
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 9 Issue 3, May-Jun 2025 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD81127 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 788

Compression Algorithms for Efficient Big Data Storage

Dr. Gopal Prasad Sharma1, Prof. Raj Kumar Thakur2, Prof. Dr. Pawan Kumar Jha3

1Associate Professor, Purbanchal University School of Science & Technology (PUSAT), Biratnagar, Nepal
2,3Professor, Purbanchal University School of Science & Technology (PUSAT), Biratnagar, Nepal

ABSTRACT

In today's digital world, big data is growing at an unprecedented rate,
presenting significant challenges in terms of storage and
management. Compression algorithms play a pivotal role in
addressing these challenges by reducing data size without
compromising essential information. This article provides an in-depth
exploration of data compression techniques, categorizing them into
lossless and lossy compression methods, and evaluates their
effectiveness in big data applications. The integration of these
algorithms into popular big data frameworks such as Hadoop, Spark,
and cloud storage systems is discussed, highlighting their impact on
storage efficiency and data accessibility. A comparison of several
compression algorithms, including Snappy, Zstandard, Gzip, and
Brotli, is also presented to guide the selection of the most suitable
algorithm based on compression ratio, speed, and the type of data
being processed. The article concludes with a look into future trends
and innovations in compression, including AI and machine learning-
based techniques, adaptive methods, and the potential for quantum
compression. These advancements offer exciting prospects for
improving data storage and processing capabilities, while addressing
ongoing challenges in big data environments.

KEYWORDS: Big data, Compression Algorithms, Hadoop, Lossless

Compression, Lossy Compression

How to cite this paper: Dr. Gopal
Prasad Sharma | Prof. Raj Kumar Thakur
| Prof. Dr. Pawan Kumar Jha
"Compression Algorithms for Efficient
Big Data Storage"
Published in
International Journal
of Trend in
Scientific Research
and Development
(ijtsrd), ISSN: 2456-
6470, Volume-9 |
Issue-3, June 2025, pp.788-794, URL:
www.ijtsrd.com/papers/ijtsrd81127.pdf

Copyright © 2025 by author (s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an
Open Access article
distributed under the
terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

I. INTRODUCTION

The digital age's massive data generation has
transformed business, government, and relationships.
IoT devices, social media, and advanced analytics
have increased data production to unprecedented
levels. This trend, called "big data," involves massive,
complex datasets that are difficult to store, process,
and analyse. Big data helps identify patterns, improve
decision-making, and drive innovation in medicine,
economics, retail, and science [1]. Big data
management and storage are difficult despite its many
benefits. Big data's size and complexity make storage
difficult. Infrastructure costs are high because
structured and unstructured data require a lot of
hardware. Keeping such data accessible, reliable, and
latency-free complicates storage. Businesses are
always looking for ways to maximise their limited
resources because data is growing faster than most
storage solutions can handle. Due to this need, storage
solutions must be efficient, scalable, and affordable
while protecting data integrity and accessibility.

Compression algorithms make big data storage easier.
Compression algorithms allow organisations to store
more data in less space while retaining essential
information. Real-time applications need this
optimisation to lower storage costs and boost
processing and data transfer speeds. Lossless
compression is the optimal choice for mission-critical
data, while losing compression allows certain
applications to make acceptable quality and size
compromises [2]. Together, these algorithms support
current data management methods. Compression
algorithms are important and complicated in big data
storage. It discusses their principles, rates popular
methods, and integrates them into big data
frameworks. The article discusses recent and future
compression algorithm developments to demonstrate
their importance in big data storage and management.

II. FUNDAMENTALS OF DATA

COMPRESSION

Compressing data reduces its size without
compromising its quality. Data compression reduces

IJTSRD81127

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81127 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 789

space and bandwidth needed to transmit and store
data to maximise resource use. Data-driven industries
and the need to efficiently manage massive amounts
of data have made compression crucial. Lossless and
lossy compression are the main data compression
methods [3].

