, test engineers must 
develop additional test vectors and configurations to 
increase the fault coverage. In other words, the testing 
of an FPGA chip poses a challenge to test engineers. 
Different configurations (programming’s) of the 
FPGA are required, and so, certain questions arise. It 
is extremely important to bear in mind the high cost of 
changing the configuration due to reprogramming 
costs. The configuration loading process is performed 
through a serial access, and so, this process is really 
time consuming. Consequently, when test generation 
for an FPGA is performed, the main objective is to 
minimize the number of TCs. 
 
Field-programmable gate arrays (FPGAs) are used to 
implement complex logic functions in digital 
applications has become increasingly common. Due 
to this so many faults are occurred in interconnect 
resources and CLBs to overcome those faults a BIST 
is designed in this project. 
 
LITERATURE SURVEY 

2.1 A NOVEL TECHNIQUE FOR PEAK- AND 
AVERAGE-POWER REDUCTION IN SCAN-
BASED BIST 

Abdallatif S. Abu-Issa and Steven F. Quigley 
A novel low-transition linear feedback shift registers 
(LFSR) that is based on some new observations about 
the output sequence of a conventional LFSR. It’s 
composed of an LFSR and a 2 × 1 multiplexer. When 
used to generate test patterns for scan-based built-in 
self-tests, it reduces the number of transitions that 
occur at the scan-chain input during scan shift 
operation by 50% when compared to those patterns 
produced by a conventional LFSR. Hence, it reduces 
the overall switching activity in the circuit under test 
during test applications. The BS-LFSR is combined 
with a scan-chain-ordering algorithm that orders the 
cells in a way that reduces the average and peak 
power (scan and capture) in the test cycle or while 
scanning out a response to a signature analyzer. These 
techniques have a substantial effect on average- and 
peak-power reductions with negligible effect on fault 
coverage or test application time. Experimental results 
on ISCAS’89 benchmark circuits show up to 65%and 
55% reductions in average and peak power, 
respectively. 
 
The design for low power has become one of the 
greatest challenges in high performance very large 
scale integration(VLSI) design. As a consequence, 
many techniques have been introduced to minimize 
the power consumption of new VLSI systems. 
However, most of these methods focus on the power 
consumption during normal mode operation, while 
test mode operation has not normally been a 
predominant concern. However, it has been found that 
the power consumed during test mode operation is 
often much higher than during normal mode 
operation. This is because most of the consumed 
power results from the switching activity in the nodes 
of the circuit under test (CUT), which is much higher 
during test mode than during normal mode operation. 
Several techniques that have been developed to 
reduce the peak and average power dissipated during 
scan-based tests can be found in paper. A direct 
technique to reduce power consumption is by running 
the test at a slower frequency than that in normal 
mode. This technique of reducing power 
consumption, while easy to implement, significantly 
increases the test application time. Furthermore, it 
fails in reduce in speak-power consumption since it is 
independent of clock frequency Another category of 
techniques used to reduce the power consumption in 
scan-based built-in self-tests (BISTs) is by using scan 
chain ordering techniques.  
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These techniques aim to reduce the average-power 
consumption when scanning in test vectors and 
scanning out captured responses. Although these 
algorithms aim to reduce average-power consumption, 
they can reduce the peak power that may occur in the 
CUT during the scanning cycles, but not the capture 
power that may result during the test cycle (i.e., 
between launch and capture) 
 
2.2 WEIGHTED PSEUDORANDOM HYBRID 
BIST 
Abhijit Jas, C. V. Krishna, and Nur A. Touba,  
Test data-compression scheme that is a hybrid 
approach between external testing and built-in self-
test (BIST). Three levels of compression are used to 
greatly reduce test costs. Experimental results show 
that the proposed scheme reduces tester storage 
requirements and tester bandwidth requirements by 
orders of magnitude compared to conventional 
external testing, but requires much less area overhead 
than a full BIST implementation providing the same 
fault coverage. No test points or any modifications are 
made to the function logic. The paper describes the 
proposed hybrid BIST architecture as well as two 
different ways of storing the weight sets, which are an 
integral part of this scheme. 
 
A new test data compression scheme is presented, 
which is a hybrid approach between BIST and 
external tested. The term “hybrid BIST” will be used 
in this paper to classify any scheme that involves 
combining external data from the tester along withiest 
hardware on the chip to provide a hybrid test solution 
for a particular module or core. A hybrid BIST 
approach reduces the test data stored on the tester 
compared with full external testing, but does not 
require as much hardware overhead as full BIST. A 
simple approach for hybrid BIST is to use STUMPS 
architecture to apply pseudorandom patterns to detect 
the random pattern testable faults, and then use 
deterministic scan vectors from the tester to detect the 
hard faults.  
 
There have been a couple of case studies on using this 
approach for large industrial designs. The case study 
in was done on the Motorola PowerPC 
microprocessor core, and the study in was done on 
large ASIC designs. In the reduction in external test 
storage requirements after using 500 K BIST patterns 
was around 30%. In test points were inserted, but the 
reduction in test storage requirements after 262 K 
BIST patterns still ranged only from 35% to 55%. 

