
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 9 Issue 3, May-Jun 2025 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD81126 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 781

MapReduce-based Algorithms for Efficient Big Data Processing

Dr. Gopal Prasad Sharma1, Prof. Dr. Pawan Kumar Jha2, Prof. Raj Kumar Thakur3

1Associate Professor, Purbanchal University School of Science & Technology (PUSAT), Biratnagar, Nepal
2,3Professor, Purbanchal University School of Science & Technology (PUSAT), Biratnagar, Nepal

ABSTRACT

MapReduce is a widely used programming model for processing and
analyzing large-scale datasets in a distributed computing
environment. As the volume of data continues to grow exponentially,
MapReduce offers an efficient and scalable solution to manage big
data challenges, particularly in areas requiring parallel processing and
fault tolerance. This article explores the fundamentals of MapReduce,
highlighting its two key phases Map and Reduce they are utilized to
process vast amounts of data across distributed systems. Key
MapReduce-based algorithms for tasks such as data analysis, sorting,
searching, graph processing, and machine learning are discussed in
detail, including implementations of the Word Count algorithm,
PageRank, k-means clustering, and matrix multiplication. The article
further examines the challenges associated with MapReduce, such as
inefficiencies in iterative processing and overheads during shuffle
and sort phases. It also explores emerging trends and improvements,
including the integration of MapReduce with modern frameworks
like Apache Spark and its application in cloud computing and AI-
driven big data analytics. Finally, the article reflects on the evolving
landscape of big data and distributed computing, highlighting the
continued relevance and potential of MapReduce in the future of data
processing.

KEYWORDS: Big Data, Data Processing, Distributed Computing,

MapReduce, Parallel Processing

How to cite this paper: Dr. Gopal
Prasad Sharma | Prof. Dr. Pawan Kumar
Jha | Prof. Raj Kumar Thakur
"MapReduce-based Algorithms for
Efficient Big Data Processing"
Published in
International Journal
of Trend in
Scientific Research
and Development
(ijtsrd), ISSN: 2456-
6470, Volume-9 |
Issue-3, June 2025,
pp.781-787, URL:
www.ijtsrd.com/papers/ijtsrd81126.pdf

Copyright © 2025 by author (s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an
Open Access article
distributed under the
terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

I. INTRODUCTION

A. BACKGROUND ON BIG DATA

Today's digital world defines "Big Data" as huge,
complex datasets that cannot be processed or
analysed using traditional methods [1]. Big data is
defined by these five "5Vs": Volume, the massive
amounts of data created daily; Velocity, emphasising
how rapidly data is generated and handled; While
"variety" refers to the wide range of data types, from
text and photos to videos and social media posts,
"veracity" describes the data's certainty and quality.
"Value" emphasises data-driven decision-making.
These demonstrate the challenges of processing,
analysing, and storing enormous data. Data of this
size presents several issues. Traditional approaches
can be overwhelmed by real-time data volume and
complexity. Scalability, data heterogeneity, and
latency without compromising insight accuracy
remain issues. Integration of disparate datasets and
the requirement to protect sensitive data make
innovative processing frameworks essential.

B. INTRODUCTION TO MAPREDUCE

The MapReduce paradigm was created to solve huge
dataset processing problems. Google created
MapReduce to process and produce huge datasets in
parallel [2]. The Map step turns input data into key-
value pairs, while the Reduce phase combines the
intermediate results to output, both responsibilities
are essential to its operation. Breaking tasks into
smaller, more manageable chunks, distributing them
across multiple nodes, and executing them in parallel
improves efficiency and scalability [3]. In big data,
MapReduce's ability to manage enormous datasets
across platforms is its greatest strength. It optimises
resource utilisation, computes complex equations
effectively, and automatically re-executes
unsuccessful processes to ensure fault tolerance.

MapReduce is essential for data-intensive companies
because it allows enormous analysis and insight
extraction. This article examines MapReduce-based
algorithms and their importance in big data

IJTSRD81126

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81126 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 782

processing. This article examines the design,
implementation, and applications of these algorithms
to show their ability to solve huge dataset
management problems.

