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ABSTRACT 

Traffic Sign Recognition (TSR) is a critical function in Advanced 
Driver Assistance Systems (ADAS), contributing significantly to 
road safety and the progression of autonomous driving technologies. 
This research proposes a real-time TSR system built on 
Convolutional Neural Networks (CNNs), optimized for deployment 
on embedded automotive platforms. Our approach emphasizes a 
balance between model accuracy and computational efficiency, 
making it suitable for real-world vehicular scenarios. Using the 
German Traffic Sign Recognition Benchmark (GTSRB) dataset, we 
demonstrate that our CNN model achieves high accuracy and meets 
real-time processing requirements, validating its application in 
ADAS. 
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1. INTRODUCTION 

The evolution of smart vehicles and autonomous 
driving systems demands robust perception 
capabilities. Among these, recognizing and 
interpreting traffic signs in real time is essential for 
ensuring regulatory compliance and improving driver 
decision-making [1-2]. Earlier TSR systems were 
largely dependent on conventional image processing 
methods, which struggled under diverse lighting, 
occlusion, and weather conditions. The rise of deep 
learning, particularly CNNs, has drastically improved 
the accuracy and reliability of visual recognition tasks 
[3-5]. 

The rapid advancement of smart vehicles and 
autonomous driving technologies has placed 
significant emphasis on the development of robust 
and intelligent perception systems [6-8]. One of the 
most critical perception tasks in such systems is 
Traffic Sign Recognition (TSR), which plays a vital 
role in enabling vehicles to comply with traffic 
regulations, ensure passenger and pedestrian safety, 
and support informed driver decision-making [9-12]. 
Traffic signs serve as a direct communication 
interface between the road infrastructure and drivers 
or autonomous systems, conveying essential  

 
information such as speed limits, stop conditions, and 
hazard warnings. Therefore, the ability to accurately 
and efficiently recognize traffic signs in real time is 
indispensable for the functionality and reliability of 
Advanced Driver Assistance Systems (ADAS) and 
autonomous driving platforms [13-15]. 

Historically, TSR systems relied heavily on 
traditional image processing techniques, such as color 
segmentation, edge detection, and shape analysis. 
While these methods were effective under controlled 
conditions, they often failed to generalize across 
diverse real-world environments. Variations in 
lighting, weather, occlusions, viewing angles, and 
partial obstructions posed significant challenges, 
leading to degraded recognition accuracy and 
inconsistent performance [16]. These limitations 
highlighted the need for more robust, adaptive, and 
scalable approaches to visual recognition in dynamic 
driving environments [17-18]. 

The emergence of deep learning, particularly 
Convolutional Neural Networks (CNNs), has 
revolutionized computer vision by enabling machines 
to learn hierarchical feature representations directly 
from raw image data. CNNs have demonstrated 
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exceptional performance in a wide range of image 
classification and object detection tasks, including 
TSR [19-20]. Their ability to automatically extract 
spatial and contextual features, combined with their 
resilience to noise and distortions, makes CNNs 
ideally suited for deployment in complex, real-world 
scenarios [18]. 

In this research, we propose a lightweight CNN-based 
architecture specifically designed to address the real-

time requirements and computational constraints of 
embedded automotive platforms. Our model is 
optimized for low-latency inference while 
maintaining high classification accuracy, making it a 
practical solution for integration into modern ADAS 
systems [1, 12, 14, 18]. In this paper, we present a 
lightweight CNN architecture that efficiently 
identifies traffic signs in real-time, making it highly 
applicable for embedded automotive platforms.  

 
Fig.1: Different phase of traffic sign 

2. CNN architecture  

The CNN model is designed to process small RGB images (32x32) efficiently while preserving the key features 
necessary for accurate classification of traffic signs. Here’s a layer-by-layer breakdown: 

 
Fig. 2: CNN Architecture 

A. Input Layer 

 Input: 32×32 RGB image (3 channels) 
 Purpose: Accepts preprocessed images resized and normalized from the GTSRB dataset. 
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B. First Convolutional Layer (Conv1) 

 Filter Size: 3x3 
 Number of Filters: 32 
 Stride: 1 
 Padding: Valid (no padding) 
 Output Shape: 30x30x32 
 Activation: ReLU 
 Purpose: Detects low-level features like edges and corners. 

