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ABSTRACT 

In today's digital world, big data is growing at an unprecedented rate, 
presenting significant challenges in terms of storage and 
management. Compression algorithms play a pivotal role in 
addressing these challenges by reducing data size without 
compromising essential information. This article provides an in-depth 
exploration of data compression techniques, categorizing them into 
lossless and lossy compression methods, and evaluates their 
effectiveness in big data applications. The integration of these 
algorithms into popular big data frameworks such as Hadoop, Spark, 
and cloud storage systems is discussed, highlighting their impact on 
storage efficiency and data accessibility. A comparison of several 
compression algorithms, including Snappy, Zstandard, Gzip, and 
Brotli, is also presented to guide the selection of the most suitable 
algorithm based on compression ratio, speed, and the type of data 
being processed. The article concludes with a look into future trends 
and innovations in compression, including AI and machine learning-
based techniques, adaptive methods, and the potential for quantum 
compression. These advancements offer exciting prospects for 
improving data storage and processing capabilities, while addressing 
ongoing challenges in big data environments. 
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I. INTRODUCTION 

The digital age's massive data generation has 
transformed business, government, and relationships. 
IoT devices, social media, and advanced analytics 
have increased data production to unprecedented 
levels. This trend, called "big data," involves massive, 
complex datasets that are difficult to store, process, 
and analyse. Big data helps identify patterns, improve 
decision-making, and drive innovation in medicine, 
economics, retail, and science [1]. Big data 
management and storage are difficult despite its many 
benefits. Big data's size and complexity make storage 
difficult. Infrastructure costs are high because 
structured and unstructured data require a lot of 
hardware. Keeping such data accessible, reliable, and 
latency-free complicates storage. Businesses are 
always looking for ways to maximise their limited 
resources because data is growing faster than most 
storage solutions can handle. Due to this need, storage 
solutions must be efficient, scalable, and affordable 
while protecting data integrity and accessibility. 

 
Compression algorithms make big data storage easier. 
Compression algorithms allow organisations to store 
more data in less space while retaining essential 
information. Real-time applications need this 
optimisation to lower storage costs and boost 
processing and data transfer speeds. Lossless 
compression is the optimal choice for mission-critical 
data, while losing compression allows certain 
applications to make acceptable quality and size 
compromises [2]. Together, these algorithms support 
current data management methods. Compression 
algorithms are important and complicated in big data 
storage. It discusses their principles, rates popular 
methods, and integrates them into big data 
frameworks. The article discusses recent and future 
compression algorithm developments to demonstrate 
their importance in big data storage and management. 

II. FUNDAMENTALS OF DATA 

COMPRESSION 

Compressing data reduces its size without 
compromising its quality. Data compression reduces 
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space and bandwidth needed to transmit and store 
data to maximise resource use. Data-driven industries 
and the need to efficiently manage massive amounts 
of data have made compression crucial. Lossless and 
lossy compression are the main data compression 
methods [3].  

The original data can be perfectly reconstructed from 
compressed data using lossless compression. This 
method is often used for high-fidelity data files like 
PNG images or text files like ZIP. Lossless 
compression preserves all data, making it essential for 
applications where small errors can have big effects. 

Lossy compression reduces file size while 
maintaining quality by using some of the original 
data. Multimedia files like images, audio, and video 
use this method because even a small data loss doesn't 
affect user experience. JPEG and MP3 use lossy 
compression to balance file size and quality [4]. 
Lossy methods help streaming services save 
bandwidth. A compression algorithm's effectiveness 
is measured by compression ratio, speed, and 
efficiency. Data compression is often expressed as a 
percentage of its original size. For real-time 
applications, data compression and decompression 
times matter. An algorithm is efficient if it 
compresses data with little processing power. These 
metrics help decide if a compression method is right 
for a task. 

Big data requires compression to overcome 
processing and storage limitations. Big data is too 
large to send or store unprocessed. Data compression 
saves computing resources, speeds network data 
transfer, and lowers storage costs. Compression 
algorithms in Hadoop and Spark help organisations 
manage large datasets. Therefore, big data 
management strategies must include compression. 