II. FUNDAMENTALS OF MAPREDUCE

A. MAPREDUCE

The programming language and processing model
MapReduce makes huge data processing easy for
distributed systems [4]. It simplifies massive dataset
management by removing data distribution, fault
tolerance, and parallelisation from application
development due to Google. Separate processing of
input data into smaller sections generates intermediate
key-value pairs during Map. In a word count
application, the Map function reads each line and
returns a pair of words and their counts (typically
started at 1). Sorting and shuffling these intermediate
results with the key prepare them for the next stage.
Reduce aims to turn studied data into insights. This
strategy lets developers focus on logic while the
framework handles complex data distribution and task
execution. A preconfigured MapReduce application
splits, maps, shuffles, reduces, and outputs input data
as output [5]. Each operation is executed by a
distributed network of nodes, ensuring efficiency and
scalability.

FIGURE 1 MapReduce workflow diagram

(Source: Self-Created)

B. KEY FEATURES OF MAPREDUCE

MapReduce is built on three foundational features
that make it a robust framework for big data
processing:
1. Scalability: The framework manages petabytes of

data by distributing workload across cluster nodes
[6]. It efficiently handles larger datasets or nodes.

2. Fault Tolerance: MapReduce supports resilience.
The framework automatically reassigns jobs to
other nodes if one fails during processing to
maintain data integrity [7].

3. Parallel Processing: MapReduce reduces
calculation time by dividing tasks and processing
on multiple nodes.

C. HADOOP AND MAPREDUCE

Hadoop's main processor is MapReduce. Hadoop is
an Apache Software Foundation open-source
platform [8]. MapReduce applications work well in
Hadoop's distributed environment for processing and
storing big datasets. The core of Hadoop is Hadoop
Distributed File System (HDFS), a fault-tolerant
storage system that distributes data across many
cluster nodes [9]. HDFS replicates data blocks across
several nodes to reduce data loss. MapReduce
processes HDFS data blocks and returns the results to
the file system. The close relationship between HDFS
and MapReduce simplifies distributed data access and
processing [10]. Master-slave HDFS is designed,
NameNodes control metadata and the file system
namespace, whereas DataNodes store data blocks.
MapReduce jobs are coordinated by Hadoop's
JobTracker or YARN's Resource Manager to
optimise task management and resource allocation.

FIGURE 2 Hadoop Ecosystem (Source: Self-

Created)

D. ADVANTAGES AND LIMITATIONS OF

MAPREDUCE

MapReduce's features make it ideal for processing
massive amounts of data [11]. Its concurrent and
distributed execution makes it ideal for processing
large datasets quickly. Its abstract programming
model simplifies distributed systems by shielding
developers from their complexities. Despite frequent
hardware failures, the fault tolerance system
maintains reliability. MapReduce's scalability lets
firms handle expanding data volumes without
architectural changes. Iterative processing
applications like machine learning and graph
computations are less efficient since the system must
read and write data to disc between iterations [12].
The disc I/O overhead can drastically impact
performance. Sometimes the Map and Reduce stages'
abstraction is too demanding, limiting its utility for
certain calculations. MapReduce is still needed for

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81126 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 783

large data sets, even if Apache Spark can process in-
memory.

 Study about MapReduce's workflow, foundations,
and relationship with Hadoop to understand its
limitations and appreciate its role in turning huge data
into useful insights.

III. MAPREDUCE-BASED ALGORITHMS

A. OVERVIEW OF MAPREDUCE

ALGORITHMS

MapReduce algorithms are designed to efficiently
process big datasets using distributed and parallel
processing [13]. These algorithms meet essential
MapReduce criteria. A network of nodes can do
smaller, more manageable jobs concurrently by
dividing the problem. The Map stage converts input
data into key-value pairs. The Reduce phase
aggregates data and these algorithms can redistribute
work after errors, making them scalable and fault-
tolerant and ensuring constant execution.

B. ALGORITHMS FOR DATA ANALYSIS

1. WORD COUNT ALGORITHM

A popular MapReduce method for huge datasets is
Word Count. It shows that parallel processing works
by breaking jobs into smaller pieces and assigning
them to processors in different locations.
Cartography, Sorting and Shuffle, and Reducing are
key.
1. Map Phase: This stage splits text file input into

lines or chunks. We then divided each line's
words. Each word has a key-value pair with the
word as the key and 1 as the value for a single
occurrence.

