

@ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Fault Testing and Diagnosis o
using Built

Nagma. P
Student, Gnanamani College of

Technology, Namakkal,
Tamilnadu

ABSTRACT

A new low-power (LP) scan-based built
(BIST) technique is proposed based on weighted
pseudorandom test pattern generation and reseeding.
A new LP scan architecture is proposed, which
supports both pseudorandom testing and deterministic
BIST. During the pseudorandom testing phase, an LP
weighted random test pattern generation scheme is
proposed by disabling a part of scan chains. During
the deterministic BIST phase, the design
testability architecture is modified slightly while
short. Built in Self-Test (BIST) is a design technique
that allows a circuit to test itself .The proposed
method of a built-in self-test (BIST) design for fault
detection and fault diagnosis of static-RAM (SRAM)
based field-programmable gate arrays (FPGAs). can
test both the interconnect resources [wire channels
and programmable switches (PSs)] and lookup tables
(LUTs) in the configurable logic blocks (CLBs).The
test pattern generator and output response analyzer
configured by CLBs in FPGAs. The target fault
detection/diagnosis of the proposed BIST structure are
open/short and delay faults in the wire channels, stuck
on/off faults in PSs, andstuck-at-0/1 faults in LUTs.
The testing process is performed by conf
Test Pattern Generator (TPG), Output Response
Analyzer (ORA) and Block under Test (BUT) in each
test block.

Keywords: low-power, fault detection and fault
diagnosis, field-programmable gate arrays

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

and Diagnosis of Sram based F
using Built-In-Self-Test-Architecture

Ramachandran. S
Assistant Professor, Gnanamani

College of Technology,
Namakkal, Tamilnadu

Sathishkumar. E
Assistant Professor, Gnanamani

College of Technology,
Namakkal, Tamilnadu

based built-in self test
(BIST) technique is proposed based on weighted
pseudorandom test pattern generation and reseeding.
A new LP scan architecture is proposed, which

pports both pseudorandom testing and deterministic
BIST. During the pseudorandom testing phase, an LP
weighted random test pattern generation scheme is
proposed by disabling a part of scan chains. During
the deterministic BIST phase, the design-for-

lity architecture is modified slightly while
Test (BIST) is a design technique

that allows a circuit to test itself .The proposed
test (BIST) design for fault

RAM (SRAM)-
programmable gate arrays (FPGAs). can

test both the interconnect resources [wire channels
and programmable switches (PSs)] and lookup tables
(LUTs) in the configurable logic blocks (CLBs).The
test pattern generator and output response analyzer are
configured by CLBs in FPGAs. The target fault
detection/diagnosis of the proposed BIST structure are
open/short and delay faults in the wire channels, stuck

0/1 faults in LUTs.
The testing process is performed by configuring the
Test Pattern Generator (TPG), Output Response
Analyzer (ORA) and Block under Test (BUT) in each

power, fault detection and fault
programmable gate arrays

INTRODUCTION

1.1 FIELD-PROGRAMMABLE GATE

Field programmable gate arrays (FPGA) have been
widely utilized in digital system design; FPGAs offer
programmability at relatively low development cost
and good performance. An FPGA consists of logic
and interconnect resources that permit to config
uncommitted chip into the desired functions for
different applications. The common FPGA
architecture consists of a two
configurable logic blocks (CLBs), a programmable
interconnect (made of nets and switches) and
programmable input/outputs (IOs). Currently, the
programmable interconnect accounts for more than 80
percent of the FPGA programmable resources
(usually stacked up in eight metal layers). Therefore,
nets in the interconnect resources are very vulnerable
to faults both at manufacturing as well as run time.
For interconnect resources, FPGA testing
methodologies are broadly classified as application
dependent and application-independent. Application
independent testing (also known as manufacturing
test) utilizes nearly exhaustive test sets such that all
programmable resources are tested for faults.

Field-Programmable Gate Arrays (FPGAs) to
implement complex logic functions in digital
applications has become increasingly common.
FPGAs are regular structures of logic modules that
communicate through an interconnected architecture

Feb 2018 Page: 717

6470 | www.ijtsrd.com | Volume - 2 | Issue – 2

Scientific
(IJTSRD)

International Open Access Journal

ased FBGA

Sathishkumar. E
Assistant Professor, Gnanamani

College of Technology,
Namakkal, Tamilnadu

PROGRAMMABLE GATE ARRAYS

Field programmable gate arrays (FPGA) have been
widely utilized in digital system design; FPGAs offer
programmability at relatively low development cost
and good performance. An FPGA consists of logic
and interconnect resources that permit to configure an
uncommitted chip into the desired functions for
different applications. The common FPGA
architecture consists of a two-dimensional array of
configurable logic blocks (CLBs), a programmable
interconnect (made of nets and switches) and

put/outputs (IOs). Currently, the
programmable interconnect accounts for more than 80
percent of the FPGA programmable resources
(usually stacked up in eight metal layers). Therefore,
nets in the interconnect resources are very vulnerable

manufacturing as well as run time.
For interconnect resources, FPGA testing
methodologies are broadly classified as application-

independent. Application-
independent testing (also known as manufacturing

stive test sets such that all
programmable resources are tested for faults.

Programmable Gate Arrays (FPGAs) to
implement complex logic functions in digital
applications has become increasingly common.
FPGAs are regular structures of logic modules that
communicate through an interconnected architecture

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 718

of lines and switches. The logic modules and the
interconnect structures are programmed to select a
particular function of each logic module and specific
interconnect paths to realize the global function of the
FPGA.

FPGAs are generally classified into two major types.
One is one-time programmable FPGAs such as an
antiques type. The other is unlimited reprogrammable
FPGAs such as a static RAM (SRAM)-based FPGA.
In SRAM-based FPGAs, logic elements and
programmable switches (PSs) can be reprogrammed
by loading a configuration bit stream, giving FPGAs
incredible flexibility that is enough to implement any
digital circuit on the same piece of silicon. Since
FPGA results in a shorter time to market and
increased flexibility for systems using logic circuits,
many applications have been developed to make the
best use of FPGA reprogram ability.