The original data can be perfectly reconstructed from
compressed data using lossless compression. This
method is often used for high-fidelity data files like
PNG images or text files like ZIP. Lossless
compression preserves all data, making it essential for
applications where small errors can have big effects.

Lossy compression reduces file size while
maintaining quality by using some of the original
data. Multimedia files like images, audio, and video
use this method because even a small data loss doesn't
affect user experience. JPEG and MP3 use lossy
compression to balance file size and quality [4].
Lossy methods help streaming services save
bandwidth. A compression algorithm's effectiveness
is measured by compression ratio, speed, and
efficiency. Data compression is often expressed as a
percentage of its original size. For real-time
applications, data compression and decompression
times matter. An algorithm is efficient if it
compresses data with little processing power. These
metrics help decide if a compression method is right
for a task.

Big data requires compression to overcome
processing and storage limitations. Big data is too
large to send or store unprocessed. Data compression
saves computing resources, speeds network data
transfer, and lowers storage costs. Compression
algorithms in Hadoop and Spark help organisations
manage large datasets. Therefore, big data
management strategies must include compression.

III. OVERVIEW OF BIG DATA STORAGE

CHALLENGES

Big data is defined by its 5Vs: volume, velocity,
variety, veracity, and value. Volume terabytes to
exabytes of data generated daily is called volume.
This massive data flood comes from enterprise apps,
social media, and IoT devices. Due to data generation
and processing velocity, real-time or near-real-time
analytics systems are needed. Big data includes
structured databases, unstructured text, photos,
videos, and sensor data. Truthfulness highlights the
challenges of data accuracy and reliability in the face
of noise and inconsistencies. Finally, big data analysis
and use yield practical insights and benefits [5].
Traditional storage methods struggle with these
features. Traditional database and file storage systems
cannot handle big data's volume and velocity. They're
not flexible or scalable enough to handle all data

formats. This causes inefficient storage use, latency,
and higher costs.

Because managing large datasets is complicated, data
accessibility, security, and integrity are difficult to
ensure. Big data companies aim to reduce storage
costs and increase data accessibility [6]. Servers, data
centres, and other storage infrastructure are expensive
upfront and over time. Effective data management
can reduce these expenses and improve system
performance and data retrieval speeds. Improved
accessibility ensures quick data retrieval and
processing, enabling timely decision-making and
competitive advantage preservation.

FIGURE 1 Data Flow Before and After

Compression (Source: Self-Created)

Effective compression algorithms are needed to
address these issues. This algorithm greatly reduces
data file sizes, allowing businesses to store more data
with less resources. Compression lowers
infrastructure costs and hardware upgrades by
reducing storage footprint [7]. Compression speeds
up data processing and transfers, which is crucial for
real-time applications and analytics. Strong
compression techniques are needed to make storage
strategies scalable, cost-effective, and operationally
efficient as big data grows.

IV. TYPES OF COMPRESSION

ALGORITHMS FOR BIG DATA

Massive data sets require compression algorithms for
data management. These algorithms are mostly
lossless and lossy. Both have different approaches,
benefits, and drawbacks, making them optimal for
specific applications. Hybrid compression methods
maximise both approaches.

A. LOSSLESS COMPRESSION ALGORITHMS

The early lossless compression algorithm Huffman
Coding stands out. To make it work, frequently
appearing symbols have shorter binary codes and
rarely appearing symbols have longer codes. Huffman
Coding uses a symbol frequency-based binary tree
structure to ensure no code is a prefix for efficient
decoding [8]. The ZIP and GZIP file formats use this
method. Its main benefit is reproducing initial data.
Due to low compression ratios, Huffman Coding may
not benefit datasets with normal frequency
distributions.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81127 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 790

Arithmetic coding, another lossless method, converts
messages to integers between zero and one.
Arithmetic Coding represents the probability of the
entire data stream, unlike Huffman Coding, which
uses discrete symbols, making it efficient for datasets
with skewed symbol distributions [9]. This algorithm
is used in text and multimedia codecs. Although it
outperforms Huffman Coding in compression ratio, it
is computationally heavy and may not work well in
real time.