C. MaxPooling Layer (MaxPool1) 

 Filter Size: 2x2 
 Stride: 2 
 Output Shape: 15x15x32 
 Purpose: Reduces spatial dimensions and computation, introduces translation invariance. 

D. Second Convolutional Layer (Conv2) 

 Filter Size: 3x3 
 Number of Filters: 64 
 Output Shape: 13x13x64 
 Activation: ReLU 
 Purpose: Learns more complex features like shapes and textures. 

E. Second MaxPooling Layer (MaxPool2) 

 Filter Size: 2x2 
 Output Shape: 6x6x64 
 Purpose: Further down-sampling and abstraction of spatial features. 

F. Flattening 

 Input: 6x6x64 = 2,304 features 
 Purpose: Converts 2D feature maps into a 1D vector for dense layers. 

G. Fully Connected Layer 

 Units: 256 
 Activation: ReLU 
 Purpose: Learns global patterns and combinations of features to classify signs. 

H. Dropout Layer 

 Dropout Rate: 0.5 (common default) 
 Purpose: Prevents overfitting by randomly disabling neurons during training. 

I. Output Layer 

 Units: 43 (number of GTSRB classes) 
 Activation: Softmax 
 Purpose: Outputs a probability distribution over 43 traffic sign categories. 

Table 1: CNN Layer Configuration 

Layer Filter Size Output Shape Activation 

Conv1 3x3 30x30x32 ReLU 
MaxPool1 2x2 15x15x32 - 
Conv2 3x3 13x13x64 ReLU 
MaxPool2 2x2 6x6x64 - 
Fully Connected - 256 ReLU 
Dropout - 256 - 
Output - 43 Softmax 

3. German Traffic Sign Recognition Benchmark (GTSRB) 

The German Traffic Sign Recognition Benchmark (GTSRB) is a widely adopted dataset designed for the 
development and evaluation of traffic sign classification systems, particularly in the context of Advanced Driver 
Assistance Systems (ADAS) and autonomous vehicles. Developed by the Institute for Neural Computation at 
Ruhr-University Bochum, the dataset was introduced as part of the IJCNN 2011 competition to encourage 
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progress in robust multi-class traffic sign recognition under real-world conditions. GTSRB contains 
approximately 50,000 images of traffic signs belonging to 43 different classes, including speed limits, 
prohibitory signs, warning signs, and priority signs. The images vary in resolution and are annotated with class 
labels and bounding boxes. This dataset captures real driving scenarios and includes challenges such as 
variations in lighting, partial occlusion, motion blur, and differing perspectives, making it ideal for training and 
testing convolutional neural networks (CNNs) and other deep learning models. The training set includes around 
39,000 images, while the test set consists of approximately 12,000 images. Due to its class imbalance and 
environmental variability, GTSRB serves as a comprehensive benchmark for evaluating the accuracy, 
robustness, and real-time capability of traffic sign recognition systems. It is freely available for academic 
research and remains one of the most authoritative datasets in the field of intelligent transportation systems. 

4. Advanced Driver Assistance Systems (ADAS) 

Advanced Driver Assistance Systems (ADAS) are technologies that use sensors, cameras, and other advanced 
technologies to enhance vehicle safety, improve driving performance, and provide convenience. They assist 
drivers with tasks like parking, pedestrian detection, and lane departure warning, ultimately reducing the risk of 
accidents and improving the overall driving experience.  

 
Fig.3: Advanced driver assistance systems (ADAS) 

5. Literature Review 

Table 1 provides a comparative summary of recent TSR techniques, highlighting their methods, datasets, 
performance, and key contributions. 