What these results indicate is that most of the vectors 
in a deterministic test set target hard faults which are 
missed by pseudorandom patterns. So a 
straightforward hybrid BIST approach where 
pseudorandom vectors are applied with BIST 
hardware followed by deterministic vectors from the 
external tester, can only achieve a limited reduction 
infester storage requirements, generally not an order 
of magnitude reduction. There are several other 
approaches that can be classified as 
hybrid BIST approaches. In a hybrid BIST approach 
was proposed where some of the scan chains in 
STUMPS architecture are filled with deterministic test 
data from the tester while the rest of the scan chains 
are filled from the pseudorandom pattern generator 
(PRPG).  
 
The set of scan chains receiving deterministic data is 
rotated in a round-robin fashion. This approach was 
applied to the Motorola PowerPC microprocessor 
core. Results indicated that the test storage 
requirements could be reduced by around 50% with 
this approach compared with 31% as was reported in 
for using fully pseudorandom patterns followed by 
fully deterministic patterns. 
 
2.3 AN APPLICATION SPECIFIC 
RECONFIGURABLE ARCHITECTURE FOR 
FAULT TESTING AND DIAGNOSIS: A 
SURVEY  
A.R Kasetwar, Gaurav Kumar, S. M. Gulhane 
Now a day’s many VLSI designers are implementing 
different applications on real time with the use of 
FPGAs. Although they are working efficiently, they 
are not achieving their expected goals. This is only 
because of the faults which are occurring in the FPGA 
at the runtime of the application. Those faults are 
remaining in the circuitry as there is no provision for 
removal of those faults at application level. So there is 
a great need of detection & removal of faults. Mainly 
Interconnect faults, Logical Faults and Delay are the 
faults which reduces the performance of FPGA. 
Although the manufacturers are trying to decrease the 
fault present in the FPGA, it is very necessary to 
remove those faults at run time of the particular 
application. This paper includes the occurrence of 
different faults and various methods to remove those 
faults. 
 
Fault diagnosis has particular importance in the 
context of field programmable gate arrays (FPGAs) 
because faults can be avoided by reconfiguration at 
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almost no real cost. The main faults in the FPGAs are 
interconnects, logic blocks and faults related to delay 
of an arbitrary design. As FPGAs works properly, all 
three faults should be removed. FPGA testing is of 
two types an application dependent and application 
independent. The testing process for both is different. 
The time required to test an application dependent 
testing is less as it focuses only on some specific part 
whereas the application independent testing tests 
complete FPGAs .Faults related to logical block, 
interconnected faults and delay faults are the 
problems for the FPGAs user. 

 
Fig. No 4 : BIST Architecture TPG, But And ORA 

Connection. 
They have made a detail survey of number of methods 
for fault diagnosis from this survey they came to 
know that for interconnect diagnosis, the method is 
better as compared to other method because all the 
single faults and multiple are uniquely identified and 
removed. For logic blocks diagnosis, BISD approach 
is selected because in it multiple faults are uniquely 
identified in a single test configuration with a fixed 
test time. All other methods are limited only for faulty 
CLBs and single faults. It is used for both 
manufacturing as well as user configuration test with 
the guarantee that the maximum delays along the 
tested path will not exceeds the clock period during 
the normal operation 
 
2.4 A NOVEL HEURISTIC METHOD FOR 
APPLICATION-DEPENDENT TESTING OF A 
SRAM-BASED FPGA INTERCONNECT 
T. Nandha Kumar, Senior Member, IEEE, and 
Fabrizio Lombardi, Fellow, IEEE 
A new method for generating configurations for 
application-dependent testing of a SRAM-based FPG 
Interconnects. This method connects an activating 
input to multiple nets, thus generating activating test 
vectors for detecting stuck-at, open, and bridging 
faults. This arrangement permits a reduction in the 
number of redundant configurations, thus also 
achieving are diction in test time for application-
dependent testing at full fault coverage. As the 
underlying solution requires an exponential 
complexity, a heuristic algorithm that is polynomial 
and greedy in nature (based on sorting) is used for net 

selection in the configuration generation process. It is 
proved that this algorithm has an execution complex 
(where L is the number of LUTs in the design). The 
proposed method requires at most log2ðM þ 2Þ 
configurations (where M denotes the number of 
activating inputs) as Walsh coding is employed.  
 
For interconnect resources, current FPGA testing 
methodologies are broadly classified as application 
dependent and application independent. Application-
independent testing (also known as manufacturing 
test) utilizes nearly exhaustive test sets such that all 
programmable resource sari tested for faults. An 
application-dependent method tests those resources 
that are utilized by a specific design implemented on 
an FPGA. This type of testing method has drawn 
particular interest as it can implement adaptive fault 
tolerance and self-diagnosis as well as self-repair can 
be utilized. So, it is important to shorten the test time 
as periodical tests are used to identify and locate a 
faulty resource by complete (100 percent) coverage; 
execution complexity of the test generation process is 
not as important(provided it remains polynomial) 
because the configurations are established once for a 
given application. A possible approach to shorten test 
time with complete coverage is to reduce the number 
of test configurations. 
 