Currently, very-large-scale integration (VLSI)
technology keeps increasing circuit integration by
ever greater degrees, and the rapid development in
packaging technology greatly reduces the
controllability and observability of internal nodes.
This significantly complicates the testing of the
system. Generally, FPGAs can be configured in an
incredibly large number of ways. From the
manufacturing testing point of view, it must be
ensured that the part is functional under all
configurations. Since the reconfiguration time (the
time to load a configuration into an FPGA) ranges
from milliseconds to entire seconds, depending on the
size of the FPGA, it is impossible to map all possible
configurations during a test. Therefore, a set of test
configurations (TCs) must be developed to ensure that
the part is defect free, regardless of any particular user
application. In other words, FPGA testing is important
to ensure the reliable performance of FPGA devices.
In particular, SRAM based FPGA testing has been
attracting the interest of a large number of researchers
in the last decade since the complexity and the size of
FPGA devices have increased.

Several previous works extensively studied the testing
of FPGAs assuming that only configurable logic
blocks (CLBs) can be faulty. Similarly, others studied
k2, and k3 the testing of only the interconnect
resources, assuming that CLBs were fault free. To
date, however, there has been relatively little research
conducted on both interconnect resource and CLB
testing. Although the synthesis algorithm for self-

checking the combinational logic of FPGAs can
detect the faults within the combinational functional
block of a CLB and on the interconnect lines
connecting the functional blocks, the approach is short
of the ability of fault diagnosis.

In contrast, conventional BIST approaches introduce
both area overhead (typically between 10% and 30%)
and delay penalties. The BIST approach can be
applied to any in-circuit reprogrammable SRAM-
based FPGAs. The only cost will be the additional
memory for storing the data required to reconfigure
the FPGA.

1.2 SRAM-BASED FPGA ARCHITECTURE

SRAM-based FPGAs are of special interest due to
their compatibility with mainstream integrated circuit
fabrication technology, as well as because of their
wide use in practical applications. The SRAM-based
FPGA consists of an array of n × n CLBs and
local/global interconnect resources. The CLBs can be
programmed with configuration cell data to generate
logical functions. The set of all configuration cell data
makes up an FPGA configuration. The basic internal
architecture of a CLB is made up of three
components: 1) lookup tables (LUTs); 2) multiplexers
(MUXs); and 3) D-type flip-flops (DFFs). In figure.1,
the LUTs implement either any logical function with
k1 inputs or RAM. Every CLB is configured with
configuration cells C1, . . . ,Cn. The number of
outputs of LUTs is assumed to be k3, and the inputs
k2 directly drive some MUXs or DFFs, producing the
CLB outputs. Note that parameters k1,depend on the
FPGA type.

Fig. No 1: Fpga Architecture

The local interconnects are associated with CLBs,
including wire segments and connecting blocks. Note
that a connecting block contains some programmable-
interconnect-point PSs (PIP-PSs) and multiplexer PSs
(MUX-PSs) to bring signals into and out of CLBs. On
the other hand, wire segments and programmable
cross-point PSs (PCP-PSs) within the switch matrix
(SM) in global interconnects form horizontal and

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 719

vertical routing channels that connect signals between
CLBs.

1.3 TESTING CONSIDERATIONS

The FPGA test procedure is a two-part process. Each
TC must be first loaded into the FPGA device, and
then, test vectors must be applied. This process is
repeated for a number of TCs. The PIP-PSs and
MUX-PSs in the connecting block and the PCP-PSs in
the SM are the essential components for programming
TCs under FPGA testing. The SRAM cell can be
programmed to open or close the pass transistor. An
MUX-PS, illustrated as a set of unidirectional
triangles over the horizontal and vertical wire
segments, functions as a many-to-one MUX. An
MUX-PS allows one of the inputs to be routed to the
output for certain selection signals.

The selection logic can only be set through the
configuration bits during the configuration stage. In
other words, a PCP-PS connects the wire segments in
the west– east (W–E), north–south (N–S), north–west
(N–W), south–west (S–W), north–east (N–E), and
south–east (S–E) directions.

Generally, the TCs are fault graded. If the desired
fault coverage is not achieved, test engineers must
develop additional test vectors and configurations to
increase the fault coverage. In other words, the testing
of an FPGA chip poses a challenge to test engineers.
Different configurations (programming’s) of the
FPGA are required, and so, certain questions arise. It
is extremely important to bear in mind the high cost of
changing the configuration due to reprogramming
costs. The configuration loading process is performed
through a serial access, and so, this process is really
time consuming. Consequently, when test generation
for an FPGA is performed, the main objective is to
minimize the number of TCs.

Field-programmable gate arrays (FPGAs) are used to
implement complex logic functions in digital
applications has become increasingly common. Due
to this so many faults are occurred in interconnect
resources and CLBs to overcome those faults a BIST
is designed in this project.

LITERATURE SURVEY

2.1 A NOVEL TECHNIQUE FOR PEAK- AND
AVERAGE-POWER REDUCTION IN SCAN-
BASED BIST

Abdallatif S. Abu-Issa and Steven F. Quigley
A novel low-transition linear feedback shift registers
(LFSR) that is based on some new observations about
the output sequence of a conventional LFSR. It’s
composed of an LFSR and a 2 × 1 multiplexer. When
used to generate test patterns for scan-based built-in
self-tests, it reduces the number of transitions that
occur at the scan-chain input during scan shift
operation by 50% when compared to those patterns
produced by a conventional LFSR. Hence, it reduces
the overall switching activity in the circuit under test
during test applications. The BS-LFSR is combined
with a scan-chain-ordering algorithm that orders the
cells in a way that reduces the average and peak
power (scan and capture) in the test cycle or while
scanning out a response to a signature analyzer. These
techniques have a substantial effect on average- and
peak-power reductions with negligible effect on fault
coverage or test application time. Experimental results
on ISCAS’89 benchmark circuits show up to 65%and
55% reductions in average and peak power,
respectively.