III. OVERVIEW OF BIG DATA STORAGE 

CHALLENGES 

Big data is defined by its 5Vs: volume, velocity, 
variety, veracity, and value. Volume terabytes to 
exabytes of data generated daily is called volume. 
This massive data flood comes from enterprise apps, 
social media, and IoT devices. Due to data generation 
and processing velocity, real-time or near-real-time 
analytics systems are needed. Big data includes 
structured databases, unstructured text, photos, 
videos, and sensor data. Truthfulness highlights the 
challenges of data accuracy and reliability in the face 
of noise and inconsistencies. Finally, big data analysis 
and use yield practical insights and benefits [5]. 
Traditional storage methods struggle with these 
features. Traditional database and file storage systems 
cannot handle big data's volume and velocity. They're 
not flexible or scalable enough to handle all data 

formats. This causes inefficient storage use, latency, 
and higher costs.  

Because managing large datasets is complicated, data 
accessibility, security, and integrity are difficult to 
ensure. Big data companies aim to reduce storage 
costs and increase data accessibility [6]. Servers, data 
centres, and other storage infrastructure are expensive 
upfront and over time. Effective data management 
can reduce these expenses and improve system 
performance and data retrieval speeds. Improved 
accessibility ensures quick data retrieval and 
processing, enabling timely decision-making and 
competitive advantage preservation. 

 
FIGURE 1 Data Flow Before and After 

Compression (Source: Self-Created) 

Effective compression algorithms are needed to 
address these issues. This algorithm greatly reduces 
data file sizes, allowing businesses to store more data 
with less resources. Compression lowers 
infrastructure costs and hardware upgrades by 
reducing storage footprint [7]. Compression speeds 
up data processing and transfers, which is crucial for 
real-time applications and analytics. Strong 
compression techniques are needed to make storage 
strategies scalable, cost-effective, and operationally 
efficient as big data grows. 

IV. TYPES OF COMPRESSION 

ALGORITHMS FOR BIG DATA 

Massive data sets require compression algorithms for 
data management. These algorithms are mostly 
lossless and lossy. Both have different approaches, 
benefits, and drawbacks, making them optimal for 
specific applications. Hybrid compression methods 
maximise both approaches. 

A. LOSSLESS COMPRESSION ALGORITHMS 

The early lossless compression algorithm Huffman 
Coding stands out. To make it work, frequently 
appearing symbols have shorter binary codes and 
rarely appearing symbols have longer codes. Huffman 
Coding uses a symbol frequency-based binary tree 
structure to ensure no code is a prefix for efficient 
decoding [8]. The ZIP and GZIP file formats use this 
method. Its main benefit is reproducing initial data. 
Due to low compression ratios, Huffman Coding may 
not benefit datasets with normal frequency 
distributions. 
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Arithmetic coding, another lossless method, converts 
messages to integers between zero and one. 
Arithmetic Coding represents the probability of the 
entire data stream, unlike Huffman Coding, which 
uses discrete symbols, making it efficient for datasets 
with skewed symbol distributions [9]. This algorithm 
is used in text and multimedia codecs. Although it 
outperforms Huffman Coding in compression ratio, it 
is computationally heavy and may not work well in 
real time. 

Compression algorithms like LZ77 and LZW 
(Lempel-Ziv) can replace repetitive patterns with 
dictionary-based shorter references. LZ77 replaces 
repeating strings with references to earlier ones, while 
LZW creates a data stream pattern dictionary. GIF 
and ZIP use these methods extensively. Their 
adaptability to different data types is one of their 
many advantages. 

Quick and efficient lossless compression algorithms 
Snappy and Zstandard are new [10]. Google's Snappy 
prioritises fast compression and decompression for 
real-time applications like log management. 
Facebook's Zstandard balances speed and 
compression ratio and offers adjustable parameters. In 
fast-processing big data frameworks like Spark and 
Hadoop, these algorithms are becoming more 
popular. Though efficient, they may not compress as 
well as more complicated algorithms like Arithmetic 
Coding. 