 
Fig.No 5 :Activating Input Assignment Using 
Application-Dependent Testing 
 
In the algorithmic method for application-dependent 
testing of a SRAM-based FPGA interconnects. The 
proposed method relies on generating and utilizing so-
called activating inputs connected through multiple 
nets with Walsh coding. This algorithmic-based 
method detects all stuck-at, open, and pair wise 
bridging faults in the interconnect resources of an 
FPGA. Analysis and simulation has shown that the 
heuristic criterion used in the proposed method results 
in an efficient generation of test configurations. At 
most configurations are required (where M denotes 
the number of activating inputs) in theory; however, 
an assessment of 25 ISCAS89sequential benchmarks 
has shown that the required number of configurations 
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is very small (three or four) and therefore almost 
independent of the design size and the number of 
inputs of a LUTs in the FPGA. Test configurations 
have been generated using an algorithmic method 
whose execution is in (where L is the number of 
LUTs in the design); this method utilizes net sorting 
to assign activating inputs and finding the test vectors. 
 
2.5 HIGH RESOLUTION APPLICATION 
SPECIFIC FAULT DIAGNOSIS OF FPGAS 
Mehdi B. Tahoori, Senior Member, IEEE 
High resolution diagnosis plays a critical role in 
silicon debugs and yield improvement. Application-
dependent diagnosis is also a key component in online 
testing and adaptive computing. In this paper, a new 
technique for high resolution localization of faults in 
the interconnects and logic blocks of an arbitrary 
design implemented on a field-programmable gate 
array (FPGA)is presented. This work is 
complementary to application-independent detection 
methods for FPGAs. This technique can uniquely 
identify any single bridging, open, or stuck-at fault in 
the interconnects well as any single functional fault, a 
fault resulting change in the truth table of a function, 
in the logic blocks. Then umber of test configurations 
for interconnect diagnosis is logarithmic to the size of 
the mapped design, whereas logic diagnosis is 
performed in only one test configuration with less 
than 5% overhead of built-in self diagnosis. These 
techniques have been further extended for multiple 
fault diagnosis. 
 
Application-dependent diagnosis is also a key player 
in silicon debug process. Once a particular 
configuration (e.g., a test configuration at the 
manufacturing test or an application configuration in 
the field) fails, the location of defective resources 
needs to be precisely identified for failure mode 
analysis (FMA)and yield improvement. An effective 
application-dependent fault localization (diagnosis) 
method can reduce the overall silicon debug time and 
improve its precision and quality. During system 
operation, application-dependent test and diagnosis 
are very crucial in online self-repair schemes for fault 
tolerant applications. In these applications, the 
existence of faults in the system is first identified and 
faulty resources are precisely diagnosed afterwards. 
Then, the design is remapped to avoid faulty 
resources. Because test and diagnosis procedures are 
performed during system operation (online), the 
number of test vectors and configurations must be 
minimized. Note that the test time is dominated by 

loading test configurations rather than applying test 
vectors. 
 
Compared to application-independent test and 
diagnosis, application-dependent test and diagnosis 
provides faster test and diagnosis time while 
achieving a higher diagnosis resolution over a more 
comprehensive fault list. This is because application-
dependent test and diagnosis focus only on the FPGA 
resources used for that particular design, rather than 
all FPGA resources. 

 
Fig .No 6 :  Logic Network Of Single-Term 

Functions 
Application-dependent diagnosis techniques for faults 
in interconnect and logic blocks of an arbitrary design 
mapped into an FPGA are presented. For interconnect 
diagnosis, multiple faults (open, stuck-at, or bridging 
fault) can be uniquely identified. As shown in the 
paper, the number of total test configurations for 
diagnosis of interconnect is logarithm micro the size 
of the design. For logic block diagnosis ,a BISD 
approach is presented in which multiple faults can be 
uniquely identified in only one test configuration. 
This method can be used for defect tolerance by the 
manufacturer in order to increase the manufacturing 
yield, i.e., as a part of application-specific FPGA 
(ASFPGA) test flow, or in the online self-repair 
schemes for fault tolerant applications. 
 
EXISTING SYSTEM 

3.1 DFT ARCHITECTURE 

As shown in Fig. 1, the scan-forest architecture is 
used For pseudorandom testing in the first phase. 
Each stage of the phase shifter (PS) drives multiple 
scan chains, where all scan chains in the same scan 
tree are driven by the same stage of the PS. Unlike the 
multiple scan-chain architecture used in the previous 
methods, the scan-forest architectures adopted to 
compress test data and reduce the deterministic test 
data volume. Separate weighted signals e0, e1. . . and 
en are assigned to all scan chains in the weighted 
pseudorandom testing phase (phase = 0), as shown in 
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Fig., which is replaced by the regular test in the 
deterministic BIST phase (phase = 1). Each scan-in 
signal drives multiple scan chains, as shown in Fig. 1, 
where different scan chains are assigned different 
weights. This technique can also significantly reduce 
the size of the PS compared with the multiples can-
chain architecture where each stage of the PS drives 
one scan chain. The compactor connected to the 
combinational part of the circuit is to reduce the size 
of the MISR. The size of the LFSR needed for 
deterministic BIST depends on the maximum number 
of care bits of all deterministic test vectors for most of 
the previous deterministic BIST methods. In some 
cases, the size of the LFSR can every large because of 
a few vectors with a large number of care bits even 
when a well-designed PS is adopted. This may 
significantly increase the test data volume in order to 
keep the seeds. This problem can be solved by adding 
a small number of extra variables to the LFSR or ring 
generator without keeping a big seed for each vector. 