2. Shuffle and Sort: The intermediate key-value
pairs assigned to each cluster node change
randomly. Key terms match identical words. The
subsequent reduction step treats all term instances
simultaneously.

3. Reduce Phase: The algorithm concludes by
adding word counts. After adding all counts, the
reducer gets the dataset word frequency.

2. PAGERANK ALGORITHM

The Google-created PageRank algorithm ranks
websites by the number and quality of links linking to
them. The algorithm shows MapReduce's huge
distributed computation capabilities. MapReduce is
an excellent way to distribute and parallelise such a
big computation, while PageRank iterates.
1. Map Phase: During Map phase, each web page

communicates its rank to all its connected pages
[14]. Every page sends a value to its linked sites
depending on its rank split by its link count. The
rank value distribution of each page shows its
importance.

2. Shuffle and Sort: We compile and organise all
pages that affect a web page's rank at this step.
The rank contributions are grouped by the target
page, which receives links.

3. Reduce Phase: The Reduce step adds all
contributor ranks. Because each link contributes
differently, a damping factor is used. Every page
gets a new ranking based on its links' relevancy.

C. ALGORITHMS FOR DATA SORTING AND

SEARCHING

1. SORT-MERGE AND EXTERNAL SORTING

Massive data processing uses data sorting to
aggregate, search, and query data. MapReduce
efficiently sorts big datasets when data cannot be
stored in memory. MapReduce sorting techniques like
Sort-Merge handle massive data sets across several
nodes [15]. Mapping begins with mapper nodes
locally processing each input piece. Data is organised
into key-value pairs with sorting-related values or
identifiers as keys and data as values. Before
outputting intermediate key-value pairs, mappers sort
chunks locally.

Intermediate key-value pairs are sorted and shuffled
after Map. Shuffle consolidates and sends reducers
key-shared data. To sort records globally, MapReduce
provides key-value pairs to reducers. Sorting data
throughout the distributed system is crucial for large
datasets and further reduce process data. Sorted key-
value pairs are output by the reducer. After the
shuffle, the dataset is fully sorted by key, making
merging easy. Data is sorted outside RAM using disc
storage and MapReduce's distributed capabilities.

2. GREP: SEARCHING FOR PATTERNS

MapReduce uses the robust Grep algorithm to explore
large text-based datasets for patterns or regular
expressions [16]. This method helps with log
analysis, text processing, and data mining. These
include examining massive unstructured data for
critical information. In MapReduce, Grep divides
pattern matching into smaller, parallelizable tasks for
efficient and scalable data processing.

In Map, each dataset line is handled separately.
Mappers match search parameters to pre-created
patterns to find lines. One key-value pair is returned
when a line matches the pattern. Keys are lines or
identities, and values are usually 1 to indicate
matches. This helps the program locate the dataset
pattern. Map intermediate key-value pairs are
reduced. The map step discovers matched lines, so the
reducer may output them, simplifying the reduce
process. Parallelism speeds up massive dataset
searches that single-node algorithms cannot handle.
Log analysis intensively searches system or event
logs for issue signals or patterns.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81126 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 784

D. GRAPH PROCESSING ALGORITHMS

1. BREADTH-FIRST SEARCH (BFS)

Breadth-First Search (BFS) finds the shortest path
between any two network nodes. MapReduce helps
implement BFS quickly on large graphs that surpass a
machine's memory [17]. MapReduce's distributed
nature makes BFS valuable for social network
analysis, route planning, and web search indexing. In
the Map phase, all network nodes broadcast
neighbour data. All network nodes notify neighbours
of source node distance. Node distance rises by one
without a visit. Next-to-next-node keys and updated
distance values are in key-value pairs. Thus, the graph
may be examined simultaneously with each node
sending its distance to neighbours.

The Shuffle and Sort phase of MapReduce sorts key-
value pairs by node (key) to assign each update to the
same reducer. This stage manages the distributed BFS
process and assures node distance aggregation and
reduce averaged node distances. BFS reducers choose
the shortest (or first-discovered) distance for each
node. Printing updated distances for the next
generation. After visiting all reachable nodes and
identifying the shortest path from the source to all
others, the method propagates graph distance.

2. CONNECTED COMPONENTS

ALGORITHM

The Connected Components algorithm groups graph
nodes with paths between every pair of nodes.