Compression algorithms like LZ77 and LZW
(Lempel-Ziv) can replace repetitive patterns with
dictionary-based shorter references. LZ77 replaces
repeating strings with references to earlier ones, while
LZW creates a data stream pattern dictionary. GIF
and ZIP use these methods extensively. Their
adaptability to different data types is one of their
many advantages.

Quick and efficient lossless compression algorithms
Snappy and Zstandard are new [10]. Google's Snappy
prioritises fast compression and decompression for
real-time applications like log management.
Facebook's Zstandard balances speed and
compression ratio and offers adjustable parameters. In
fast-processing big data frameworks like Spark and
Hadoop, these algorithms are becoming more
popular. Though efficient, they may not compress as
well as more complicated algorithms like Arithmetic
Coding.

B. LOSSY COMPRESSION ALGORITHMS

Lossy compression relies on transform coding, which
includes the DCT. Data can be converted from spatial
to frequency domain to remove low-frequency
components (important features) and keep high-
frequency components (details). JPEG and MPEG use
this method to compress images and videos [11]. Its
main benefit is size reduction, but it may lose fine
details, making it unsuitable for some uses.

Wavelet transforms use transform coding at multiple
resolutions to improve data representation.
Progressive transmission and scalable storage make
this method ideal for audio and image compression.
Wavelet-based compression allows JPEG 2000 to
compress at high ratios without sacrificing quality.
However, these methods may be too computationally
intensive for real-time big data processing.

Run-Length Encoding (RLE) is a simple and efficient
lossy compression method that replaces repeated
values with a single value and count [12]. A string of
ten "A"s is "A10." Bitmaps and other data with long
repeated values are good RLE candidates. Processing
is fast and computational overhead is low due to its
simplicity. However, RLE doesn't work for highly

variable data because repetitions are rare, preventing
compression gains.

C. HYBRID COMPRESSION TECHNIQUES

Hybrid compression algorithms combine lossy and
lossless algorithms for optimal results. Multimedia
codecs like HEVC and H.264 use transform coding
for lossy video frame compression and lossless
entropy coding for metadata and headers, like
Arithmetic Coding [13]. This combination preserves
important data while achieving high compression
ratios. These methods excel in big data applications
like streaming and video analytics, where efficiency
and quality are crucial.

D. ADVANTAGES AND LIMITATIONS OF

EACH METHOD

Compression algorithms are optimal for certain tasks
due to their pros and cons. Use LZW, Arithmetic
Coding, or Huffman Coding for lossless data recovery
of text files, databases, or important logs. However,
their compression ratios are lower than lossy
methods. Although they may cause artefacts or
quality loss, lossy algorithms like DCT and wavelet-
based methods compress multimedia files well.
Hybrid approaches can optimise size and quality, but
they are complex and computationally intensive.

Big data compression algorithms depend on data type,
use, and storage efficiency vs. processing demands.
Lossy algorithms work better for photos and videos
than lossless algorithms for structured and critical
data. For storage and resource efficiency, big data
ecosystems will always need compression algorithms.

V. ROLE OF COMPRESSION IN BIG

DATA FRAMEWORKS

Large amounts of data are created and processed in
the big data era, making compression essential for
storage management and performance optimisation.
Cloud storage platforms and big data ecosystems like
Hadoop and Spark manage massive amounts of
diverse data [14]. These frameworks improve storage
costs, data transfer speeds, and processing efficiency
by using efficient compression algorithms. Modern
big data applications use compression to scale, speed
up, and reduce storage.