B. LOSSY COMPRESSION ALGORITHMS 

Lossy compression relies on transform coding, which 
includes the DCT. Data can be converted from spatial 
to frequency domain to remove low-frequency 
components (important features) and keep high-
frequency components (details). JPEG and MPEG use 
this method to compress images and videos [11]. Its 
main benefit is size reduction, but it may lose fine 
details, making it unsuitable for some uses. 

Wavelet transforms use transform coding at multiple 
resolutions to improve data representation. 
Progressive transmission and scalable storage make 
this method ideal for audio and image compression. 
Wavelet-based compression allows JPEG 2000 to 
compress at high ratios without sacrificing quality. 
However, these methods may be too computationally 
intensive for real-time big data processing. 

Run-Length Encoding (RLE) is a simple and efficient 
lossy compression method that replaces repeated 
values with a single value and count [12]. A string of 
ten "A"s is "A10." Bitmaps and other data with long 
repeated values are good RLE candidates. Processing 
is fast and computational overhead is low due to its 
simplicity. However, RLE doesn't work for highly 

variable data because repetitions are rare, preventing 
compression gains. 

C. HYBRID COMPRESSION TECHNIQUES 

Hybrid compression algorithms combine lossy and 
lossless algorithms for optimal results. Multimedia 
codecs like HEVC and H.264 use transform coding 
for lossy video frame compression and lossless 
entropy coding for metadata and headers, like 
Arithmetic Coding [13]. This combination preserves 
important data while achieving high compression 
ratios. These methods excel in big data applications 
like streaming and video analytics, where efficiency 
and quality are crucial. 

D. ADVANTAGES AND LIMITATIONS OF 

EACH METHOD 

Compression algorithms are optimal for certain tasks 
due to their pros and cons. Use LZW, Arithmetic 
Coding, or Huffman Coding for lossless data recovery 
of text files, databases, or important logs. However, 
their compression ratios are lower than lossy 
methods. Although they may cause artefacts or 
quality loss, lossy algorithms like DCT and wavelet-
based methods compress multimedia files well. 
Hybrid approaches can optimise size and quality, but 
they are complex and computationally intensive. 

Big data compression algorithms depend on data type, 
use, and storage efficiency vs. processing demands. 
Lossy algorithms work better for photos and videos 
than lossless algorithms for structured and critical 
data. For storage and resource efficiency, big data 
ecosystems will always need compression algorithms. 

V. ROLE OF COMPRESSION IN BIG 

DATA FRAMEWORKS 

Large amounts of data are created and processed in 
the big data era, making compression essential for 
storage management and performance optimisation. 
Cloud storage platforms and big data ecosystems like 
Hadoop and Spark manage massive amounts of 
diverse data [14]. These frameworks improve storage 
costs, data transfer speeds, and processing efficiency 
by using efficient compression algorithms. Modern 
big data applications use compression to scale, speed 
up, and reduce storage. 

A. INTEGRATION OF COMPRESSION 

ALGORITHMS IN BIG DATA 

ECOSYSTEMS 

Big data frameworks are used for datasets too large 
for conventional systems. Since these systems are 
scalable, data compression algorithms are integrated 
into their processing and storage layers to optimise 
performance. Compressing data before storage allows 
these systems to fit datasets into distributed storage 
clusters [15]. Data compression during processing 
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speeds up analysis and reduces network bandwidth by 
reducing data read and transferred. Big data 
frameworks like Hadoop and Spark compress and 
decompress large datasets before processing them to 
reduce storage costs. These frameworks allow real-
time data analytics with high compression ratios by 
balancing processing speed and use-case-specific 
compression methods. 