The design for low power has become one of the
greatest challenges in high performance very large
scale integration(VLSI) design. As a consequence,
many techniques have been introduced to minimize
the power consumption of new VLSI systems.
However, most of these methods focus on the power
consumption during normal mode operation, while
test mode operation has not normally been a
predominant concern. However, it has been found that
the power consumed during test mode operation is
often much higher than during normal mode
operation. This is because most of the consumed
power results from the switching activity in the nodes
of the circuit under test (CUT), which is much higher
during test mode than during normal mode operation.
Several techniques that have been developed to
reduce the peak and average power dissipated during
scan-based tests can be found in paper. A direct
technique to reduce power consumption is by running
the test at a slower frequency than that in normal
mode. This technique of reducing power
consumption, while easy to implement, significantly
increases the test application time. Furthermore, it
fails in reduce in speak-power consumption since it is
independent of clock frequency Another category of
techniques used to reduce the power consumption in
scan-based built-in self-tests (BISTs) is by using scan
chain ordering techniques.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 720

These techniques aim to reduce the average-power
consumption when scanning in test vectors and
scanning out captured responses. Although these
algorithms aim to reduce average-power consumption,
they can reduce the peak power that may occur in the
CUT during the scanning cycles, but not the capture
power that may result during the test cycle (i.e.,
between launch and capture)

2.2 WEIGHTED PSEUDORANDOM HYBRID
BIST
Abhijit Jas, C. V. Krishna, and Nur A. Touba,
Test data-compression scheme that is a hybrid
approach between external testing and built-in self-
test (BIST). Three levels of compression are used to
greatly reduce test costs. Experimental results show
that the proposed scheme reduces tester storage
requirements and tester bandwidth requirements by
orders of magnitude compared to conventional
external testing, but requires much less area overhead
than a full BIST implementation providing the same
fault coverage. No test points or any modifications are
made to the function logic. The paper describes the
proposed hybrid BIST architecture as well as two
different ways of storing the weight sets, which are an
integral part of this scheme.

A new test data compression scheme is presented,
which is a hybrid approach between BIST and
external tested. The term “hybrid BIST” will be used
in this paper to classify any scheme that involves
combining external data from the tester along withiest
hardware on the chip to provide a hybrid test solution
for a particular module or core. A hybrid BIST
approach reduces the test data stored on the tester
compared with full external testing, but does not
require as much hardware overhead as full BIST. A
simple approach for hybrid BIST is to use STUMPS
architecture to apply pseudorandom patterns to detect
the random pattern testable faults, and then use
deterministic scan vectors from the tester to detect the
hard faults.

There have been a couple of case studies on using this
approach for large industrial designs. The case study
in was done on the Motorola PowerPC
microprocessor core, and the study in was done on
large ASIC designs. In the reduction in external test
storage requirements after using 500 K BIST patterns
was around 30%. In test points were inserted, but the
reduction in test storage requirements after 262 K
BIST patterns still ranged only from 35% to 55%.

What these results indicate is that most of the vectors
in a deterministic test set target hard faults which are
missed by pseudorandom patterns. So a
straightforward hybrid BIST approach where
pseudorandom vectors are applied with BIST
hardware followed by deterministic vectors from the
external tester, can only achieve a limited reduction
infester storage requirements, generally not an order
of magnitude reduction. There are several other
approaches that can be classified as
hybrid BIST approaches. In a hybrid BIST approach
was proposed where some of the scan chains in
STUMPS architecture are filled with deterministic test
data from the tester while the rest of the scan chains
are filled from the pseudorandom pattern generator
(PRPG).

The set of scan chains receiving deterministic data is
rotated in a round-robin fashion. This approach was
applied to the Motorola PowerPC microprocessor
core. Results indicated that the test storage
requirements could be reduced by around 50% with
this approach compared with 31% as was reported in
for using fully pseudorandom patterns followed by
fully deterministic patterns.

2.3 AN APPLICATION SPECIFIC
RECONFIGURABLE ARCHITECTURE FOR
FAULT TESTING AND DIAGNOSIS: A
SURVEY
A.R Kasetwar, Gaurav Kumar, S. M. Gulhane
Now a day’s many VLSI designers are implementing
different applications on real time with the use of
FPGAs. Although they are working efficiently, they
are not achieving their expected goals. This is only
because of the faults which are occurring in the FPGA
at the runtime of the application. Those faults are
remaining in the circuitry as there is no provision for
removal of those faults at application level. So there is
a great need of detection & removal of faults. Mainly
Interconnect faults, Logical Faults and Delay are the
faults which reduces the performance of FPGA.
Although the manufacturers are trying to decrease the
fault present in the FPGA, it is very necessary to
remove those faults at run time of the particular
application. This paper includes the occurrence of
different faults and various methods to remove those
faults.

Fault diagnosis has particular importance in the
context of field programmable gate arrays (FPGAs)
because faults can be avoided by reconfiguration at

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 721

almost no real cost. The main faults in the FPGAs are
interconnects, logic blocks and faults related to delay
of an arbitrary design. As FPGAs works properly, all
three faults should be removed. FPGA testing is of
two types an application dependent and application
independent. The testing process for both is different.
The time required to test an application dependent
testing is less as it focuses only on some specific part
whereas the application independent testing tests
complete FPGAs .Faults related to logical block,
interconnected faults and delay faults are the
problems for the FPGAs user.

Fig. No 4 : BIST Architecture TPG, But And ORA

Connection.
They have made a detail survey of number of methods
for fault diagnosis from this survey they came to
know that for interconnect diagnosis, the method is
better as compared to other method because all the
single faults and multiple are uniquely identified and
removed. For logic blocks diagnosis, BISD approach
is selected because in it multiple faults are uniquely
identified in a single test configuration with a fixed
test time. All other methods are limited only for faulty
CLBs and single faults. It is used for both
manufacturing as well as user configuration test with
the guarantee that the maximum delays along the
tested path will not exceeds the clock period during
the normal operation

2.4 A NOVEL HEURISTIC METHOD FOR
APPLICATION-DEPENDENT TESTING OF A
SRAM-BASED FPGA INTERCONNECT
T. Nandha Kumar, Senior Member, IEEE, and
Fabrizio Lombardi, Fellow, IEEE
A new method for generating configurations for
application-dependent testing of a SRAM-based FPG
Interconnects. This method connects an activating
input to multiple nets, thus generating activating test
vectors for detecting stuck-at, open, and bridging
faults. This arrangement permits a reduction in the
number of redundant configurations, thus also
achieving are diction in test time for application-
dependent testing at full fault coverage. As the
underlying solution requires an exponential
complexity, a heuristic algorithm that is polynomial
and greedy in nature (based on sorting) is used for net

selection in the configuration generation process. It is
proved that this algorithm has an execution complex
(where L is the number of LUTs in the design). The
proposed method requires at most log2ðM þ 2Þ
configurations (where M denotes the number of
activating inputs) as Walsh coding is employed.