Social network research, bioinformatics, and other
fields that require to uncover clusters or subnetworks
use this graph analysis method [18]. Dividing a graph
into its connected components helps us uncover
communities in social networks and functional
modules in biological networks.

Every node broadcasts its own and its neighbours'
identifiers during the Map phase. These emissions
allow MapReduce to communicate with each node
independently. Mapper output key-value pairs use the
node identifier as key and the neighbour list as value.
Every node must send its connection information to
MapReduce to consolidate links in the next step. In
the Reduce step, the system arranges key-value pairs
by node identifiers. The reducer merges all neighbour
lists of nodes associated to a key (node) to form a
single connected component. Next, the reducer
assigns the same ID to all component nodes.
Labelling all nodes with the same identity easily finds
related graph components.

E. MACHINE LEARNING WITH

MAPREDUCE

1. K-MEANS CLUSTERING

One of the most common unsupervised machine
learning methods, K-means clusters data points by

centroids. Each data point receives the nearest
centroid first, then iteratively. The new points are
used to recalculate centroids. K-means may be
parallelised and scaled over distributed computers
with MapReduce, making it excellent for large
datasets [19]. Map phase assigns data points to closer
cluster centroid. The mapper outputs the data point
and cluster ID (the closest centroid) as a key-value
pair. The mapper processes each data point separately
and clusters points closest to the centroid. This
parallelisation ensures the approach can handle large
datasets by letting each node process a subset of data
points.

During the Reduce phase, the system aggregates key-
value pairs by cluster ID (key) to send all points to
the same reducer. The reducer averages the locations
of all assigned points to recalculate each cluster's
centre. Next algorithm iteration uses updated
centroids and outputs. As the process continues,
centroids are refined based on their data points.
Iterates until the centroids are stable, with few or no
position change. K-means is ideal for big data
applications like customer segmentation, photo
analysis, and anomaly detection in large datasets
since MapReduce's scalability allows computing to be
distributed across many servers. K-means can
efficiently analyse enormous data volumes on
MapReduce, enabling distributed clustering.

2. LINEAR REGRESSION

Linear regression, an essential machine learning tool,
models the relationship between independent
variables (x) and dependent variables (y). Many
industries, including engineering and economics, use
it to predict values and analyse variables. MapReduce
scales linear regression operations across multiple
nodes in a distributed context, ensuring speed and
scalability for large datasets.

1. Map Phase: In the Map phase, each data point
contributes to the computation of intermediate
sums that are required for the regression analysis.
Specifically, for each data point (x, y), the mapper
calculates the following components:

 xxx (the independent variable),
 yyy (the dependent variable),
 x×yx times yx×y (the product of the independent

and dependent variables), and
 x2x^2x2 (the square of the independent variable).

The mapper emits these values as key-value pairs
where the key is a common placeholder (e.g., null or
1), and the values are the individual computed sums
for each data point. This allows the intermediate
results to be grouped and processed in parallel across
many machines in the MapReduce framework.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81126 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 785

2. Reduce Phase: In the Reduce phase, the system
groups the intermediate results by their key and
aggregates the sums of xxx, yyy, x×yx \times
yx×y, and x2x^2x2. The reducer combines all the
values and computes the final sums that are
required to calculate the regression coefficients
(i.e., slope and intercept) of the linear regression
model. The

Slope

Intercept

In this method, each node handles a subset of data
points and then combines their findings in the Reduce
phase to solve large-scale regression problems in
parallel. MapReduce spreads processing, ensuring
regression analysis speed and scalability.

F. OPTIMIZED ALGORITHMS

Matrix multiplication is vital in scientific computing,
computer graphics, and machine learning. Though
designed for parallelizable jobs, MapReduce
algorithms' iterative nature makes them inefficient for
this problem. Efficient and scalable MapReduce
matrix multiplication solutions offer targeted ways to
tackle these challenges with huge datasets [20]. In the
Map phase, the elements of the two matrices are
assigned IDs, usually their row and column indices.
To multiply two matrices, these element identifiers
are needed. For example, if we are multiplying Matrix
A (of size m×nm \times nm×n) with Matrix B (of size
n×pn \times pn×p), the mapper will emit key-value
pairs where the key represents a pair of indices from
the respective matrices (such as (i, k) for Matrix A
and (k, j) for Matrix B). The value for these key-value
pairs will be the matrix elements themselves (A[i][k]
and B[k][j]).