 
FIGURE 2 Big Data Storage Architecture 

B. USE CASES OF COMPRESSION 

ALGORITHMS IN BIG DATA 

FRAMEWORKS 

1. HADOOP: SNAPPY AND LZO 
Hadoop, a popular distributed processing and storage 
framework, optimises storage and performance with 
compression. In the Hadoop Distributed File System 
(HDFS), which distributes data across many nodes, 
Snappy and LZO are widely used to compress data 
[16]. 

Snappy's speed-focused compression ratio attracts 
Hadoop users. Its efficient compression and 
decompression mechanisms make it ideal for real-
time or near-real-time applications.  

Snappy speeds up data processing, which is essential 
for Hadoop's batch processing model despite its low 
compression ratios. Many workflows use it, including 
log management, data ingestion, and streaming 
analytics. Another lightweight Hadoop algorithm is 
LZO, which prioritises speed and moderate 
compression ratios. Applications that need real-time 
data compression and decompression without delays 
benefit from this feature. For time-sensitive large-
scale data processing, LZO and Snappy are faster 
than more computationally intensive algorithms 
despite having lower compression ratios. 

2. SPARK: ZSTD AND BROTLI 

Apache Spark's in-memory big data processing is 
quick thanks to efficient compression methods. Spark 
often uses ZSTD and Brotli compression to boost 
performance.  

ZSTD, an advanced compression method, balances 
processing speed and compression ratio [17]. ZSTD 

speeds up read/write speeds and lowers transmission 
and storage costs in Spark, making it ideal for remote 
computing and large datasets. Spark and the 
algorithm's distributed nature enable efficient 
decompression and I/O bottleneck reduction. 

Spark uses Brotli, originally for web compression, for 
data storage and transmission. Spark tasks that handle 
log files, JSON, and other textual data may benefit 
from its ability to compress large volumes of text. 
Brotli is a suitable alternative to Gzip for Spark 
workload optimisation, especially in cloud situations, 
because it has greater compression ratios and 
comparable speeds.  

3. CLOUD STORAGE: GZIP AND PARQUET 

Modern big data architectures use Amazon S3, 
Google Cloud Storage, and Azure Blob Storage. 
Optimising storage and data transport requires 
compression. Cloud storage companies use Gzip and 
Parquet for massive data compression. Gzip is a 
popular data compression method. It is supported by 
various cloud storage services and big data 
frameworks because to its efficiency and simplicity. 
Gzip is ideal for compressing CSV files, logs, and 
other unstructured data because to its excellent 
compression ratios [18]. Cloud systems often 
compress data with Gzip before storage to reduce 
storage costs and network bandwidth. 
Columnar storage file format Parquet is suitable for 
Hadoop and Spark. Parquet includes snappy 
compression and lets users choose from Gzip and 
LZO. Because it compresses columns, Parquet is 
great for analytical queries because it decreases 
storage costs and improves query performance. For 
big data applications that need scalable, fast data 
processing, cloud-stored Parquet files are perfect for 
storing enormous datasets for analytics.  

C. CASE STUDIES AND EXAMPLES OF 

COMPRESSION IN REAL-WORLD BIG 

DATA FRAMEWORKS 

1. Netflix: Compression for Streaming Video 

Analytics 

Industry leaders like Netflix employ Spark and 
Hadoop to process large amounts of user and 
streaming data. Video storage, transport, and user 
data analysis depend on compression. Snappy and 
Zstandard compression help Netflix save money on 
storage and improve its recommendation systems 
[19]. Netflix compresses logs and user behaviour data 
to process billions of user interactions daily with low 
latency and high throughput. 

2. LinkedIn: Real-time Data Processing with 

Kafka 

LinkedIn uses distributed streaming technology 
Apache Kafka for real-time data analytics. Snappy 
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and Gzip compress Kafka messages to save space and 
bandwidth. LinkedIn reduces its data storage 
demands by compressing streaming data before 
storage without affecting its ability to quickly process 
huge volumes of incoming data. LinkedIn can provide 
real-time user interactions and platform performance 
metrics [21]. Compression strategies boost massive 
data framework efficiency. These methods reduce 
storage needs, speed up data transport, and improve 
data processing task performance, ensuring huge data 
system scalability. Data and application requirements 
should determine lossless or lossy compression.  