 
Fig. No 7 : Weighted Pseudorandom Test 
Generator For Scan-Tree-Based Lp BIST. 
 
3.2. WEIGHTED PSEUDORANDOM TEST 
PATTERN GENERATION 
Our method generates the degraded sub circuits for all 
subsets of scan chains in the following way. All PPIs 
related to the disabled scan chains are randomly 
assigned specified values (1 and 0). Note that all scan 
flip flops at the same level of the same scan tree share 
the same PPI. For any gate, the gate is removed if its 
output is specified; the input can be removed from a 
NAND, NOR, AND, and OR gates if the input is 
assigned a no controlling value and it has at least three 
inputs. For a two-input AND or OR gate, the gate is 
removed if one of its inputs is assigned a no 
controlling value. For a NOR or NAND gate, the gate 
degrades to an inverter if one of its inputs is assigned 
a no controlling value. 
 
For an XOR or NXOR gate with more than three 
inputs, the input is simply removed from the circuit if 
one of its inputs is assigned value 0; the input is 
removed if it is assigned value 1, an XOR gate 
changes to an NXOR gate, and an NXOR gate 
changes to an XOR gate. For an XOR gate with two 

inputs, and one of its inputs is assigned value 0, the 
gate is deleted from the circuit. For a two-input 
NXOR gate, the gate degrades to an inverter. If one of 
its inputs is assigned value 1, a two-input XOR gate 
degrades to an inverter. If one of its inputs is assigned 
value 1, a two-input NXOR gate can be removed from 
the circuit. 
 
3.3 LOW-POWER DETERMINISTIC BIST 
We use the same LFSR for both pseudorandom 
pattern generation and deterministic phases. First, we 
propose a new algorithm to select a proper primitive 
polynomial; after that the LP deterministic BIST and 
LP reseeding schemes are presented. 
 
3.3.1 SELECTING A PRIMITIVE 
POLYNOMIAL AND THE EXTRA VARIABLE 
NUMBER 
Some extra variables are injected just like EDT.A new 
scheme to select the size of the LFSR. In this number 
of extra variables simultaneously minimize the 
amount of deterministic test data. Usually, a small 
LFSR constructed by a primitive polynomial is 
sufficient when a well-designed PS is adopted in the 
pseudorandom testing phase. In our method, a 
combination of a small LFSR and the PS from is used 
to generate test patterns in the pseudorandom testing 
phase. The weighted test-enable signal-based 
pseudorandom test generator generates weighted 
pseudorandom test patterns. The size of the LFSR is 
not determined by the maximum number of care bits 
for any deterministic test vector. That is, the same 
LFSR is used for both phases. For any degree less 
than 128, it is computationally feasible to generate 
enough primitive polynomials in reasonable time, out 
of which one (whose degree is equal to the maximum 
number of care bits in the deterministic vectors) can 
be selected to encode all deterministic test vectors. 
The tool that we used to generate primitive 
polynomials can only handle polynomials up to 
degree 128 of the word-length limit of the computer. 
However, only very small LFSRs are used for all 
circuits according to all experimental results (no more 
than 30) 
 
3.3.2 LOW-POWER DETERMINISTIC BIST 
AND RESEEDING 
An effective seed encoding scheme is used here to 
reduce the storage requirements for the deterministic 
test patterns of the random-pattern-resistant faults. 
The encoded seed is shifted into the LFSR first. A 
deterministic test vector is shifted into the scan trees 
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that are activated by the gating logic, where each 
scan-in signal drives a number of scan trees, and only 
one of the scan trees driven by the same scan-in signal 
is activated. The extra variables are injected into the 
LFSR when the seed is shifted into the activated scan 
trees. The gating logic, as shown in Fig. 1, partitions 
scan trees into multiple groups. The first group of 
scan trees is disabled after they have received the test 
data. The second group of scan trees is activated 
simultaneously, and all other scan trees are disabled. 
The seed can be stored in an extra shadow register, 
which is reloaded to the LFSR in a single clock cycle. 
The scan shift operations are repeated when the extra 
variables are injected into the LFSR. This process 
continues until all scan trees have received test data. 
The outputs of all scan chains, which are driven by 
the same clock signal, are connected to the same 
response compactor during the deterministic BIST 
phase. This offers additional flexibility for test 
encoding. The test responses of the previous test 
vector can be shifted out with only a few clock cycles 
(corresponding to the depth of the scan trees in the 
pseudorandom testing phase). For scan chain 
architecture, the number of clock cycles needed to 
shift-out test responses of the previous deterministic 
test vector is much larger. The proposed LP tree-
based architecture makes the reseeding scheme much 
easier to implement. 
 
LIMITATIONS: 

 BSF detects all possible stuck-at and bridging 
faults by utilizing the all zeros’ vector and a 
walking-1 test set.  