For interconnect resources, current FPGA testing
methodologies are broadly classified as application
dependent and application independent. Application-
independent testing (also known as manufacturing
test) utilizes nearly exhaustive test sets such that all
programmable resource sari tested for faults. An
application-dependent method tests those resources
that are utilized by a specific design implemented on
an FPGA. This type of testing method has drawn
particular interest as it can implement adaptive fault
tolerance and self-diagnosis as well as self-repair can
be utilized. So, it is important to shorten the test time
as periodical tests are used to identify and locate a
faulty resource by complete (100 percent) coverage;
execution complexity of the test generation process is
not as important(provided it remains polynomial)
because the configurations are established once for a
given application. A possible approach to shorten test
time with complete coverage is to reduce the number
of test configurations.

Fig.No 5 :Activating Input Assignment Using
Application-Dependent Testing

In the algorithmic method for application-dependent
testing of a SRAM-based FPGA interconnects. The
proposed method relies on generating and utilizing so-
called activating inputs connected through multiple
nets with Walsh coding. This algorithmic-based
method detects all stuck-at, open, and pair wise
bridging faults in the interconnect resources of an
FPGA. Analysis and simulation has shown that the
heuristic criterion used in the proposed method results
in an efficient generation of test configurations. At
most configurations are required (where M denotes
the number of activating inputs) in theory; however,
an assessment of 25 ISCAS89sequential benchmarks
has shown that the required number of configurations

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 722

is very small (three or four) and therefore almost
independent of the design size and the number of
inputs of a LUTs in the FPGA. Test configurations
have been generated using an algorithmic method
whose execution is in (where L is the number of
LUTs in the design); this method utilizes net sorting
to assign activating inputs and finding the test vectors.

2.5 HIGH RESOLUTION APPLICATION
SPECIFIC FAULT DIAGNOSIS OF FPGAS
Mehdi B. Tahoori, Senior Member, IEEE
High resolution diagnosis plays a critical role in
silicon debugs and yield improvement. Application-
dependent diagnosis is also a key component in online
testing and adaptive computing. In this paper, a new
technique for high resolution localization of faults in
the interconnects and logic blocks of an arbitrary
design implemented on a field-programmable gate
array (FPGA)is presented. This work is
complementary to application-independent detection
methods for FPGAs. This technique can uniquely
identify any single bridging, open, or stuck-at fault in
the interconnects well as any single functional fault, a
fault resulting change in the truth table of a function,
in the logic blocks. Then umber of test configurations
for interconnect diagnosis is logarithmic to the size of
the mapped design, whereas logic diagnosis is
performed in only one test configuration with less
than 5% overhead of built-in self diagnosis. These
techniques have been further extended for multiple
fault diagnosis.

Application-dependent diagnosis is also a key player
in silicon debug process. Once a particular
configuration (e.g., a test configuration at the
manufacturing test or an application configuration in
the field) fails, the location of defective resources
needs to be precisely identified for failure mode
analysis (FMA)and yield improvement. An effective
application-dependent fault localization (diagnosis)
method can reduce the overall silicon debug time and
improve its precision and quality. During system
operation, application-dependent test and diagnosis
are very crucial in online self-repair schemes for fault
tolerant applications. In these applications, the
existence of faults in the system is first identified and
faulty resources are precisely diagnosed afterwards.
Then, the design is remapped to avoid faulty
resources. Because test and diagnosis procedures are
performed during system operation (online), the
number of test vectors and configurations must be
minimized. Note that the test time is dominated by

loading test configurations rather than applying test
vectors.

Compared to application-independent test and
diagnosis, application-dependent test and diagnosis
provides faster test and diagnosis time while
achieving a higher diagnosis resolution over a more
comprehensive fault list. This is because application-
dependent test and diagnosis focus only on the FPGA
resources used for that particular design, rather than
all FPGA resources.

Fig .No 6 : Logic Network Of Single-Term

Functions
Application-dependent diagnosis techniques for faults
in interconnect and logic blocks of an arbitrary design
mapped into an FPGA are presented. For interconnect
diagnosis, multiple faults (open, stuck-at, or bridging
fault) can be uniquely identified. As shown in the
paper, the number of total test configurations for
diagnosis of interconnect is logarithm micro the size
of the design. For logic block diagnosis ,a BISD
approach is presented in which multiple faults can be
uniquely identified in only one test configuration.
This method can be used for defect tolerance by the
manufacturer in order to increase the manufacturing
yield, i.e., as a part of application-specific FPGA
(ASFPGA) test flow, or in the online self-repair
schemes for fault tolerant applications.

EXISTING SYSTEM

3.1 DFT ARCHITECTURE

As shown in Fig. 1, the scan-forest architecture is
used For pseudorandom testing in the first phase.
Each stage of the phase shifter (PS) drives multiple
scan chains, where all scan chains in the same scan
tree are driven by the same stage of the PS. Unlike the
multiple scan-chain architecture used in the previous
methods, the scan-forest architectures adopted to
compress test data and reduce the deterministic test
data volume. Separate weighted signals e0, e1. . . and
en are assigned to all scan chains in the weighted
pseudorandom testing phase (phase = 0), as shown in

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 723

Fig., which is replaced by the regular test in the
deterministic BIST phase (phase = 1). Each scan-in
signal drives multiple scan chains, as shown in Fig. 1,
where different scan chains are assigned different
weights. This technique can also significantly reduce
the size of the PS compared with the multiples can-
chain architecture where each stage of the PS drives
one scan chain. The compactor connected to the
combinational part of the circuit is to reduce the size
of the MISR. The size of the LFSR needed for
deterministic BIST depends on the maximum number
of care bits of all deterministic test vectors for most of
the previous deterministic BIST methods. In some
cases, the size of the LFSR can every large because of
a few vectors with a large number of care bits even
when a well-designed PS is adopted. This may
significantly increase the test data volume in order to
keep the seeds. This problem can be solved by adding
a small number of extra variables to the LFSR or ring
generator without keeping a big seed for each vector.

Fig. No 7 : Weighted Pseudorandom Test
Generator For Scan-Tree-Based Lp BIST.