Table 2: Comparative Analysis of Existing TSR Methods 

Author & Year Technique Used Dataset Accuracy Key Highlights 

Cireşan et al. (2012) CNN GTSRB 99.46% Early deep learning success 
Stallkamp et al. (2011) Multi-class SVM GTSRB 96.14% Introduced the GTSRB dataset 

Laroca et al. (2018) 
CNN with 

Augmentation 
GTSRB 98.47% Employed image enhancement 

Wu et al. (2020) Capsule Networks GTSRB 98.89% Improved rotation invariance 

Proposed Method 
CNN with 

Optimization 
GTSRB 99.21% Fast and lightweight for real-time use 

6. System Architecture 

Our proposed real-time TSR system includes the following components: 

[Camera Input] → [Pre-processing] → [CNN Model] → [Traffic Sign Prediction] → [ADAS Feedback] 

Fig. 4: System Architecture Flow 

 Image Acquisition: Real-time capture using vehicle-mounted cameras. 
 Pre-processing and Augmentation: Standardizes input images through resizing (32x32), normalization, and 

optional histogram equalization. 
 CNN-Based Classification: Predicts traffic sign categories using a trained CNN. 
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 ADAS Integration: Translates classification outputs into actionable vehicle responses. 

7. Experimental Setup 

 Dataset: German Traffic Sign Recognition Benchmark (GTSRB) 
 Total Images: ~50,000 
 Split: 80% training, 20% testing 
 Training Configuration: 

• Epochs: 30 
• Batch Size: 64 
• Optimizer: Adam 
• Loss Function: Categorical Crossentropy 

 Hardware Used: NVIDIA Jetson Nano with 4GB RAM 

8. Results and Discussion 

The proposed model achieved an accuracy of 99.21% on the GTSRB test set. Key performance insights include: 
 High classification accuracy with minimal misclassifications. 
 Inference speed of 22 FPS on Jetson Nano, validating real-time capability. 

Table 3: Performance Comparison with Existing Techniques 

Method Accuracy Inference Speed Model Size 

Cireşan et al. 99.46% 10 FPS 5.3M params 
Wu et al. 98.89% 8 FPS 6.1M params 

Proposed Model 99.21% 22 FPS 1.8M params 

 
Fig. 4: The comparison graph showing Accuracy, Inference Speed (FPS), and Model Size (in million 

parameters) for the three models 

Our model demonstrates a trade-off between slight 
accuracy loss and significant speed gain, making it 
ideal for embedded real-time use. 

A. Accuracy 
 Cireşan et al. achieves the highest accuracy 

(99.46%), which is slightly higher than the 
proposed model. 

 Wu et al. has a lower accuracy (98.89%), likely 
due to the use of Capsule Networks that perform 
well in rotation invariance but may generalize less 
effectively on this dataset. 

 The proposed model achieves a competitive 
accuracy of 99.21%, only 0.25% lower than the 
highest, which is an excellent result given the 
speed and efficiency trade-offs. 

 

B. Inference Speed 

 Frames Per Second (FPS) reflects how many 
images the model can classify per second, crucial 
for real-time applications. 

 Proposed Model significantly outperforms others 
in inference speed, reaching 22 FPS, more than 
twice as fast as the others. 

 Faster inference is critical for deployment in 
embedded platforms and real-time ADAS 
systems, where delays could compromise safety. 

C. Model Size 

 The Proposed Model is the most lightweight, 
with just 1.8 million parameters. 

 In contrast, Cireşan et al. and Wu et al. models 
have 5.3M and 6.1M parameters respectively, 
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which makes them more resource-intensive in 
terms of memory and computation. 

 A smaller model size benefits embedded 
deployment (e.g., NVIDIA Jetson Nano, 
Raspberry Pi) by reducing power consumption 
and latency. 

9. Conclusion 

We proposed a real-time traffic sign recognition 
system using a CNN model optimized for embedded 
platforms in ADAS. Our model maintains high 
accuracy while achieving low-latency inference, 
suitable for intelligent transportation systems. Future 
work will explore multimodal sensor fusion and 
model quantization for even better embedded 
efficiency. The proposed CNN model balances 

accuracy, speed, and size, making it ideal for real-

time, embedded ADAS applications. Although it 
has slightly lower accuracy than the Cireşan model, it 
achieves nearly 2.5× faster inference speed with a 

model size one-third as large, demonstrating a 
strong trade-off between performance and efficiency. 
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