 Open faults cannot be guaranteed to be located. 
 
PROPOSED SYSTEM 

4.1 FPGA-BIST DESIGN 

BIST techniques in general are associated with high 
performance; they are also associated with high area 
overhead incurred by on-chip test hardware. However, 
the BIST overhead is not an issue for FPGA BIST 
because the test hardware is easily reconfigured by 
inserting and removing test pattern generators (TPGs) 
and ORAs. This is particularly important for the 
testing of FPGAs. The testing strategy of the proposed 
FPGA BIST structure is to configure groups of ten 
CLBs into a test block, as illustrated in figure.  
 
In each test block, four CLBs are configured as a TPG 
to generate the addresses for test patterns. 

Additionally, two CLBs are configured as an ORA for 
comparison with each output of the block under test 
(BUT) to observe the test results. The global/local 
interconnect resources and CLBs in a BUT, which are 
configured by four CLBs in a test block, are then 
sequentially tested. To guarantee the testing of all 
global/local interconnects resources and CLBs, the 
FPGA has to be reconfigured to shift the test blocks 
for testing. The test processes of the proposed FPGA 
BIST structure are simultaneously performed by a 
BIST controller, which repeatedly reconfigures the 
test blocks for testing.  
 
Briefly, the testing processes can be summarized in 
the following steps. 

1. Reconfigure the FPGA to create test blocks. 
2. Program the TCs. 
3. Initiate the TS for global/local interconnect 

resources and CLBs. 
4. Generate the test vectors. 
5. Analyze the test results. 

 

 
 

Fig .No 8 : FPGA-BIST Structure 
 
In other words, the test blocks are first (re)configured 
by the BIST controller. Second, the TCs should be 
reconfigured for global/local interconnect resource 
and CLB testing. Then, the LUT-based method is 
used to configure the TPG and ORA to generate the 
test vectors. Finally, the test results are analyzed. 
 
4.2 TC CONFIGURATIONS 

The global/local interconnect resource and CLB tests 
rely on the in-system reprogram ability of FPGAs. 
Thus, separate testing treatments are needed since the 
global interconnects, local interconnects, and CLBs of 
an FPGA are fundamentally different in nature. The 
testing of global interconnects is achieved by 
configuring PCP-PSs in SMs and horizontal and 
vertical wire segments to form long buses, and then, 
their integrity is verified. The formation of the buses 
does not use any CLB logic. On the contrary, when 
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local interconnects are under test, the CLBs must be 
part of the test circuitry, since local interconnects can 
only be tested indirectly by applying tests to the 
inputs of a CLB and observing test responses at the 
CLB outputs. To ensure the testing of the entire 
FPGA and reduce the testing time, the TCs have to be 
carefully scheduled first, particularly the SMs in the 
global interconnects. 

4.3 FAULT MODELS 

Design a BIST structure for both CLB and 
interconnect resource testing in SRAM-based FPGAs. 
The faults in this paper can be categorized into four 
major groups, namely, open/short, stuck-on/off, stuck-
at-0/1, and interconnect delay faults. The stuck-on/off 
faults appear in the pass transistor of PIP-PSs or 
MUX-PSs in local interconnects, while open/short 
faults occur on PCP-PSs or wire segments in global 
interconnects. Significantly, the delay fault is 
presented with a path under test (PUT). On the other 
hand, the stuck-at-0/1 faults can be found in the LUTs 
of CLBs.  

Figure shows cases of PIP-PSs and MUX-PSs with 
stuck on/off faults in the local interconnects. Note that 
a stuck-on/off fault causes the pass transistor in PIP-
PSs or MUX-PSs to be permanently on/off, regardless 
of the value of the SRAM cell controlling the pass 
transistor in PIP-PSs or MUX-PSs. An open fault in 
the global interconnect is a disconnection of any 
wires, while a short fault indicates a bridging between 
two wires.   
 
Figure (b) illustrates cases of wire open/short faults. 
Furthermore, Figure (b) shows cases of PCP-PS 
open/short faults that occur when there is a stuck-off 
fault and a stuck-on fault in the PIP-PS of the 
connectable and no connectable directions of wire 
segments, respectively. Moreover, since the TCs for 
interconnect resource and CLB testing are the same 
and the TPG and ORA of the proposed BIST design 
are built by using the LUTs, the faults in a CLB only 
consider the stuck-at-0/1faults on every  AM cell in 
LUTs [see figure (c)]. In other words, for an LUT, the 
fault can occur in any one of the memory cells, 
making it incapable of storing the correct logic value 
(an LUT has a single-bit output, and therefore, this 
value is either 0 or 1). Thus, the stuck-at-1 or the 
stuck-at-0 fault may occur at a memory cell. Note that 
there is no need to separately consider the stuck-at 
fault model in interconnects, since these faults can be 
modeled as short circuits to power supply and ground 

lines. On the other hand, by setting the clock period to 
the specification time and generating a transition to go 
through the PUT, we can be determine whether the 
PUT is fault free or not.  
 