3.2. WEIGHTED PSEUDORANDOM TEST
PATTERN GENERATION
Our method generates the degraded sub circuits for all
subsets of scan chains in the following way. All PPIs
related to the disabled scan chains are randomly
assigned specified values (1 and 0). Note that all scan
flip flops at the same level of the same scan tree share
the same PPI. For any gate, the gate is removed if its
output is specified; the input can be removed from a
NAND, NOR, AND, and OR gates if the input is
assigned a no controlling value and it has at least three
inputs. For a two-input AND or OR gate, the gate is
removed if one of its inputs is assigned a no
controlling value. For a NOR or NAND gate, the gate
degrades to an inverter if one of its inputs is assigned
a no controlling value.

For an XOR or NXOR gate with more than three
inputs, the input is simply removed from the circuit if
one of its inputs is assigned value 0; the input is
removed if it is assigned value 1, an XOR gate
changes to an NXOR gate, and an NXOR gate
changes to an XOR gate. For an XOR gate with two

inputs, and one of its inputs is assigned value 0, the
gate is deleted from the circuit. For a two-input
NXOR gate, the gate degrades to an inverter. If one of
its inputs is assigned value 1, a two-input XOR gate
degrades to an inverter. If one of its inputs is assigned
value 1, a two-input NXOR gate can be removed from
the circuit.

3.3 LOW-POWER DETERMINISTIC BIST
We use the same LFSR for both pseudorandom
pattern generation and deterministic phases. First, we
propose a new algorithm to select a proper primitive
polynomial; after that the LP deterministic BIST and
LP reseeding schemes are presented.

3.3.1 SELECTING A PRIMITIVE
POLYNOMIAL AND THE EXTRA VARIABLE
NUMBER
Some extra variables are injected just like EDT.A new
scheme to select the size of the LFSR. In this number
of extra variables simultaneously minimize the
amount of deterministic test data. Usually, a small
LFSR constructed by a primitive polynomial is
sufficient when a well-designed PS is adopted in the
pseudorandom testing phase. In our method, a
combination of a small LFSR and the PS from is used
to generate test patterns in the pseudorandom testing
phase. The weighted test-enable signal-based
pseudorandom test generator generates weighted
pseudorandom test patterns. The size of the LFSR is
not determined by the maximum number of care bits
for any deterministic test vector. That is, the same
LFSR is used for both phases. For any degree less
than 128, it is computationally feasible to generate
enough primitive polynomials in reasonable time, out
of which one (whose degree is equal to the maximum
number of care bits in the deterministic vectors) can
be selected to encode all deterministic test vectors.
The tool that we used to generate primitive
polynomials can only handle polynomials up to
degree 128 of the word-length limit of the computer.
However, only very small LFSRs are used for all
circuits according to all experimental results (no more
than 30)

3.3.2 LOW-POWER DETERMINISTIC BIST
AND RESEEDING
An effective seed encoding scheme is used here to
reduce the storage requirements for the deterministic
test patterns of the random-pattern-resistant faults.
The encoded seed is shifted into the LFSR first. A
deterministic test vector is shifted into the scan trees

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 724

that are activated by the gating logic, where each
scan-in signal drives a number of scan trees, and only
one of the scan trees driven by the same scan-in signal
is activated. The extra variables are injected into the
LFSR when the seed is shifted into the activated scan
trees. The gating logic, as shown in Fig. 1, partitions
scan trees into multiple groups. The first group of
scan trees is disabled after they have received the test
data. The second group of scan trees is activated
simultaneously, and all other scan trees are disabled.
The seed can be stored in an extra shadow register,
which is reloaded to the LFSR in a single clock cycle.
The scan shift operations are repeated when the extra
variables are injected into the LFSR. This process
continues until all scan trees have received test data.
The outputs of all scan chains, which are driven by
the same clock signal, are connected to the same
response compactor during the deterministic BIST
phase. This offers additional flexibility for test
encoding. The test responses of the previous test
vector can be shifted out with only a few clock cycles
(corresponding to the depth of the scan trees in the
pseudorandom testing phase). For scan chain
architecture, the number of clock cycles needed to
shift-out test responses of the previous deterministic
test vector is much larger. The proposed LP tree-
based architecture makes the reseeding scheme much
easier to implement.

LIMITATIONS:

 BSF detects all possible stuck-at and bridging
faults by utilizing the all zeros’ vector and a
walking-1 test set.

 Open faults cannot be guaranteed to be located.

PROPOSED SYSTEM

4.1 FPGA-BIST DESIGN

BIST techniques in general are associated with high
performance; they are also associated with high area
overhead incurred by on-chip test hardware. However,
the BIST overhead is not an issue for FPGA BIST
because the test hardware is easily reconfigured by
inserting and removing test pattern generators (TPGs)
and ORAs. This is particularly important for the
testing of FPGAs. The testing strategy of the proposed
FPGA BIST structure is to configure groups of ten
CLBs into a test block, as illustrated in figure.

In each test block, four CLBs are configured as a TPG
to generate the addresses for test patterns.

Additionally, two CLBs are configured as an ORA for
comparison with each output of the block under test
(BUT) to observe the test results. The global/local
interconnect resources and CLBs in a BUT, which are
configured by four CLBs in a test block, are then
sequentially tested. To guarantee the testing of all
global/local interconnects resources and CLBs, the
FPGA has to be reconfigured to shift the test blocks
for testing. The test processes of the proposed FPGA
BIST structure are simultaneously performed by a
BIST controller, which repeatedly reconfigures the
test blocks for testing.

Briefly, the testing processes can be summarized in
the following steps.

1. Reconfigure the FPGA to create test blocks.
2. Program the TCs.
3. Initiate the TS for global/local interconnect

resources and CLBs.
4. Generate the test vectors.
5. Analyze the test results.

Fig .No 8 : FPGA-BIST Structure

In other words, the test blocks are first (re)configured
by the BIST controller. Second, the TCs should be
reconfigured for global/local interconnect resource
and CLB testing. Then, the LUT-based method is
used to configure the TPG and ORA to generate the
test vectors. Finally, the test results are analyzed.

