

Micropropagation of Atropa acuminata Royle from in vitro petiole explant

Farhana Maqbool, Seema Singh, Mahroofa Jan

Plant Tissue Culture Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, J&K, India

ABSTRACT

During the present study, in vitro petiole explants of Atropa acuminata were subjected to in vitro studies so 1984), arthritis related inflammatory disorders, as to develop efficient micropropagation protocols for its regeneration. In vitro petiole explant produced maximum amount of callus on MS medium supplemented with BAP (3mg/l) in 80% cultures within 20 days. Shoot regeneration was obtained after sub-culturing the callus on MS medium supplemented with BAP with mean shoot number of 8.6±4.22cm and a mean shoot length of 2.3±0.20 cm in 100% cultures within 13 days. Root regeneration was obtained on MS medium augmented with IBA (0.5 mg/l) with a mean number of roots $6.0\pm2.50 \text{cm}$ and mean root length of 1.3±0.11cm with 60% response within 32 days.

Keywords: Atropa acuminata, micropropagation, explant, callus, shoot regeneration, root regeneration

Introduction

Atropa acuminata is commonly known as Indian Belladonna. It is a perennial plant and grows about 1.6 m tall. It has simple leaves which are ovate with entire margins. The flowers are solitary, bell-shaped and yellowish white in colour. They are hermaphrodites and are pollinated by insects (Nasir, 1972). Flowering period is from June to July and the seeds ripe from August to October. The black fruits are berries. The rhizome of this plant has been traditionally used as a sedative (Rhodes et al., 1978) antidote in cases of mushroom or toadstool poisoning, analgesic, antispasmodic, hallucinogenic, mydriatic,

narcotic (Grieve, 1984) diuretic, anodyne (Chiej, muscle and joint pain, muscle spasms (Chopra, 1986) sore throat, ulcerative colitis (Kaul, 1997). In folklore medicines, the plant is used for several inflammatory disorders such as arthritis, asthma, conjunctivitis, encephalitis, pancreatitis, peritonitis, acute infections and neuro inflammatory disorders (Shanafelt et al., 2002). A. acuminata serve as one of the most important source of medicinally important tropane alkaloids, including atropine, scopolamine and hyoscyamine (Nisar et al., 2013). The drugs atropine and hyoscyamine extracted from the plant act as stimulants to the sympathetic nervous system and are employed as antidotes to opium (Phillipson and Handa, 1975). A. acuminata contains highly oxygenated oleanane triterpenes such as 2a, 3a, 24trihydroxyolean-12-ene-28, 30-dioic acid and 2a, 3a, 24, 28-tetrahydroxyolean-12-ene (Mehmood et al., 2002). Monoterpene, sesquiterpene, phenylpropanoid, flavonoid and quinine are present as main constituents (Jayakanthi et al., 2011).

Materials and Methods

Petiole from in vitro raised plants was used for the experimental purpose. In vitro petiole explants were cultured on MS basal medium. MS medium supplemented with different concentrations and combinations of plant growth regulators both individually and in combinations. Auxins like 2, 4- D; IAA; NAA; IBA and cytokinins like BAP and Kn were used in concentration range of 0.1-5 mg/L. The

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

pH of the medium was adjusted to 5.8 prior to gelling with agar was dispensed in culture tubes and flasks and sterilized by autoclaving at 121°C temperature and 15 lbs pressure for 15 minutes. The cultures were incubated under controlled conditions in the culture room under the regime of 16h light period (500-3000 lux) and 8h dark period and temperature of 22 ± 4 C°.

Results and Discussion

The present study focuses on micropropagation of *Atropa acuminata* from *in vitro* petiole explant. Callus was induced when *in vitro* petiole explants were inoculated on MS medium supplemented with BAP

(3mg/l), BAP (3mg/l) + IAA (2mg/l), BAP (5mg/l) + IAA (1mg/l) and BAP (5mg/l) + IAA (2mg/l) (Fig.) in 80%, 50%, 30% and 40% cultures within 20, 29, 32 and 30 days. Best response was observed on MS medium enriched with BAP at a concentration of (3mg/L) in terms of percent culture response and minimum number of days taken (Fig.1 and table 1). Similar results were also obtained by Amin *et al.*, (2017) from *in vitro* petiole explant on MS medium augmented with BAP (1mg/l) and Kn (1mg/l).