In the Reduce phase, matching elements from the two
matrices are grouped based on their common key
(i.e., the row-column indices). For each key (i, j), the
reducer multiplies the corresponding elements from
Matrix A and Matrix B (i.e., A[i][k]×B[k][j]A[i][k]
\times B[k][j]A[i][k]×B[k][j]) and sums them over all
the possible k values to compute the resulting element
C[i][j]C[i][j]C[i][j] in the final product matrix. This
process effectively computes the elements of the
resulting matrix CCC. Since matrix multiplication
involves several steps, MapReduce must optimise this
technique. To expedite computations and eliminate
disc I/O overhead, in-memory caches are often used.

Optimised matrix partitioning techniques simplify
data shuffling and sorting between map and reduce
phases. Reduced overheads make MapReduce-based
matrix multiplication cheaper for massively parallel

data processing applications like ML model training
and physical system simulation.

MapReduce is ideal for HPC with big data because
iterative optimisation is ideal for matrix
multiplication and its meticulous design lets it
manage large matrices that don't fit in memory.

IV. APPLICATIONS OF MAPREDUCE IN

BIG DATA PROCESSING

A. INDUSTRY APPLICATIONS

1. E-COMMERCE

MapReduce is essential for online shops' log analysis
and recommendation systems. E-commerce platforms
monitor user interactions, buying habits, and website
traffic [21]. These logs can be processed using
MapReduce to provide most frequented sites, peak
activity hours, and behavioural trends to improve user
experience and website speed. Recommendation
systems, which analyse user preferences and
purchases, are another important MapReduce
application. MapReduce executes collaborative
filtering algorithms to determine which products users
will buy to increase customisation and sales.

2. HEALTHCARE
Healthcare uses MapReduce to evaluate patient data
and detect disease patterns. Medical imaging, genetic,
and EHR data can be processed using MapReduce to
uncover trends, predict sickness outbreaks, and
improve treatment outcomes [22]. MapReduce is used
in DNA sequencing. This discipline searches billions
of nucleotide sequences for mutations and disease
indicators.

3. FINANCE

Financial uses of MapReduce include fraud detection
and real-time transaction analysis. MapReduce is
used by fraud detection systems to evaluate
transaction data for anomalies like unusual spending
patterns or high-frequency transactions [23]. These
tools alert investigators to fraud. Real-time
transaction analysis is another major usage.
MapReduce, which processes transaction data, helps
financial institutions quickly identify trends, assess
risk, and make decisions.

B. USE CASES

1. SOCIAL MEDIA ANALYTICS

Social media platforms generate massive amounts of
unstructured data, including multimedia, comments,
likes, shares, and posts [24]. Processing this data for
insights requires MapReduce. Sentiment analysis is
used to assess public opinion on a brand, product, or
event by analysing user-generated information.
MapReduce algorithms process hashtags, keywords,
and other metadata to detect sentiment trends.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81126 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 786

2. SCIENTIFIC COMPUTING

MapReduce has revolutionised scientific computing
by simplifying complex dataset processing [25]. This
technology helps astronomy, bioinformatics, and
climate modelling sort through extensive theoretical
and empirical data.

Climate models employ MapReduce to analyse
gigabytes of satellite data to predict weather, natural
disasters, and climate change.

V. CHALLENGES AND FUTURE

DIRECTIONS

A. CHALLENGES IN USING MAPREDUCE

FOR BIG DATA

MapReduce struggles with iterative processes in
machine learning, graph processing, and other
analytical tasks. This I/O cost in MapReduce
iterations slows performance because receiving data
from disc, processing it, and sending it back is time
consuming. Traditional MapReduce cannot be utilised
for k-means clustering or PageRank since they
require several rounds to converge.

Although essential to MapReduce, sort and shuffle
can introduce significant overheads, especially for
large datasets. These stages require sorting
intermediate data by keys and redistributing it
amongst nodes, which is computationally and
network expensive. Large datasets can reduce
framework efficiency because these operations take
time and resources.