A. INTEGRATION OF COMPRESSION

ALGORITHMS IN BIG DATA

ECOSYSTEMS

Big data frameworks are used for datasets too large
for conventional systems. Since these systems are
scalable, data compression algorithms are integrated
into their processing and storage layers to optimise
performance. Compressing data before storage allows
these systems to fit datasets into distributed storage
clusters [15]. Data compression during processing

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81127 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 791

speeds up analysis and reduces network bandwidth by
reducing data read and transferred. Big data
frameworks like Hadoop and Spark compress and
decompress large datasets before processing them to
reduce storage costs. These frameworks allow real-
time data analytics with high compression ratios by
balancing processing speed and use-case-specific
compression methods.

FIGURE 2 Big Data Storage Architecture

B. USE CASES OF COMPRESSION

ALGORITHMS IN BIG DATA

FRAMEWORKS

1. HADOOP: SNAPPY AND LZO
Hadoop, a popular distributed processing and storage
framework, optimises storage and performance with
compression. In the Hadoop Distributed File System
(HDFS), which distributes data across many nodes,
Snappy and LZO are widely used to compress data
[16].

Snappy's speed-focused compression ratio attracts
Hadoop users. Its efficient compression and
decompression mechanisms make it ideal for real-
time or near-real-time applications.

Snappy speeds up data processing, which is essential
for Hadoop's batch processing model despite its low
compression ratios. Many workflows use it, including
log management, data ingestion, and streaming
analytics. Another lightweight Hadoop algorithm is
LZO, which prioritises speed and moderate
compression ratios. Applications that need real-time
data compression and decompression without delays
benefit from this feature. For time-sensitive large-
scale data processing, LZO and Snappy are faster
than more computationally intensive algorithms
despite having lower compression ratios.

2. SPARK: ZSTD AND BROTLI

Apache Spark's in-memory big data processing is
quick thanks to efficient compression methods. Spark
often uses ZSTD and Brotli compression to boost
performance.

ZSTD, an advanced compression method, balances
processing speed and compression ratio [17]. ZSTD

speeds up read/write speeds and lowers transmission
and storage costs in Spark, making it ideal for remote
computing and large datasets. Spark and the
algorithm's distributed nature enable efficient
decompression and I/O bottleneck reduction.

Spark uses Brotli, originally for web compression, for
data storage and transmission. Spark tasks that handle
log files, JSON, and other textual data may benefit
from its ability to compress large volumes of text.
Brotli is a suitable alternative to Gzip for Spark
workload optimisation, especially in cloud situations,
because it has greater compression ratios and
comparable speeds.

3. CLOUD STORAGE: GZIP AND PARQUET

Modern big data architectures use Amazon S3,
Google Cloud Storage, and Azure Blob Storage.
Optimising storage and data transport requires
compression. Cloud storage companies use Gzip and
Parquet for massive data compression. Gzip is a
popular data compression method. It is supported by
various cloud storage services and big data
frameworks because to its efficiency and simplicity.
Gzip is ideal for compressing CSV files, logs, and
other unstructured data because to its excellent
compression ratios [18]. Cloud systems often
compress data with Gzip before storage to reduce
storage costs and network bandwidth.
Columnar storage file format Parquet is suitable for
Hadoop and Spark. Parquet includes snappy
compression and lets users choose from Gzip and
LZO. Because it compresses columns, Parquet is
great for analytical queries because it decreases
storage costs and improves query performance. For
big data applications that need scalable, fast data
processing, cloud-stored Parquet files are perfect for
storing enormous datasets for analytics.

C. CASE STUDIES AND EXAMPLES OF

COMPRESSION IN REAL-WORLD BIG

DATA FRAMEWORKS

1. Netflix: Compression for Streaming Video

Analytics

Industry leaders like Netflix employ Spark and
Hadoop to process large amounts of user and
streaming data. Video storage, transport, and user
data analysis depend on compression. Snappy and
Zstandard compression help Netflix save money on
storage and improve its recommendation systems
[19]. Netflix compresses logs and user behaviour data
to process billions of user interactions daily with low
latency and high throughput.