Fig.1: callus production from in vitro petiole explant on MS medium containing

- a) BAP (3mg/l)
- b) BAP (3mg/l) + IAA (2mg/l)
- c) BAP (5mg/l) + IAA (1mg/l)

Research and

d) BAP (5mg/l) + IAA (2mg/l)

 Table 1: Effect of plant growth regulators on callus
 Shoot regeneration

 induction from *in vitro* petiole explant

	A Y		<u>3311. 24</u>				
Treatments	Number of	Texture	%				
	days taken	and color	culture				
	for callus	of callus	response				
	production						
MS basal	-	- un	- 1				
MS + BAP	20	Hard and	80				
(3mg/l)		light	an				
		brown					
MS + BAP	29	Hard and	50				
(3mg/l) +		creamish					
IAA (2mg/l)							
MS + BAP	32	Compact	30				
(5mg/l) +		and					
IAA (1mg/l)		creamish					
MS + BAP	30	Fragile	40				
(5mg/l) +		and light					
IAA (2mg/l)		green					
10 yearling tog a su two stars and							

10 replicates per treatment

Development

Frend in Scientific

ISSN: 24 In vitro petiole callus when subcultured on MS medium supplemented with BAP (3mg/l), BAP (4mg/l), BAP (5mg/l), BAP (3mg/l) + IAA (1mg/l), BAP (3mg/l) + IAA (2mg/l), BAP (3mg/l) + IAA (3mg/l), BAP (3mg/l) + IAA (4mg/l), BAP (3mg/l) + Kn (1mg/l), BAP (3mg/l) + Kn (2mg/l), BAP (3mg/l) + Kn (3mg/l), BAP (3mg/l) + Kn (4mg/l) and BAP (3mg/l) + Kn (5mg/l) (Fig.) regenerate shoots with 8.6±4.22cm, 5.6±2.69cm, 4.8±2.35cm, 3.0±0.70cm, 7.2±3.45cm and 5.0±2.07cm mean number of shoots 2.3±0.20cm, 3.9±0.20cm, 2.7±0.15cm, and 4.6±0.29cm, 1.4±0.16cm and 1.5±0.18cm mean length of shoots in 100%, 80%, 60%, 20%, 70%, 40%, 30%, 20%, 50%, 70%, 40% and 30% cultures within 13, 18, 24, 29, 16, 20, 42, 35, 26, 17, 32 and 25 days respectively. Maximum number of shoots was obtained with a mean shoot number of 8.6±4.22cm and mean shoot length of 2.3±0.20cm when BAP at a concentration of (3mg/L) was added to the medium (Fig. 2 and Table. 2). This is the first report of shoot regeneration from in vitro petiole explant.

Fig.2: Shoot regeneration from in vitro petiole explant on MS medium containing

a) BAP (3mg/l) b) BAP (4mg/l) c) BAP (5mg/l) d) BAP (3mg/l) + IAA (1mg/l) e) BAP (3mg/l) + IAA (2mg/l) f) BAP (3mg/l) + IAA (3mg/l) g) BAP (3mg/l) + IAA (4mg/l) h) BAP (3mg/l) + Kn (1mg/l) i)

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

BAP (3mg/l) + Kn (2mg/l) j) BAP (3mg/l) + Kn (3mg/l) k) BAP (3mg/l) + Kn (4mg/l) l) BAP (3mg/l) + Kn (5mg/l)

Treatments	Mean number of days taken for shoot regeneration	Mean number of shoots (cm)±SE	Mean length of shoots (cm)±SE	% culture response
MS + BAP (3mg/l)	13	8.6±4.22	2.3 ± 0.20	100
MS + BAP (4mg/l)	18	5.6±2.69	3.9±0.20	80
MS + BAP (5mg/l)	24	4.8±2.35	2.7±0.15	60
MS + BAP (3mg/l) + IAA (1mg/l)	29	3.0±0.70	4.6±0.29	20
MS + BAP (3mg/l) + IAA (2mg/l)	16	5.2±3.45	1.4±0.16	70
MS + BAP (3mg/l) + IAA (3mg/l)	20	5.0±2.07	1.5±0.18	40
$\frac{\text{MS} + \text{BAP} (3\text{mg/l}) + \text{IAA}}{(4\text{mg/l})}$	42 5016	3.4±1.02	1.1±0.14	30
$\frac{\text{MS} + \text{BAP} (3\text{mg/l}) + \text{Kn}}{(1\text{mg/l})}$	35	1.8±0.58	0.7±0.22	20
$\frac{MS + BAP (3mg/l) + Kn}{(2mg/l)}$	26 5	2.2±0.73	0.9±0.26	50
$\frac{MS + BAP (3mg/l) + Kn}{(3mg/l)}$	Intelnation	7.8±3.69	4.9±0.19	80
$\frac{MS + BAP (3mg/l) + Kn}{(4mg/l)}$	of Igend In	SC1.8±0.58 C	3.3±0.94	40
MS + BAP (3mg/l) + Kn (5mg/l)	Develo	3.4±1.02	0.8±0.09	30