Figure (d) shows an example of testing a PUT. If the 
two DFFs initially store logic 0 and generate rising-
transition propagation from A to B, then logic 1 in 
DFF2 can be obtained in the fault-free situation. 
Otherwise, the logic value of DFF2 will remain 0 after 
a specified time if the PUT is faulty.  
 
TYPES OF FAULT MODELS: 

Fault models are, 

1) Wire open fault:  
A disconnection occurs on any wires in the global 
interconnect. 
2) Wires short fault:  
A bridge occurs between two wires in the global 
interconnect. 
3) LUT stuck-at-0 fault:  
The RAM cell value of an LUT in the CLB is always 
0. 
4) LUT stuck-at-1 fault:  
The RAM cell value of an LUT in the CLB is always 
1. 
5) Interconnect delay fault: 

A transition is propagated from one end of a circuit, 
and the result is captured from  the other end after a 
specified time (test clock period) 
 

 
Fig .No 10: Scheme of A BIST Structure in a Test 

Block. 
 
ADVANCED FPGA-BIST DESIGN 

 STo test an SRAM-based FPGA using a BIST 
technique, it has to be configured into TCs, and 
then, test vectors, input values, and primary inputs 
must be applied in each configuration. 

 The BIST method involves configuring one part 
of the FPGA to undergo testing and configuring 
the other parts to generate test vectors and to 
analyze test results. 
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 The sub circuits being tested and the resources of 
the FPGA change roles so that the entire FPGA is 
eventually tested. This way, testability is achieved 
without any overhead, since the BIST logic will 
“disappear” when the circuit is reconfigured for its 
normal system operation. 

 Although BIST techniques in general are 
associated with high performance, they are also 
associated with high area overhead incurred by 
on-chip test hardware. However, the BIST 
overhead is not an issue for FPGA BIST because 
the test hardware is easily reconfigured by 
inserting and removing test pattern generators 
(TPGs) and ORAs.  
 

APPLICATIONS: 

 Weapons 
 Avionics 
 Safety-Critical devices 
 Automotive use 
 Computers 
 Unattended machinery 
 It may be implemented in Space Research 

Applications. 
 For most advanced Self Intelligent Robotic 

technology. 
 Fully automatic digital controlled equipment.  
 It may be also implemented in Advanced 

automobiles 
 
SYSTEM SPECIFICATIONS 

The simulation and Hardware implementation can be 
done by using Models, Xilinx ISE. 

5.1 INTRODUCTION TO HDL 

VHDL is a language for describing digital electronic 
systems. It arose out of the United States 
government’s very high speed integrated circuits 
(VHSIC) program, in the course of this program. It 
became clear that there was a need for a standard 
language for describing the structure and function of 
integrated circuits(IC’s).   Hence   the   VHSIC   
hardware   description language (VHDL) was 
developed. It was subsequently developed further 
under the auspices of the Institute of Electrical and 
Electronics Engineers (IEEE) and adopted in the form 
of the IEEE standard 1076. VHDL is designed to fill a 
number of needs in the design process.  

 First, it allows description of the structure of a 
system which includes decomposition into 
subsystems and interconnects of those subsystems. 

 Second it allows the specification of the function 
of a system   to   be   stimulated   before   being   
manufactured,   so   that   designers   can   quickly   
compare alternatives test for correctness without 
the delay and expense if hardware prototyping.  

 Third it allows the detailed structure of a design to 
be synthesized from a more abstract specification, 
allowing designers to concentrate on more 
strategic design and reducing time to market. 

 Modeling  for  simulation  and  synthesis   is   a  
vital  part   of  a  range  of  levels  of abstraction, 
from gate levels up to algorithmic and 
architectural levels. It will continue to play an 
important role in the design future silicon-based 
systems. 
 

Very high speed integrated circuit hardware 
description language (VHDL) can be used to model 
digital systems and introduce some of the basic 
concepts underlying the language.  
 
HDL LANGUAGE 

HDL language involved with this topics 

 Digital Design with HDL. 
 Emergence of HDLs. 
 Popularity of Virology HDL. 

 
DIGITAL DESIGN WITH HDL 

Digital circuit design has evolved rapidly over the last 
25 years. The earliest digital circuits were designed 
with vacuum tubes and transistors. Integrated circuits 
were then invented where logic gates were placed on 
a single chip. The first integrated circuit (IC) chips 
were SSI (Small Scale Integration) chips where the 
gate count was very small. As technologies became 
sophisticated, designers were able to place circuits 
with hundreds of gates on a chip. These chips were 
called MSI (Medium Scale Integration) chips. With 
the advent of LSI (Large Scale Integration), designers 
could put thousands of gates on a single chip. At this 
point, design processes started getting very 
complicated, and designers felt the need to automate 
these processes. Computer Aided Design (CAD) 
techniques began to evolve. Chip designers began to 
use circuit and logic simulation techniques to verify 
the functionality of building blocks of the order of 
about 100 transistors. The circuits were still tested on 
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the breadboard, and the layout was done on paper or 
by hand on a graphic computer terminal. 