Modern compression techniques are needed to solve 
large-scale data system storage and processing 
problems, which will only expand as big data grows. 

VI. COMPARISON OF POPULAR 

COMPRESSION ALGORITHMS 

Different compression algorithms work optimal with 
different data formats and have different speed, 
compression ratios, and efficacy. Knowing these 
differences is crucial when picking a large data 
algorithm since they directly affect processing speed 
and storage efficiency. The table below compares 
popular big data compression methods. These 
algorithms are Snappy, ZSTD, LZ77/LZW, Gzip, and 
Brotli. 

TABLE 1 COMPARISON OF POPULAR COMPRESSION ALGORITHM 

Compression 

Algorithm 

Compression 

Ratio 

Speed 

(Compression/ 

Decompression) 

Suitability for Different 

Types of Data 
Use Cases 

Snappy Moderate 

Very Fast 
(Compression: Fast, 

Decompression: 
Very Fast) 

Ideal for structured and 
semi-structured data such 
as logs, CSV, or simple 

datasets 

Hadoop, Spark, 
real-time 

processing, log 
data 

Zstandard 

(ZSTD) 
High 

Moderate 
(Compression: Fast, 

Decompression: 
Very Fast) 

Suitable for large, high-
volume datasets such as 
transactional logs and 

analytical data 

Hadoop, Spark, 
cloud storage, file 

systems 

LZ77/LZW 
Moderate to 

High 
Fast to Moderate 

Works well with text data, 
codebooks, and simple data 

General-purpose 
compression, 

text-based files 

Gzip High Moderate to Slow 
Optimal for compressing 
text-based data, including 

logs, CSV, and XML 

Cloud storage, 
file systems, web 

applications 

Brotli Very High Moderate 

Effective for compressing 
text and web data, 
especially HTTP 

compression 

Web applications, 
cloud storage, 

static file serving 

 

A. COMPRESSION RATIO 

Zstandard (ZSTD) and Gzip have the optimal 
compression ratios for space savings. Gzip excels at 
text-heavy material, but ZSTD balances speed and 
compression. Snappy may not have the optimal 
compression ratios, but its lightning-fast performance 
makes it suitable for real-time or high-performance 
settings where every second counts. LZ77/LZW 
compresses moderately, making it suitable for smaller 
datasets or older compression methods. 

B. SPEED 

Snappy's lightning-fast compression and 
decompression speeds are ideal for real-time 
applications that value speed over compression 
efficiency. Its fast data processing benefits Hadoop 
and Spark, two massive data systems. Zstandard 
(ZSTD) is ideal for storage and processing due to its 

fast compression and decompression rates, especially 
in high-throughput applications. Gzip is slower than 
LZ77/LZW but better for compression ratio over 
speed [22]. 

C. SUITABILITY FOR DIFFERENT TYPES OF 

DATA 

Snappy is optimal for semi-structured or log-based 
data if speed trumps compression ratio.  

ZSTD is adaptable and works with multimedia files, 
large databases, and transactional logs [23]. With 
sophisticated, high-volume data storage activities, 
LZ77/LZW may not be as efficient as with text-based 
data or simpler datasets. Gzip can compress logs, 
CSV, and XML in distributed storage systems with 
limited bandwidth. Brotli optimises web-based data 
compression, especially HTTP traffic, and 
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compresses static things like scripts and images 
faster. 

D. CHOOSING THE RIGHT ALGORITHM 

Due to their lightning-fast speeds and optimum 
compression/decompression combo, Snappy and 
ZSTD surpass the competition in real-time processing 
in Spark and Hadoop. Gzip and ZSTD reduce storage 
and processing time, making them ideal for cloud 
storage or archive data that needs compression ratio.  