4.2 TC CONFIGURATIONS

The global/local interconnect resource and CLB tests
rely on the in-system reprogram ability of FPGAs.
Thus, separate testing treatments are needed since the
global interconnects, local interconnects, and CLBs of
an FPGA are fundamentally different in nature. The
testing of global interconnects is achieved by
configuring PCP-PSs in SMs and horizontal and
vertical wire segments to form long buses, and then,
their integrity is verified. The formation of the buses
does not use any CLB logic. On the contrary, when

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 725

local interconnects are under test, the CLBs must be
part of the test circuitry, since local interconnects can
only be tested indirectly by applying tests to the
inputs of a CLB and observing test responses at the
CLB outputs. To ensure the testing of the entire
FPGA and reduce the testing time, the TCs have to be
carefully scheduled first, particularly the SMs in the
global interconnects.

4.3 FAULT MODELS

Design a BIST structure for both CLB and
interconnect resource testing in SRAM-based FPGAs.
The faults in this paper can be categorized into four
major groups, namely, open/short, stuck-on/off, stuck-
at-0/1, and interconnect delay faults. The stuck-on/off
faults appear in the pass transistor of PIP-PSs or
MUX-PSs in local interconnects, while open/short
faults occur on PCP-PSs or wire segments in global
interconnects. Significantly, the delay fault is
presented with a path under test (PUT). On the other
hand, the stuck-at-0/1 faults can be found in the LUTs
of CLBs.

Figure shows cases of PIP-PSs and MUX-PSs with
stuck on/off faults in the local interconnects. Note that
a stuck-on/off fault causes the pass transistor in PIP-
PSs or MUX-PSs to be permanently on/off, regardless
of the value of the SRAM cell controlling the pass
transistor in PIP-PSs or MUX-PSs. An open fault in
the global interconnect is a disconnection of any
wires, while a short fault indicates a bridging between
two wires.

Figure (b) illustrates cases of wire open/short faults.
Furthermore, Figure (b) shows cases of PCP-PS
open/short faults that occur when there is a stuck-off
fault and a stuck-on fault in the PIP-PS of the
connectable and no connectable directions of wire
segments, respectively. Moreover, since the TCs for
interconnect resource and CLB testing are the same
and the TPG and ORA of the proposed BIST design
are built by using the LUTs, the faults in a CLB only
consider the stuck-at-0/1faults on every AM cell in
LUTs [see figure (c)]. In other words, for an LUT, the
fault can occur in any one of the memory cells,
making it incapable of storing the correct logic value
(an LUT has a single-bit output, and therefore, this
value is either 0 or 1). Thus, the stuck-at-1 or the
stuck-at-0 fault may occur at a memory cell. Note that
there is no need to separately consider the stuck-at
fault model in interconnects, since these faults can be
modeled as short circuits to power supply and ground

lines. On the other hand, by setting the clock period to
the specification time and generating a transition to go
through the PUT, we can be determine whether the
PUT is fault free or not.

Figure (d) shows an example of testing a PUT. If the
two DFFs initially store logic 0 and generate rising-
transition propagation from A to B, then logic 1 in
DFF2 can be obtained in the fault-free situation.
Otherwise, the logic value of DFF2 will remain 0 after
a specified time if the PUT is faulty.

TYPES OF FAULT MODELS:

Fault models are,

1) Wire open fault:
A disconnection occurs on any wires in the global
interconnect.
2) Wires short fault:
A bridge occurs between two wires in the global
interconnect.
3) LUT stuck-at-0 fault:
The RAM cell value of an LUT in the CLB is always
0.
4) LUT stuck-at-1 fault:
The RAM cell value of an LUT in the CLB is always
1.
5) Interconnect delay fault:

A transition is propagated from one end of a circuit,
and the result is captured from the other end after a
specified time (test clock period)

Fig .No 10: Scheme of A BIST Structure in a Test

Block.

ADVANCED FPGA-BIST DESIGN

 STo test an SRAM-based FPGA using a BIST
technique, it has to be configured into TCs, and
then, test vectors, input values, and primary inputs
must be applied in each configuration.

 The BIST method involves configuring one part
of the FPGA to undergo testing and configuring
the other parts to generate test vectors and to
analyze test results.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 726

 The sub circuits being tested and the resources of
the FPGA change roles so that the entire FPGA is
eventually tested. This way, testability is achieved
without any overhead, since the BIST logic will
“disappear” when the circuit is reconfigured for its
normal system operation.

 Although BIST techniques in general are
associated with high performance, they are also
associated with high area overhead incurred by
on-chip test hardware. However, the BIST
overhead is not an issue for FPGA BIST because
the test hardware is easily reconfigured by
inserting and removing test pattern generators
(TPGs) and ORAs.

APPLICATIONS:

 Weapons
 Avionics
 Safety-Critical devices
 Automotive use
 Computers
 Unattended machinery
 It may be implemented in Space Research

Applications.
 For most advanced Self Intelligent Robotic

technology.
 Fully automatic digital controlled equipment.
 It may be also implemented in Advanced

automobiles

SYSTEM SPECIFICATIONS

The simulation and Hardware implementation can be
done by using Models, Xilinx ISE.

5.1 INTRODUCTION TO HDL

VHDL is a language for describing digital electronic
systems. It arose out of the United States
government’s very high speed integrated circuits
(VHSIC) program, in the course of this program. It
became clear that there was a need for a standard
language for describing the structure and function of
integrated circuits(IC’s). Hence the VHSIC
hardware description language (VHDL) was
developed. It was subsequently developed further
under the auspices of the Institute of Electrical and
Electronics Engineers (IEEE) and adopted in the form
of the IEEE standard 1076. VHDL is designed to fill a
number of needs in the design process.

 First, it allows description of the structure of a
system which includes decomposition into
subsystems and interconnects of those subsystems.

 Second it allows the specification of the function
of a system to be stimulated before being
manufactured, so that designers can quickly
compare alternatives test for correctness without
the delay and expense if hardware prototyping.

 Third it allows the detailed structure of a design to
be synthesized from a more abstract specification,
allowing designers to concentrate on more
strategic design and reducing time to market.

 Modeling for simulation and synthesis is a
vital part of a range of levels of abstraction,
from gate levels up to algorithmic and
architectural levels. It will continue to play an
important role in the design future silicon-based
systems.

Very high speed integrated circuit hardware
description language (VHDL) can be used to model
digital systems and introduce some of the basic
concepts underlying the language.

HDL LANGUAGE

HDL language involved with this topics

 Digital Design with HDL.
 Emergence of HDLs.
 Popularity of Virology HDL.