With the advent of VLSI (Very Large Scale 
Integration) technology, designers could design single 
chips with more than 100,000 transistors. Because of 
the complexity of these circuits, it was not possible to 
verify these circuits on a breadboard. Computer-aided 
techniques became critical for verification and design 
of VLSI digital circuits. Computer programs to do 
automatic placement and routing of circuit layouts 
also became popular. The designers were now 
building gate-level digital circuits manually on 
graphic terminals. They would build small building 
blocks and then derive higher-level blocks from them. 
This process would continue until they had built the 
top-level block. Logic simulators came into existence 
to verify the functionality of these circuits before they 
were fabricated on chip. 
 
5.2 EMERGENCE OF HDLS 

For a long time, programming languages such as 
FORTRAN, Pascal, and C were being used to 
describe computer programs that were sequential in 
nature. Similarly, in the digital design field, designers 
felt the need for a standard language to describe 
digital circuits. Thus, Hardware Description 
Languages (HDLs) came into existence. HDLs 
allowed the designers to model the concurrency of 
processes found in hardware elements. Hardware 
description languages such as Virology HDL and 
VHDL became popular. Virology HDL originated in 
1983 at Gateway Design. Even though HDLs were 
popular for logic verification, designers had to 
manually translate the HDL-based design into a 
schematic circuit with interconnections between gates. 
The advent of logic synthesis in the late 1980s 
changed the design methodology radically. Digital 
circuits could be described at a register transfer level 
(RTL) by use of an HDL. Thus, the designer had to 
specify how the data flows between registers and how 
the design processes the data. The details of gates and 
their interconnections to implement the circuit were 
automatically extracted by logic synthesis tools from 
the RTL description. 

Thus, logic synthesis pushed the HDLs into the 
forefront of digital design. Designers no longer had to 
manually place gates to build digital circuits. They 
could describe complex circuits at an abstract level in 
terms of functionality and data flow by designing 
those circuits in HDLs. Logic synthesis tools would 

implement the specified functionality in terms of 
gates and gate interconnections. HDLs also began to 
be used for system-level design. HDLs were used for 
simulation of system boards, interconnect buses, 
FPGAs (Field Programmable Gate Arrays), and PALs 
(Programmable Array Logic). A common approach is 
to design each IC chip, using an HDL, and then verify 
system functionality via simulation. 
 
5.3 POPULARITY OF VERILOG HDL 

Virology HDL has evolved as a standard hardware 
description language. Virology HDL offers many 
useful features for hardware design. Virology HDL is 
a general-purpose hardware description language that 
is easy to learn and easy to use. It is similar in syntax 
to the C programming language. Designers with C 
programming experience will find it easy to learn 
Virology HDL. Virology HDL allows different levels 
of abstraction to be mixed in the same model. Thus, a 
designer can define a hardware model in terms of 
switches, gates, RTL, or behavioral code. Also, a 
designer needs to learn only one language for stimulus 
and hierarchical design. Most popular logic synthesis 
tools support Virology HDL. This makes it the 
language of choice for designers. All fabrication 
vendors provide Virology HDL libraries for post logic 
synthesis simulation. Thus, designing a chip in 
Virology HDL allows the widest choice of vendors. 
The Programming Language Interface (PLI) is a 
powerful feature that allows the user to write custom 
C code to interact with the internal data structures of 
Virology. Designers can customize a Virology HDL 
simulator to their needs with the PLI. 

HIERARCHICAL MODELING CONCEPTS OF 
VERILOG 
CONCEPT OF A ‘MODULE’ 
 A module is a basic building block in 

Virology. 
 It can be an element or a collection of lower-

level design (macro or leaf cells) blocks. 
 Provides functionality through its port 

interface. 
 

DECLARATION OF A MODULE 
 A module in Virology is declared using the 

keyword module. 
 A corresponding keyword end module must 

appear at the end of the module. 
 Each module must have a module name, 

which act as the identifier.   
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 A module can have an optional port list which 
describes the input and output terminals of the 
module. 

 
DIFFERENT ABSTRACTION LEVELS 

 Internals of each module can be defined at 
four abstraction levels. 

 Behavioral or Algorithmic level 
 Dataflow level. 
 Gate or structural level. 
 Switch level. 

 
BEHAVIORAL OR ALGORITHMIC 

At this level, a module is implemented in terms of 
desired algorithm or behavior without concern for the 
hardware implementation details. 

// Behavioral or Algorithmic level 
Module and gate (a, b, out); 
// I/O port declaration 
input a, b; 
output out; 
// Variable declaration 
rag out; 
// always behavioral statement 
always @ (a or b) 
out = a & b; 
endmodule 
 
SDATAFLOW LEVEL 

At this level, a module is designed by specifying the 
data flow between hardware registers and how the 
data is processed in the design. 

// Data flow level 
Module and_ gate (a, b, out); 
// I/OPort declaration 
input a, b; 
output out; 
// Dataflow assign statement 
assign out = a & b; 
end module 
Gate or Structural level 
At this level, a module is implemented in terms of  
logic gates and interconnections between these gates. 
// Gate level or structural level 
Module and _gate (a, b, out); 
// I/O port declaration 
input a, b; 
output out; 

// Verilog primitive gate instantiation 
and a1(out ,a, b); 
end module 
 
SWITCH LEVEL 

This is the lowest level of abstraction in which, a 
module can be implemented in terms of switches, 
storage nodes and the interconnections between them. 