Brotli optimises web traffic and HTTP compression 
for websites that use CDNs or need fast data transfer 
[24]. Storage efficiency, data type, and processing 
speed determine which compression method is ideal 
for a big data application. Gzip and Brotli are good 
for high-compression applications, whereas Snappy 
and ZSTD are good for speed and real-time 
performance. Understanding compression ratio and 
speed trade-offs helps big data frameworks optimise 
storage and performance. 

VII. FUTURE TRENDS AND INNOVATIONS 

AI and machine learning could dramatically improve 
compression methods in the future. These methods 
are promising for context-aware and adaptive 
compression, which optimises processing speed and 
storage economy by making real-time adaptations 
based on data attributes. AI-driven compression 
improves compression efficiency without quality loss 
by studying data patterns. Quantum computing can 
use quantum states to compress enormous amounts of 
data at record rates, which could revolutionise data 
compression. Thus, quantum compression research is 
intriguing. AI-driven approaches are computationally 
complex, large-scale systems must process in real 
time, and quantum computing's practical uses are 
unclear. Compression techniques are constantly 
changing, but they can improve data storage, 
processing efficiency, and big data application 
possibilities while overcoming these challenges. 

VIII. CONCLUSION 

Compression techniques can aid with enormous data 
storage, as mentioned in this article. We covered data 
compression basics, including lossless and lossy 
compression and big data applications. Compression 
algorithms include Huffman coding, Zstandard, 
Snappy, and Gzip. Each has strengths in compression 
ratio, speed, and data type compatibility. We 
examined how Hadoop and Spark use the algorithms 
to improve storage optimisation and data 
accessibility. For optimal compression, storage 
efficiency, processing speed, and data type, choose 
the right algorithm. Data storage and processing may 
change soon due to AI-driven and quantum 
compression. Though the field's constant evolution 
presents challenges and opportunities, big data 

storage's future is bright with better and more 
adaptable compression approaches. 

REFERENCE  

[1] M. Pandey, S. Shrivastava, S. Pandey, and S. 
Shridevi, "An enhanced data compression 
algorithm," in 2020 International Conference 

on Emerging Trends in Information Technology 

and Engineering (ic-ETITE), 2020, pp. 1–4. 

[2] J. Latif, P. Mehryar, L. Hou, and Z. Ali, "An 
efficient data compression algorithm for real-
time monitoring applications in healthcare," in 
2020 5th International Conference on 

Computer and Communication Systems 

(ICCCS), 2020, pp. 71–75. 

[3] T. A. S. Srinivas, S. Ramasubbareddy, G. 
Kannayaram, and C. P. Kumar, "Storage 
optimization using file compression techniques 
for big data," in FICTA (2), 2020, pp. 409–416. 

[4] A. N. Kahdim and M. E. Manaa, "Design an 
efficient Internet of Things data compression 
for healthcare applications," Bulletin of 

Electrical Engineering and Informatics, vol. 
11, no. 3, pp. 1678–1686, 2022. 

[5] H. Astsatryan, A. Lalayan, A. Kocharyan, and 
D. Hagimont, "Performance-efficient 
recommendation and prediction service for big 
data frameworks focusing on data compression 
and in-memory data storage indicators," 
Scalable Computing: Practice and Experience, 
vol. 22, no. 4, pp. 401–412, 2021. 

[6] S. Kalaivani, C. Tharini, K. Saranya, and K. 
Priyanka, "Design and implementation of 
hybrid compression algorithm for personal 
health care big data applications," Wireless 

Personal Communications, vol. 113, no. 1, pp. 
599–615, 2020. 

[7] K. Meena and J. Sujatha, "Reduced time 
compression in big data using MapReduce 
approach and Hadoop," Journal of Medical 

Systems, vol. 43, no. 8, p. 239, 2019. 

[8] J. Song, S. Hu, Y. Bao, and G. Yu, "Compress 
blocks or not: Tradeoffs for energy 
consumption of a big data processing system," 
IEEE Transactions on Sustainable Computing, 
vol. 7, no. 1, pp. 112–124, 2020. 

[9] Bakir, "New blockchain based special keys 
security model with path compression 
algorithm for big data," IEEE Access, vol. 10, 
pp. 94738–94753, 2022. 