DIGITAL DESIGN WITH HDL

Digital circuit design has evolved rapidly over the last
25 years. The earliest digital circuits were designed
with vacuum tubes and transistors. Integrated circuits
were then invented where logic gates were placed on
a single chip. The first integrated circuit (IC) chips
were SSI (Small Scale Integration) chips where the
gate count was very small. As technologies became
sophisticated, designers were able to place circuits
with hundreds of gates on a chip. These chips were
called MSI (Medium Scale Integration) chips. With
the advent of LSI (Large Scale Integration), designers
could put thousands of gates on a single chip. At this
point, design processes started getting very
complicated, and designers felt the need to automate
these processes. Computer Aided Design (CAD)
techniques began to evolve. Chip designers began to
use circuit and logic simulation techniques to verify
the functionality of building blocks of the order of
about 100 transistors. The circuits were still tested on

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 727

the breadboard, and the layout was done on paper or
by hand on a graphic computer terminal.

With the advent of VLSI (Very Large Scale
Integration) technology, designers could design single
chips with more than 100,000 transistors. Because of
the complexity of these circuits, it was not possible to
verify these circuits on a breadboard. Computer-aided
techniques became critical for verification and design
of VLSI digital circuits. Computer programs to do
automatic placement and routing of circuit layouts
also became popular. The designers were now
building gate-level digital circuits manually on
graphic terminals. They would build small building
blocks and then derive higher-level blocks from them.
This process would continue until they had built the
top-level block. Logic simulators came into existence
to verify the functionality of these circuits before they
were fabricated on chip.

5.2 EMERGENCE OF HDLS

For a long time, programming languages such as
FORTRAN, Pascal, and C were being used to
describe computer programs that were sequential in
nature. Similarly, in the digital design field, designers
felt the need for a standard language to describe
digital circuits. Thus, Hardware Description
Languages (HDLs) came into existence. HDLs
allowed the designers to model the concurrency of
processes found in hardware elements. Hardware
description languages such as Virology HDL and
VHDL became popular. Virology HDL originated in
1983 at Gateway Design. Even though HDLs were
popular for logic verification, designers had to
manually translate the HDL-based design into a
schematic circuit with interconnections between gates.
The advent of logic synthesis in the late 1980s
changed the design methodology radically. Digital
circuits could be described at a register transfer level
(RTL) by use of an HDL. Thus, the designer had to
specify how the data flows between registers and how
the design processes the data. The details of gates and
their interconnections to implement the circuit were
automatically extracted by logic synthesis tools from
the RTL description.

Thus, logic synthesis pushed the HDLs into the
forefront of digital design. Designers no longer had to
manually place gates to build digital circuits. They
could describe complex circuits at an abstract level in
terms of functionality and data flow by designing
those circuits in HDLs. Logic synthesis tools would

implement the specified functionality in terms of
gates and gate interconnections. HDLs also began to
be used for system-level design. HDLs were used for
simulation of system boards, interconnect buses,
FPGAs (Field Programmable Gate Arrays), and PALs
(Programmable Array Logic). A common approach is
to design each IC chip, using an HDL, and then verify
system functionality via simulation.

5.3 POPULARITY OF VERILOG HDL

Virology HDL has evolved as a standard hardware
description language. Virology HDL offers many
useful features for hardware design. Virology HDL is
a general-purpose hardware description language that
is easy to learn and easy to use. It is similar in syntax
to the C programming language. Designers with C
programming experience will find it easy to learn
Virology HDL. Virology HDL allows different levels
of abstraction to be mixed in the same model. Thus, a
designer can define a hardware model in terms of
switches, gates, RTL, or behavioral code. Also, a
designer needs to learn only one language for stimulus
and hierarchical design. Most popular logic synthesis
tools support Virology HDL. This makes it the
language of choice for designers. All fabrication
vendors provide Virology HDL libraries for post logic
synthesis simulation. Thus, designing a chip in
Virology HDL allows the widest choice of vendors.
The Programming Language Interface (PLI) is a
powerful feature that allows the user to write custom
C code to interact with the internal data structures of
Virology. Designers can customize a Virology HDL
simulator to their needs with the PLI.

HIERARCHICAL MODELING CONCEPTS OF
VERILOG
CONCEPT OF A ‘MODULE’
 A module is a basic building block in

Virology.
 It can be an element or a collection of lower-

level design (macro or leaf cells) blocks.
 Provides functionality through its port

interface.

DECLARATION OF A MODULE
 A module in Virology is declared using the

keyword module.
 A corresponding keyword end module must

appear at the end of the module.
 Each module must have a module name,

which act as the identifier.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 728

 A module can have an optional port list which
describes the input and output terminals of the
module.

DIFFERENT ABSTRACTION LEVELS

 Internals of each module can be defined at
four abstraction levels.

 Behavioral or Algorithmic level
 Dataflow level.
 Gate or structural level.
 Switch level.

BEHAVIORAL OR ALGORITHMIC

At this level, a module is implemented in terms of
desired algorithm or behavior without concern for the
hardware implementation details.

// Behavioral or Algorithmic level
Module and gate (a, b, out);
// I/O port declaration
input a, b;
output out;
// Variable declaration
rag out;
// always behavioral statement
always @ (a or b)
out = a & b;
endmodule

SDATAFLOW LEVEL

At this level, a module is designed by specifying the
data flow between hardware registers and how the
data is processed in the design.

// Data flow level
Module and_ gate (a, b, out);
// I/OPort declaration
input a, b;
output out;
// Dataflow assign statement
assign out = a & b;
end module
Gate or Structural level
At this level, a module is implemented in terms of
logic gates and interconnections between these gates.
// Gate level or structural level
Module and _gate (a, b, out);
// I/O port declaration
input a, b;
output out;

// Verilog primitive gate instantiation
and a1(out ,a, b);
end module

SWITCH LEVEL

This is the lowest level of abstraction in which, a
module can be implemented in terms of switches,
storage nodes and the interconnections between them.

// Switch level
Module nor _gate (out, a, b);
// I/O port declaration
input a, b;
output out;
// internal wires
wire c;
// set up power and ground lines
supply1pwr;
supply0gnd;
// instantiate pmos switches
pmos (c, pwr, b);
pmos (out, c, a);
end module

MODELSIM

This section describes the basic procedure for
simulating Models.