2. LinkedIn: Real-time Data Processing with

Kafka

LinkedIn uses distributed streaming technology
Apache Kafka for real-time data analytics. Snappy

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81127 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 792

and Gzip compress Kafka messages to save space and
bandwidth. LinkedIn reduces its data storage
demands by compressing streaming data before
storage without affecting its ability to quickly process
huge volumes of incoming data. LinkedIn can provide
real-time user interactions and platform performance
metrics [21]. Compression strategies boost massive
data framework efficiency. These methods reduce
storage needs, speed up data transport, and improve
data processing task performance, ensuring huge data
system scalability. Data and application requirements
should determine lossless or lossy compression.

Modern compression techniques are needed to solve
large-scale data system storage and processing
problems, which will only expand as big data grows.

VI. COMPARISON OF POPULAR

COMPRESSION ALGORITHMS

Different compression algorithms work optimal with
different data formats and have different speed,
compression ratios, and efficacy. Knowing these
differences is crucial when picking a large data
algorithm since they directly affect processing speed
and storage efficiency. The table below compares
popular big data compression methods. These
algorithms are Snappy, ZSTD, LZ77/LZW, Gzip, and
Brotli.

TABLE 1 COMPARISON OF POPULAR COMPRESSION ALGORITHM

Compression

Algorithm

Compression

Ratio

Speed

(Compression/

Decompression)

Suitability for Different

Types of Data
Use Cases

Snappy Moderate

Very Fast
(Compression: Fast,

Decompression:
Very Fast)

Ideal for structured and
semi-structured data such
as logs, CSV, or simple

datasets

Hadoop, Spark,
real-time

processing, log
data

Zstandard

(ZSTD)
High

Moderate
(Compression: Fast,

Decompression:
Very Fast)

Suitable for large, high-
volume datasets such as
transactional logs and

analytical data

Hadoop, Spark,
cloud storage, file

systems

LZ77/LZW
Moderate to

High
Fast to Moderate

Works well with text data,
codebooks, and simple data

General-purpose
compression,

text-based files

Gzip High Moderate to Slow
Optimal for compressing
text-based data, including

logs, CSV, and XML

Cloud storage,
file systems, web

applications

Brotli Very High Moderate

Effective for compressing
text and web data,
especially HTTP

compression

Web applications,
cloud storage,

static file serving

A. COMPRESSION RATIO

Zstandard (ZSTD) and Gzip have the optimal
compression ratios for space savings. Gzip excels at
text-heavy material, but ZSTD balances speed and
compression. Snappy may not have the optimal
compression ratios, but its lightning-fast performance
makes it suitable for real-time or high-performance
settings where every second counts. LZ77/LZW
compresses moderately, making it suitable for smaller
datasets or older compression methods.

B. SPEED

Snappy's lightning-fast compression and
decompression speeds are ideal for real-time
applications that value speed over compression
efficiency. Its fast data processing benefits Hadoop
and Spark, two massive data systems. Zstandard
(ZSTD) is ideal for storage and processing due to its

fast compression and decompression rates, especially
in high-throughput applications. Gzip is slower than
LZ77/LZW but better for compression ratio over
speed [22].

C. SUITABILITY FOR DIFFERENT TYPES OF

DATA

Snappy is optimal for semi-structured or log-based
data if speed trumps compression ratio.

ZSTD is adaptable and works with multimedia files,
large databases, and transactional logs [23]. With
sophisticated, high-volume data storage activities,
LZ77/LZW may not be as efficient as with text-based
data or simpler datasets. Gzip can compress logs,
CSV, and XML in distributed storage systems with
limited bandwidth. Brotli optimises web-based data
compression, especially HTTP traffic, and

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81127 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 793

compresses static things like scripts and images
faster.

D. CHOOSING THE RIGHT ALGORITHM

Due to their lightning-fast speeds and optimum
compression/decompression combo, Snappy and
ZSTD surpass the competition in real-time processing
in Spark and Hadoop. Gzip and ZSTD reduce storage
and processing time, making them ideal for cloud
storage or archive data that needs compression ratio.