B. EMERGING TRENDS AND

IMPROVEMENTS

Integrating MapReduce with modern big data
frameworks like Apache Spark is becoming more
frequent to overcome its limitations. Spark reduces
iterative calculation input/output overhead using in-
memory MapReduce. Spark is preferred for repetitive
calculations because it stores data in memory between
iterations, improving speed.

Distributed computing advances have optimised
algorithms and data structures for MapReduce
systems. Frameworks offer data division and
indexing, which reduce communication costs by
limiting data movement and maximising locality.
Speculative execution and adaptive task scheduling
improve fault tolerance and resource use.

C. FUTURE DIRECTIONS

Cloud computing has given MapReduce new
opportunities, especially for elastic and scalable large
data solutions. Managed MapReduce services from
Amazon Web Services (AWS) and Google Cloud let
companies handle huge datasets without installing
infrastructure. Future advances may optimise
MapReduce for serverless architectures, where

resources are dynamically assigned based on
workload demands for cost-effectiveness and
scalability. Using MapReduce with AI and machine
learning is another potential approach. MapReduce
preprocesses huge datasets for machine learning
model training using distributed computing.
MapReduce is used for clustering, classification, and
collaborative filtering in Apache Mahout. MapReduce
might be used with TensorFlow or PyTorch to enable
distributed training of complicated neural networks
on enormous datasets.

VI. CONCLUSION

MapReduce, an early and effective framework for
managing distributed large-scale datasets,
revolutionised big data processing. Organisations
dealing with growing data volumes need it because its
Map and Reduce phases simplify complex
procedures. Due to its scalability, fault tolerance, and
parallel processing, MapReduce can handle enormous
data storage, computing, analysis, and visualisation.
The MapReduce-based algorithms in this article have
helped data analysis, sorting, searching, graph
processing, and machine learning. Word Count and
PageRank show how MapReduce efficiently
processes enormous volumes of unstructured data for
web crawling and real-time analytics.

Complex applications like k-means clustering and
matrix multiplication demonstrate MapReduce's
adaptability to scientific computing and machine
learning's iterative needs.

MapReduce may thrive in the ever-changing big data
world due to cloud computing, AI integration, and
real-time data processing. Apache Spark and hybrid
frameworks are improving MapReduce's iterative
processing and shuffling overheads, although
scalability and fault tolerance remain crucial.
MapReduce's flexibility to adapt to new technology
will aid big data and distributed computing.
MapReduce is vital for processing huge data since it
is efficient, scalable, and fault-tolerant.

REFERENCE

[1] P. Kijsanayothin, G. Chalumporn, and R.
Hewett, "On using MapReduce to scale
algorithms for Big Data analytics: a case
study," Journal of Big Data, vol. 6, pp. 1–20,
2019.

[2] L. Abualigah and B. A. Masri, "Advances in
MapReduce big data processing: platform,
tools, and algorithms," in Artificial Intelligence
and IoT: Smart Convergence for Eco-Friendly
Topography, pp. 105–128, 2021.

[3] M. Khader and G. Al-Naymat, "Density-based
algorithms for big data clustering using

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD81126 | Volume – 9 | Issue – 3 | May-Jun 2025 Page 787

MapReduce framework: A Comprehensive
Study," ACM Computing Surveys (CSUR),
vol. 53, no. 5, pp. 1–38, 2020.

[4] N. Zhang, M. Wang, Z. Duan, and C. Tian,
"Verifying properties of MapReduce-based big
data processing," IEEE Trans. Reliab., vol. 71,
no. 1, pp. 321–338, 2020.

[5] S. Y. Choi and K. Chung, "Knowledge process
of health big data using MapReduce-based
associative mining," Pers. Ubiquitous Comput.,
vol. 24, pp. 571–581, 2020.

[6] S. Heidari, M. Alborzi, R. Radfar, M. A.
Afsharkazemi, and A. Rajabzadeh Ghatari,
"Big data clustering with varied density based
on MapReduce," Journal of Big Data, vol. 6,
no. 1, p. 77, 2019.

[7] F. Qi, "A MapReduce-based approach to social
network big data mining," J. Comput. Methods
Sci. Eng., (Preprint), pp. 1–13, 2023.