Table 2: Effect of plant growth regulators on shoot regeneration from in vitro petiole derived callus

10 replicates per treatment

ISSN: 2456-6470

Rooting of regenerated shoots from in vitro petiole explant

Roots were regenerated from the shoots of *in vitro* petiole explant inoculated on full strength MS medium. Roots were also regenerated on MS medium supplemented with IBA (0.2mg/l) and IBA (0.5mg/l) (Fig. 25) with 2.2 ± 0.37 cm, 3.6 ± 1.20 cm and 6.0 ± 2.50 cm mean number of roots and 1.3 ± 0.11 cm, 2.6 ± 0.20 cm and 1.3 ± 0.11 cm mean length of roots in 40%, 30% and 60% cultures within 38, 48 and 32 days of inoculation respectively (Fig. 3 and Table 3).

Fig.3: Rooting of regenerated shoots from *in vitro* petiole explanta) MS basalb) IBA (0.2mg/l)c) IBA (0.5mg/l)Table 26: Effect of plant growth regulators on rooting of regenerated shoots from *in vitro* petiole explant

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Treatments	Number of days taken for root regeneration	Mean number of roots (cm)±SE	Mean length of roots (cm)±SE	% culture response
MS basal	38	2.2±0.37	1.3 ± 0.11	40
MS+IBA (0.2mg/l)	48	3.6±1.20	2.6 ± 0.20	30
MS+IBA (0.5mg/l)	32	6.0±2.50	1.3 ± 0.11	60

10 replicates per treatment

REFERENCES

- 1. Nasir, Y. J. (1972) *Atropa acuminata* Royle ex miers in Hook Flora of Pakistan. 1:138.
- Rhodes, J. B., Abrams, J. H., Manning, R. T. (1978) Controlled clinical trial of sedativeanticholinergic drugs in patients with the irritable bowel syndrome. *Journal of Clinical Pharmacology*, 18: 340–345.
- 3. **Grieve**, (1984) A Modern Herbal. Pengium ISBN 0-14-046-440-9.
- Chiej, R. (1984) The Macdonald encyclopedia of medicinal plants. Macdonald & Co (Publishers) Ltd.
- Chopra, R. N., Nayar. S. L., Chopra. I. C. (1986) Glossary of Indian medicinal plants (Including the Supplement) Council of Scientific and Industrial Research, New Delhi.
- Kaul, M. K. (1997) Medicinal plants of Kashmir and Ladakh. Indus Publications, New Delhi, India pp. 173.

- Shanafelt, T. D., Barton, D. L., Adjei, A. A., Loprinzi, C. L. (2002) Path physiology and treatment of hot flashes In: Mayo Clinic proceedings. *Mayo Clinic*, 77: 1207–1218.
- 8. Nisar, A., Malik, A. H., Zargar, M. A. (2013) *Atropa acuminata* blunts production of proinflammatory mediator's eicosanoids, leukotrienes, cytokines *in vitro* and *in-vivo* models of acute inflammatory responses. *Journal of Ethnopharmacology*, 147:584-594.
 - **Phillipson, J. D., Handa, S. S.** (1975) N-oxides of hyoscyamine and hyoscine in the Solanaceae *Photochemistry*, **14**: 999-1003.
- Mehmood, M. A., Anis, I., Khan, P. M., Riaz, M., Makhmoor, T., Choudhary, M. I. (2002) Highly oxygenated triterpenes from the roots of *Atropa acuminata*. *Natural Product Letters*, 16: 371–376.
- Research11. Jayakanthi, J., Dhanarajan, M. S., Vijay, T.f Kashmir
elhi, India(2011) Found main constituents of Atropa
acuminata belongs to monoterpene, sesquiterpene,
phenylpropanoid, flavonoid and quinine
International Journal of Pharmacy and
Pharmaceutical Sciences, 3: 0975-1491.