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ABSTRACT 

The concepts of mathematics performance and mathematics 
achievement have often been taken to mean the same thing. Though 
mathematics performance has been known to predict achievement to 
a certain degree, the extent to which student-reported outcome 
measures predict or substitute standardized tests in the measurement 
of mathematics learning outcomes has been given very limited 
attention. The present study utilized a cross-sectional survey research 
design on a sample consisting of 206 first cycle students of secondary 
school, and applied a bifactor analysis model, to investigate if there 
was a common trait of mathematical ability measured across all 
three-mathematics learning outcome sub-scales utilized in the present 
study. Additionally, the study investigated if self-assessment scores, 
together with mathematics performance scores, and achievement tests 
scores provide the ultimate criterion for the assessment of 
mathematics learning outcomes. Findings revealed that; mathematics 
performance and perceived mathematics performance differentially 
predicts mathematics achievement while controlling for mathematics 
self-efficacy, and mathematics self-concept. Moreover, of all three 
bifactor models hypothesized in the study, the augmented oblique 
bifactor model provided the best fit for the data. Calculated bifactor 
statistical indices placed the relative bias of standardized bifactor 
loadings above the 10% benchmark revealing that some 
multidimensionality was severe enough to disqualify the 
interpretation of the instrument as primarily unidimensional. Though 
no significant evidence was found in support of the fact that a 
questionnaire on student-reported mathematics outcome measures 
possesses predictive criterion validity, findings however revealed that 
the aggregated scores from all three subscales explored in the study 
provided a much realistic criterion for measuring mathematics 
learning outcomes. Furthermore, students perceived or self-rating of 
their mathematical abilities on specific math tasks were grossly 
exaggerated compared to their actual or demonstrable mathematical 
abilities. In spite of the fact that no direct relationship was found, 
mathematics performance had an indirect effect on mathematics 
achievement through mathematics self-efficacy, and self-concept. 
Findings have implications for the modern measurement theory. It 
was recommended that standardized mathematics tests should not be 
substituted with neither questionnaire measures nor with class tests or 
school-based tests in the measurement of mathematics achievement, 
given that each subscale was shown to be a reliable-enough measure 
of their individual constructs, but that in order to improve students’ 
performances in the subject the aggregation of subscale scores could 
be considered. 
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INTRODUCTION 

Since professional mathematicians first expressed 
concerns about the process of teaching and learning in 
mathematics around the early twentieth century (Furr, 
1996; Kilpatrick, 2014), teachers and researchers 
working in cooperation with scholars from other 
disciplines, have struggled to improve students’ 
performances in the discipline (Manizade et al., 
2023). Hitherto, research efforts have mostly been 
focused on designing suitable instruments that 
effectively assess students’ learning of mathematics 
(Suurtamm et al., 2016; Yantini et al., 2021; Yudha et 
al., 2019). Students’ performances in mathematics 
especially regarding the ability to demonstrate the 
mastery of core competencies have continued to be a 
subject of intense debate (Anqui-Laja & Laja, 2022; 
Reusser, 2000). In particular, issues surrounding the 
effectiveness of traditional assessment methods and 
the relevance of classroom learning of mathematics in 
the solution of real-life problems have constituted the 
focus of this debate (Arthur et al., 2018; Ernest, 2015; 
Vos, 2005). In response, many researchers have rolled 
out guidelines on how to tackle the many unintended 
learning outcomes of mathematics learning including 
personal, curricular, and environmental difficulties in 
learning the discipline (Arthur et al., 2017; Febriyanti 
et al., 2021; Kesiki & Nekang, 2023). In addition, 
beside the traditional achievement test which 
measures students’ content knowledge and provide 
scores used in important decision making, researchers 
are experimenting with subjective assessment 
instruments like self-reported (self-assessment) tests 
which are aimed first at fostering the development of 
students’ self-directed learning abilities (Gruppen, 
n.d; Max et al., 2022), and secondly by addressing 
attitudes known to be the main antecedents of 
students' unintended learning in mathematics 
(Chamberlain, 2010; Code et al., 2016; Gyamfi, 
2022). According to Orrill et al. (2023), this paradigm 
shift in the assessment of mathematics learning is 
consistent with the emergence of new theories of 
learning (socio-cultural and critical theories) and new 
definitions of what constitutes learning. The present 
study investigates the reliability of students' 
subjective mathematics performance (self-assessed 
scores) as the main evidence for basing important 
decision-making compared to objective 
teacher/criterion-oriented test scores. 

In psychometrics, the effective measurement of latent 
constructs warrants that, not only should the 
appropriate test be used, but that the test be reliable, 
bias free, and associable with the standard (Borsboom 
& Molenaar, 2015; Boyle et al., 2015; Kyriazos & 
Stalikas, 2018). Different tests measure learners’ 
abilities at different domains of learning (Cliff & 

Yeld, 2006). While direct test such as achievement 
test measure knowledge at the cognitive domain, 
indirect test such as self-report inventories 
(questionnaires) measure attitudes and perceptions at 
the affective domain (Oakland, 1997; Saftari & 
Fajriah, 2019; Sayegh, n.d). For researchers 
concerned with the measurement of mathematics 
performance and mathematics achievement (Antara et 
al., 2020; Grootenboer et al., 2015; Learning 
Outcome Framework., 2015), the contention has 
always been whether to utilized scores from either 
teacher-made test (which are narrower in scope), and 
standardized test (which are better adapted for general 
usage, has a variety of forms, and test on a wide range 
of competences), or scores from student-reported tests 
in the measurement of the constructs (Qassimi, 2021; 
Reys & Rea, 1970; Sarifah et al., 2024). While the 
former is recommended in the measurement of both 
mathematics performance and achievement, the later 
has however found broad usage in research studies 
lately. Though self-report tests are considered to be 
suitable in the measurement of learning outcomes in 
general since they mostly measure psychological 
processes driving human learning (Lyonga, 2022; 
Peckrun, 2020), their use in the assessment of 
mathematics learning outcomes in particular (which 
are better assessed with direct tests) presents 
challenges due to a missing ‘one-size-fit-all’ design 
for self-report test (Niss et al., 1998; Radišić, 2023). 
However, the extent to which scores from 
meticulously designed and validated self-report tests 
predict scores from standardized mathematics test has 
not been given attention in the context of Cameroon. 
Moreover, the extent to which scores from 
mathematics self-report tests and teacher-made tests 
jointly predict standardized mathematics achievement 
test scores has received limited attention as well. The 
present study also addresses two levels of assessment 
(ordinal and interval) and tries to draw the link 
between them.  