// Switch level 
Module nor _gate (out, a, b); 
// I/O port declaration 
input a, b; 
output out; 
// internal wires 
wire c; 
// set up power and ground lines 
supply1pwr; 
supply0gnd; 
// instantiate pmos switches 
pmos (c, pwr, b); 
pmos (out, c, a); 
end module 
 
MODELSIM 

This section describes the basic procedure for 
simulating Models. 

Library 
A library is a location on your file system where 
Models stores data to be used for Simulation. Models 
use one or more libraries to manage the creation of 
data before it is needed for use in simulation. A 
library also helps to streamline simulation invocation. 
Instead of compiling all design data each time you 
simulate, Models uses binary pre-compiled data from 
its libraries. For example, if you make changes to a 
single Virology module, Models recompiles only that 
module, rather than all modules in the design. 
 
5.4 MAPPING THE LOGICAL WORK TO THE 
PHYSICAL WORK DIRECTORY 
Step 1: VHDL uses logical library names that can be 
mapped to Models library directories. If libraries are 
not mapped properly, and you invoke your simulation, 
necessary components will not be loaded and 
simulation will fail. Similarly, compilation can also 
depend on proper library mapping. By default, 
Models can find libraries in your current directory 
(assuming they have the right name), but for it to find 
libraries located elsewhere, you need to map a logical 
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library name to the pathname of the library. You can 
use the GUI (Library Mappings with the GUI, a 
command (Library Mapping from the Command 
Line), or a project (Getting Started with Projects to 
assign a logical name to a design library. 
 
Step 2: Compile the Design 
To compile a design, run one of the following Models 
commands, depending on the language used to create 
the design: 
Compiling Virology (VLOG): 
The log command compiles Virology modules in your 
design. You can compile Virology files in any order, 
since they are not order dependent. See Virology 
Compilation for details. 
Compiling VHDL (VCOM): 
The vcom command compiles VHDL design units. 
You must compile VHDL files in the order necessitate 
to any design requirements. Projects may assist you in 
determining the compile order. 
 
Step 3: Load the Design for Simulation 
Running the Vim Command on the Top Level of the 
Design 
After you have compiled your design, it is ready for 
simulation. You can then run the vim command using 
the names of any top-level modules (many designs 
contain only one top-level module).  
Using Standard Delay Format Files 
You can incorporate actual delay values to the 
simulation by applying standard delay format (SDF) 
back-annotation files to the design. For more 
information on how SDF is used in the design, see 
Specifying SDF Files for Simulation. 
 
STEP 4 - Simulate the Design 
Once you have successfully loaded the design, 
simulation time is set to zero, and you must enter a 
run command to begin simulation. For more 
information, see Virology and System Verilog 
Simulation, and VHDL Simulation. 
 

 
Fig.11: Simulation Flow 

XI LINX ISE 

Xilinx is disclosing this document and intellectual 
property (hereinafter “the design”) to you for use in 
the development of designs to operate on, or interface 
with Xilinx FPGAs. except as stated herein, none of 
the design may be copied, reproduced, distributed, 
republished, downloaded, displayed, posted, or 
transmitted in any form or by any means including, 
but not limited to, electronic, mechanical, 
photocopying, recording, or otherwise, without the 
prior written consent of Xilinx. Any unauthorized use 
of the design may violate copyright laws, trademark 
laws, the laws of privacy and publicity, and 
communications regulations and statutes.  

Xilinx does not assume any liability arising out of the 
application or use of the design; nor does Xilinx 
convey any license under its patents, copyrights, or 
any rights of others. You are responsible for obtaining 
any rights you may require for your use or 
implementation of the design. Xilinx reserves the 
right to make changes, at any time, to the design as 
deemed desirable in the sole discretion of Xilinx. 
Xilinx assumes no obligation to correct any errors 
contained herein or to advise you of any  
 
IMPLEMENTING THE DESIGN 

 Select the counter source file in the Sources 
window. 

 Open the Design Summary by double-clicking the 
View Design Summary process in the Processes 
tab. 

 Double-click the Implement Design process in the 
Processes tab. 

 Notice that after Implementation is complete, the 
Implementation processes have a green check 
mark next to them indicating that they completed 
successfully without Errors or Warnings. 

 Locate the Performance Summary table near the 
bottom of the Design Summary. 

 Click the All Constraints Met link in the Timing 
Constraints field to view the timing constraints 
report. Verify that the design meets the specified 
timing requirements. 

 Close the Design Summary. 
 
CONCLUSION 

The proposed method of a built-in self-test (BIST) 
design for fault detection and fault diagnosis of static-
RAM (SRAM)-based field-programmable gate arrays 
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(FPGAs). The target fault detection/diagnosis of the 
proposed BIST structure are open/short and delay 
faults in the wire channels, stuck on/off faults in PSs, 
andstuck-at-0/1 faults in LUTs. Low power scan 
based bits techniques have been studied along with 
literature papers. BIST based fault techniques are 
identified for SRAM based FPGA. Two fault models 
are designed and simulation outputs are discussed. 
Further fault models will discuss in Phase 2. 
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