[8] R. Tekieh and Z. Beheshti, "A MapReduce-
based big data clustering using swarm-inspired
meta-heuristic algorithms," Scientia Iranica,
2024.

[9] X. Tan, L. Di, Y. Zhong, Y. Yao, Z. Sun, and
Y. Ali, "Spark-based adaptive MapReduce data
processing method for remote sensing
imagery," Int. J. Remote Sens., vol. 42, no. 1,
pp. 191–207, 2021.

[10] I. A. T. Hashem et al., "MapReduce scheduling
algorithms: a review," J. Supercomput., vol. 76,
pp. 4915–4945, 2020.

[11] T. H. Sardar and Z. Ansari, "Distributed big
data clustering using MapReduce-based fuzzy
C-medoids," J. Inst. Eng. India Ser. B, vol. 103,
no. 1, pp. 73–82, 2022.

[12] Y. Mao et al., "A MapReduce-based K-means
clustering algorithm," J. Supercomput., pp. 1–
22, 2022.

[13] P. Wei, F. He, L. Li, C. Shang, and J. Li,
"Research on large data set clustering method
based on MapReduce," Neural Comput. Appl.,
vol. 32, pp. 93–99, 2020.

[14] L. Luo, "Design of big data algorithm based on
MapReduce," in Proc. 2020 Int. Conf. Aviation
Safety Inf. Technol., pp. 722–724, Oct. 2020.

[15] M. Asif et al., "MapReduce based intelligent
model for intrusion detection using machine
learning technique," J. King Saud Univ.
Comput. Inf. Sci., vol. 34, no. 10, pp. 9723–
9731, 2022.

[16] M. Q. Bashabsheh, L. Abualigah, and M.
Alshinwan, "Big data analysis using hybrid

meta-heuristic optimization algorithm and
MapReduce framework," in Integrating Meta-
Heuristics and Machine Learning for Real-
World Optimization Problems, pp. 181–223,
Cham: Springer, 2022.

[17] M. R. Sundara Kumar and H. S. Mohan,
"Improving big data analytics data processing
speed through MapReduce scheduling and
replica placement with HDFS using genetic
optimization techniques," J. Intell. Fuzzy Syst.,
(Preprint), pp. 1–20, 2024.

[18] M. R. Sundarakumar, G. Mahadevan, R.
Somula, S. Sennan, and B. S. Rawal, "An
approach in big data analytics to improve the
velocity of unstructured data using
MapReduce," Int. J. Syst. Dyn. Appl., vol. 10,
no. 4, pp. 1–25, 2021.

[19] H. Jeong and K. J. Cha, "An efficient
MapReduce-based parallel processing
framework for user-based collaborative
filtering," Symmetry, vol. 11, no. 6, p. 748,
2019.

[20] A. Saxena, A. Chaurasia, N. Kaushik, and N.
Kaushik, "Handling big data using MapReduce
over hybrid cloud," in Proc. Int. Conf.
Innovative Comput. Commun. (ICICC) 2018,
vol. 2, pp. 135–144, 2019.

[21] C. Banchhor and N. Srinivasu, "Analysis of
Bayesian optimization algorithms for big data
classification based on MapReduce
framework," Journal of Big Data, vol. 8, no. 1,
p. 81, 2021.

[22] T. H. Sardar and Z. Ansari, "An analysis of
distributed document clustering using
MapReduce based K-means algorithm," J. Inst.
Eng. India Ser. B, vol. 101, no. 6, pp. 641–650,
2020.

[23] E. Gothai et al., "MapReduce based distance
weighted k-nearest neighbor machine learning
algorithm for big data applications," Scalable
Comput. Pract. Exp., vol. 23, no. 4, pp. 129–
145, 2022.

[24] T. H. Sardar and Z. Ansari, "MapReduce-based
fuzzy C-means algorithm for distributed
document clustering," J. Inst. Eng. India Ser. B,
vol. 103, no. 1, pp. 131–142, 2022.

[25] C. M. Chao, P. Z. Chen, S. Y. Yang, and C. H.
Yen, "An efficient MapReduce-based apriori-
like algorithm for mining frequent itemsets
from big data," in Proc. 11th EAI Int. Conf.
Wireless Internet (WiCON) 2018, Taipei,
Taiwan, Oct. 2018, pp. 76–85.