Library
A library is a location on your file system where
Models stores data to be used for Simulation. Models
use one or more libraries to manage the creation of
data before it is needed for use in simulation. A
library also helps to streamline simulation invocation.
Instead of compiling all design data each time you
simulate, Models uses binary pre-compiled data from
its libraries. For example, if you make changes to a
single Virology module, Models recompiles only that
module, rather than all modules in the design.

5.4 MAPPING THE LOGICAL WORK TO THE
PHYSICAL WORK DIRECTORY
Step 1: VHDL uses logical library names that can be
mapped to Models library directories. If libraries are
not mapped properly, and you invoke your simulation,
necessary components will not be loaded and
simulation will fail. Similarly, compilation can also
depend on proper library mapping. By default,
Models can find libraries in your current directory
(assuming they have the right name), but for it to find
libraries located elsewhere, you need to map a logical

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 729

library name to the pathname of the library. You can
use the GUI (Library Mappings with the GUI, a
command (Library Mapping from the Command
Line), or a project (Getting Started with Projects to
assign a logical name to a design library.

Step 2: Compile the Design
To compile a design, run one of the following Models
commands, depending on the language used to create
the design:
Compiling Virology (VLOG):
The log command compiles Virology modules in your
design. You can compile Virology files in any order,
since they are not order dependent. See Virology
Compilation for details.
Compiling VHDL (VCOM):
The vcom command compiles VHDL design units.
You must compile VHDL files in the order necessitate
to any design requirements. Projects may assist you in
determining the compile order.

Step 3: Load the Design for Simulation
Running the Vim Command on the Top Level of the
Design
After you have compiled your design, it is ready for
simulation. You can then run the vim command using
the names of any top-level modules (many designs
contain only one top-level module).
Using Standard Delay Format Files
You can incorporate actual delay values to the
simulation by applying standard delay format (SDF)
back-annotation files to the design. For more
information on how SDF is used in the design, see
Specifying SDF Files for Simulation.

STEP 4 - Simulate the Design
Once you have successfully loaded the design,
simulation time is set to zero, and you must enter a
run command to begin simulation. For more
information, see Virology and System Verilog
Simulation, and VHDL Simulation.

Fig.11: Simulation Flow

XI LINX ISE

Xilinx is disclosing this document and intellectual
property (hereinafter “the design”) to you for use in
the development of designs to operate on, or interface
with Xilinx FPGAs. except as stated herein, none of
the design may be copied, reproduced, distributed,
republished, downloaded, displayed, posted, or
transmitted in any form or by any means including,
but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the
prior written consent of Xilinx. Any unauthorized use
of the design may violate copyright laws, trademark
laws, the laws of privacy and publicity, and
communications regulations and statutes.

Xilinx does not assume any liability arising out of the
application or use of the design; nor does Xilinx
convey any license under its patents, copyrights, or
any rights of others. You are responsible for obtaining
any rights you may require for your use or
implementation of the design. Xilinx reserves the
right to make changes, at any time, to the design as
deemed desirable in the sole discretion of Xilinx.
Xilinx assumes no obligation to correct any errors
contained herein or to advise you of any

IMPLEMENTING THE DESIGN

 Select the counter source file in the Sources
window.

 Open the Design Summary by double-clicking the
View Design Summary process in the Processes
tab.

 Double-click the Implement Design process in the
Processes tab.

 Notice that after Implementation is complete, the
Implementation processes have a green check
mark next to them indicating that they completed
successfully without Errors or Warnings.

 Locate the Performance Summary table near the
bottom of the Design Summary.

 Click the All Constraints Met link in the Timing
Constraints field to view the timing constraints
report. Verify that the design meets the specified
timing requirements.

 Close the Design Summary.

CONCLUSION

The proposed method of a built-in self-test (BIST)
design for fault detection and fault diagnosis of static-
RAM (SRAM)-based field-programmable gate arrays

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 730

(FPGAs). The target fault detection/diagnosis of the
proposed BIST structure are open/short and delay
faults in the wire channels, stuck on/off faults in PSs,
andstuck-at-0/1 faults in LUTs. Low power scan
based bits techniques have been studied along with
literature papers. BIST based fault techniques are
identified for SRAM based FPGA. Two fault models
are designed and simulation outputs are discussed.
Further fault models will discuss in Phase 2.

REFERENCES:

1. Abu-Issa A.S. and Quigley S.F. , (May 2009)
“Bit-swapping LFSR and scan-chain ordering: A
novel technique for peak- and average-power
reduction in scan-based BIST,” IEEE Trans.
Compute.-Aided Des. Integer. Circuits Syst., vol.
28, no. 5, pp. 755–759.

2. Agrawal V.D. , Kim C.R, and K. K. SaludaK.K,
(Mar.1993) “A tutorial on built-in self test. I.
Principles,” IEEE Des. Test Compute., vol. 10, no.
1, pp. 73–82.

3. Al-Yamani A., Devta-Prasanna N, Chelae E,
Grinch M, Ana. Gonad, (May.2009) “Scan test
cost and power reduction through systematic scan
reconfiguration,” IEEE Trans. Compute.-Aided
Des. Integer. Circuits Syst.,vol. 26, no. 5, pp. 907–
918.

4. Synopsys. ASTRO: Advanced Place-and-Route
Solution for SoC Design, accessed on Mar. 1,
2015. [Online].
Available:http://www.synopsys.com/products/astr
o/astro.html

5. Banerjee S, Chowdhury D.R , and Bhattacharya
B.B, (Jul. 2007) “An efficient scan tree design for
compact test pattern set,” IEEE Trans. Compute.-
Aided Des. Integer. Circuits Syst., vol. 26, no. 7,
pp. 1331–1339

6. Bardwell P.H , Caney W.H , and Saver J, Built
in Test for VLSI: Pseudorandom
Techniques. New York, NY, USA: Wiley, 1987.

7. Basturkmen N.Z, Reddy S.M., and I. Pomeranz,
(Dec.2003) “A low power pseudorandom
BIST technique,” J. Electron. Test., Theory Appl.,
vol. 19, no. 6,pp. 637–644.

8. Bushnell M.L. and .Agrawal V..D., Essentials of
Electronic Testing. Norwell, MA, USA: Clawer,
2000.