[10] Yu, S. Lu, T. Wang, X. Zhang, and S. Wan, 
"Towards higher efficiency in a distributed 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD81127   |   Volume – 9   |   Issue – 3   |   May-Jun 2025 Page 794 

memory storage system using data 
compression," International Journal of Bio-

Inspired Computation, vol. 20, no. 4, pp. 232–
240, 2022. 

[11] S. Qi, J. Wang, M. Miao, M. Zhang, and X. 
Chen, "Tinyenc: Enabling compressed and 
encrypted big data stores with rich query 
support," IEEE Transactions on Dependable 

and Secure Computing, vol. 20, no. 1, pp. 176–
192, 2021. 

[12] Carpentieri, "Data compression in massive data 
storage systems," in 2024 International 

Conference on Artificial Intelligence, 

Computer, Data Sciences and Applications 

(ACDSA), 2024, pp. 1–6. 

[13] Hu, F. Wang, W. Li, J. Li, and H. Guan, 
"QZFS: QAT accelerated compression in file 
system for application agnostic and cost 
efficient data storage," in 2019 USENIX Annual 

Technical Conference (USENIX ATC 19), 2019, 
pp. 163–176. 

[14] U. Narayanan, V. Paul, and S. Joseph, "A novel 
system architecture for secure authentication 
and data sharing in cloud enabled big data 
environment," Journal of King Saud 

University-Computer and Information Sciences, 
vol. 34, no. 6, pp. 3121–3135, 2022. 

[15] H. Yao, Y. Ji, K. Li, S. Liu, J. He, and R. 
Wang, "HRCM: An efficient hybrid referential 
compression method for genomic big data," 
BioMed Research International, vol. 2019, no. 
1, p. 3108950, 2019. 

[16] J. Chen, M. Daverveldt, and Z. Al-Ars, "FPGA 
acceleration of ZSTD compression algorithm," 
in 2021 IEEE International Parallel and 

Distributed Processing Symposium Workshops 

(IPDPSW), 2021, pp. 188–191. 

[17] S. Vatedka and A. Tchamkerten, "Local decode 
and update for big data compression," IEEE 

Transactions on Information Theory, vol. 66, 
no. 9, pp. 5790–5805, 2020. 

[18] G. Xiong, "Research on big data compression 
algorithm based on BIM," in 2021 IEEE 

International Conference on Power, Intelligent 

Computing and Systems (ICPICS), 2021, pp. 
97–100. 

[19] S. Pal, S. Mondal, G. Das, S. Khatua, and Z. 
Ghosh, "Big data in biology: The hope and 
present-day challenges in it," Gene Reports, 
vol. 21, p. 100869, 2020. 

[20] K. Sansanwal, G. Shrivastava, R. Anand, and 
K. Sharma, "Big data analysis and compression 
for indoor air quality," in Handbook of IoT and 

Big Data, CRC Press, 2019, pp. 1–21. 

[21] S. A. Abdulzahra, A. K. M. Al-Qurabat, and A. 
K. Idrees, "Data reduction based on 
compression technique for big data in IoT," in 
2020 International Conference on Emerging 

Smart Computing and Informatics (ESCI), 
2020, pp. 103–108. 

[22] Zhang et al., "Compress DB: Enabling efficient 
compressed data direct processing for various 
databases," in Proceedings of the 2022 

International Conference on Management of 

Data, 2022, pp. 1655–1669. 

[23] A. Abdo, T. Salem Karamany, and A. Yakoub, 
"Enhanced data security and storage efficiency 
in cloud computing: A survey of data 
compression and encryption techniques," vol. 6, 
no. 2, pp. 81–88, 2024. 

[24] R. Pratap, K. Revanuru, R. Anirudh, and R. 
Kulkarni, "Efficient compression algorithm for 
multimedia data," in 2020 IEEE Sixth 

International Conference on Multimedia Big 

Data (BigMM), 2020, pp. 245–250. 
 