Brotli optimises web traffic and HTTP compression
for websites that use CDNs or need fast data transfer
[24]. Storage efficiency, data type, and processing
speed determine which compression method is ideal
for a big data application. Gzip and Brotli are good
for high-compression applications, whereas Snappy
and ZSTD are good for speed and real-time
performance. Understanding compression ratio and
speed trade-offs helps big data frameworks optimise
storage and performance.

VII. FUTURE TRENDS AND INNOVATIONS

AI and machine learning could dramatically improve
compression methods in the future. These methods
are promising for context-aware and adaptive
compression, which optimises processing speed and
storage economy by making real-time adaptations
based on data attributes. AI-driven compression
improves compression efficiency without quality loss
by studying data patterns. Quantum computing can
use quantum states to compress enormous amounts of
data at record rates, which could revolutionise data
compression. Thus, quantum compression research is
intriguing. AI-driven approaches are computationally
complex, large-scale systems must process in real
time, and quantum computing's practical uses are
unclear. Compression techniques are constantly
changing, but they can improve data storage,
processing efficiency, and big data application
possibilities while overcoming these challenges.

VIII. CONCLUSION

Compression techniques can aid with enormous data
storage, as mentioned in this article. We covered data
compression basics, including lossless and lossy
compression and big data applications. Compression
algorithms include Huffman coding, Zstandard,
Snappy, and Gzip. Each has strengths in compression
ratio, speed, and data type compatibility. We
examined how Hadoop and Spark use the algorithms
to improve storage optimisation and data
accessibility. For optimal compression, storage
efficiency, processing speed, and data type, choose
the right algorithm. Data storage and processing may
change soon due to AI-driven and quantum
compression. Though the field's constant evolution
presents challenges and opportunities, big data

storage's future is bright with better and more
adaptable compression approaches.

REFERENCE

[1] M. Pandey, S. Shrivastava, S. Pandey, and S.
Shridevi, "An enhanced data compression
algorithm," in 2020 International Conference

on Emerging Trends in Information Technology

and Engineering (ic-ETITE), 2020, pp. 1–4.

[2] J. Latif, P. Mehryar, L. Hou, and Z. Ali, "An
efficient data compression algorithm for real-
time monitoring applications in healthcare," in
2020 5th International Conference on

Computer and Communication Systems

(ICCCS), 2020, pp. 71–75.

[3] T. A. S. Srinivas, S. Ramasubbareddy, G.
Kannayaram, and C. P. Kumar, "Storage
optimization using file compression techniques
for big data," in FICTA (2), 2020, pp. 409–416.

[4] A. N. Kahdim and M. E. Manaa, "Design an
efficient Internet of Things data compression
for healthcare applications," Bulletin of

Electrical Engineering and Informatics, vol.
11, no. 3, pp. 1678–1686, 2022.

[5] H. Astsatryan, A. Lalayan, A. Kocharyan, and
D. Hagimont, "Performance-efficient
recommendation and prediction service for big
data frameworks focusing on data compression
and in-memory data storage indicators,"
Scalable Computing: Practice and Experience,
vol. 22, no. 4, pp. 401–412, 2021.

[6] S. Kalaivani, C. Tharini, K. Saranya, and K.
Priyanka, "Design and implementation of
hybrid compression algorithm for personal
health care big data applications," Wireless

Personal Communications, vol. 113, no. 1, pp.
599–615, 2020.

[7] K. Meena and J. Sujatha, "Reduced time
compression in big data using MapReduce
approach and Hadoop," Journal of Medical

Systems, vol. 43, no. 8, p. 239, 2019.

[8] J. Song, S. Hu, Y. Bao, and G. Yu, "Compress
blocks or not: Tradeoffs for energy
consumption of a big data processing system,"
IEEE Transactions on Sustainable Computing,
vol. 7, no. 1, pp. 112–124, 2020.

[9] Bakir, "New blockchain based special keys
security model with path compression
algorithm for big data," IEEE Access, vol. 10,
pp. 94738–94753, 2022.

[10] Yu, S. Lu, T. Wang, X. Zhang, and S. Wan,
"Towards higher efficiency in a distributed

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81127 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 794

memory storage system using data
compression," International Journal of Bio-

Inspired Computation, vol. 20, no. 4, pp. 232–
240, 2022.

[11] S. Qi, J. Wang, M. Miao, M. Zhang, and X.
Chen, "Tinyenc: Enabling compressed and
encrypted big data stores with rich query
support," IEEE Transactions on Dependable

and Secure Computing, vol. 20, no. 1, pp. 176–
192, 2021.

[12] Carpentieri, "Data compression in massive data
storage systems," in 2024 International

Conference on Artificial Intelligence,

Computer, Data Sciences and Applications

(ACDSA), 2024, pp. 1–6.

[13] Hu, F. Wang, W. Li, J. Li, and H. Guan,
"QZFS: QAT accelerated compression in file
system for application agnostic and cost
efficient data storage," in 2019 USENIX Annual

Technical Conference (USENIX ATC 19), 2019,
pp. 163–176.

[14] U. Narayanan, V. Paul, and S. Joseph, "A novel
system architecture for secure authentication
and data sharing in cloud enabled big data
environment," Journal of King Saud

University-Computer and Information Sciences,
vol. 34, no. 6, pp. 3121–3135, 2022.

[15] H. Yao, Y. Ji, K. Li, S. Liu, J. He, and R.
Wang, "HRCM: An efficient hybrid referential
compression method for genomic big data,"
BioMed Research International, vol. 2019, no.
1, p. 3108950, 2019.

[16] J. Chen, M. Daverveldt, and Z. Al-Ars, "FPGA
acceleration of ZSTD compression algorithm,"
in 2021 IEEE International Parallel and

Distributed Processing Symposium Workshops

(IPDPSW), 2021, pp. 188–191.

[17] S. Vatedka and A. Tchamkerten, "Local decode
and update for big data compression," IEEE

Transactions on Information Theory, vol. 66,
no. 9, pp. 5790–5805, 2020.

[18] G. Xiong, "Research on big data compression
algorithm based on BIM," in 2021 IEEE

International Conference on Power, Intelligent

Computing and Systems (ICPICS), 2021, pp.
97–100.

[19] S. Pal, S. Mondal, G. Das, S. Khatua, and Z.
Ghosh, "Big data in biology: The hope and
present-day challenges in it," Gene Reports,
vol. 21, p. 100869, 2020.

[20] K. Sansanwal, G. Shrivastava, R. Anand, and
K. Sharma, "Big data analysis and compression
for indoor air quality," in Handbook of IoT and

Big Data, CRC Press, 2019, pp. 1–21.

[21] S. A. Abdulzahra, A. K. M. Al-Qurabat, and A.
K. Idrees, "Data reduction based on
compression technique for big data in IoT," in
2020 International Conference on Emerging

Smart Computing and Informatics (ESCI),
2020, pp. 103–108.

[22] Zhang et al., "Compress DB: Enabling efficient
compressed data direct processing for various
databases," in Proceedings of the 2022

International Conference on Management of

Data, 2022, pp. 1655–1669.

[23] A. Abdo, T. Salem Karamany, and A. Yakoub,
"Enhanced data security and storage efficiency
in cloud computing: A survey of data
compression and encryption techniques," vol. 6,
no. 2, pp. 81–88, 2024.

[24] R. Pratap, K. Revanuru, R. Anirudh, and R.
Kulkarni, "Efficient compression algorithm for
multimedia data," in 2020 IEEE Sixth

International Conference on Multimedia Big

Data (BigMM), 2020, pp. 245–250.