Historically, self-report tests (questionnaire measures) 
were first developed and utilized in the comparison of 
experiences and attitudes of different groups of 
people in the late 19th century by Francis Galton 
(Horvat, 2014; Midena & Yeo, 2022). Specifically, in 
1817, Marc Antoine Jullien de Paris designed a 34-
page international survey of national education 
systems (Creswel, 2012). During the period between 
the two world wars, modern surveys began to emerge. 
Today, in the 21st century remarkable progress has 
been made in self-report tests, with regards to their 
design, development, administration, analysis, and 
interpretation (Willis, 2019). According to the 
National Education Association (NEA, 2020), 
standardized testing on the other hand, started being 
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utilized in America in 1838, and has since been 
adopted in different parts of the world as the most 
reliable tool for assessing learning and learning 
outcomes. Standardized testing was first introduced in 
English Cameroon in 1977 by the University of 
London Examination and Assessment Council, and 
was popularly known as the London GCE (The 
Cameroon GCE Board, 2023). When the University 
of London Examination and Assessment Council 
withdrew from Cameroon in 1990, the Cameroon 
GCE board was created in 1991 as a replacement 
body in charge of the organization of final year 
examinations for the Ordinary and Advanced levels, 
and later on started organizing certificate 
examinations in technical, and vocational education 
as well.  

Conceptually, self-report tests measure non-academic 
competencies and are standardized such that, they 
carry the same sets of questions, same response 
format, and a uniform style in which responses are 
recorded (Boynton & Greenhalgh, 2004; He & Van 
de Vijver, 2019). Self-report tests are designed 
differently depending on the objectives they seek to 
achieve (Demetriou et al., 2015; Korb, 2011). From 
closed-ended questionnaires which range from just 
two response options (dichotomous), and Likert-
scales with response categories which lie in a 
continuum between polar opposites; to open-ended 
questionnaires which request for more insight on a 
particular measured variable (Hyman & Sierra, 2016; 
Saris & Gallhofer, 2014). There are basically two 
types of self-report tests; self-administered and 
researcher-administered questionnaires (Robins et al., 
2007; UNESCO, 2018). While the former can be 
completed by pencil and paper or online, the later 
require face-to-face discussions which can take place 
physically or virtually. Self-report test can lead to the 
collection of nominal, discrete (requiring students to 
count e.g number of cars passing on a road in a day), 
or ordinal data (Learning Outcome Framework, 
2015). It is worthy to note that in the present context 
self-report test simply refer to ordinal data (5-point 
Likert scales).  

Theoretically, academic and non-academic tests 
(cognitive or affective) are generally required to 
follow strict guiding principles in their construction, 
validation, administration, analysis, and interpretation 
(Vos, 2005). In the design of self-administered test 
however, the problem often primarily revolves around 
the language used (choice of item phrases and 
framing) and issues surrounding convergence of test 
measures or the spatial arrangement of information 
within the questionnaire (Jenkins & Dillman, 1995). 
In addition, the design has to provide evidence that 

the test not just only measures what it intends to 
measure but does so consistently (Kubai, 2019; 
Taherdoost, 2016). In other words, the construct 
dimension and the scale dimension (internal structure) 
of the test has to be ascertained, so as to correctly 
inform decision making (Yusof et al., 2021). 
Moreover, random errors which ensue from 
conditions of testing should be minimized during 
administration (Platek, 1985). Furthermore, the 
models for linking the associating constructs and the 
tools for computing the datasets has to be 
homogenous (there should be the possibility for 
mathematical analysis of data, and it should be guided 
by same rules and constraints) and to conform to the 
standards. Finally, the inferences arrived at from the 
evidence should be guided by theory (Hawkin et al., 
2020).  

Psychometric and personality tests are generally 
concerned with the measurement of the abilities and 
personality traits of individuals respectively (Boyle & 
Saklofske, 2004; Kyllonen & Kel, 2018). Three main 
theories guide the construction of psychometric and 
personality tests (Schuwirth & Van der Vleuten, 
2012). The classical test theory (CTT), the item 
response theory (IRT), and the modern measurement 
theory (MMT). In CTT, the aggregate of an 
individual’s responses to test items fully demonstrates 
the individual’s ability, and every test-taker’s test 
score (observed) has a true score and a certain degree 
of error due to biases and other factors (Cappelleri et 
al., 2015; Schuwirth & Van der Vleuten, 2012). The 
IRT on the other hand assumes that an individual’s 
response to a particular test item is associable with 
some personality trait or ability and answers to items 
are chosen on a continuum (Mahmud, 2017; Yang & 
Kao, 2014). Consequently, a single type of test will 
suffice in the effective measurement of the construct, 
and when more people answer the test items, a much 
clearer picture of the behaviour is gotten. The MMT 
utilizes the IRT model in combination with Rasch’s 
model (Cavanagh & Sparrow, 2010; Sarifah et al., 
2024) and purport’s that the probability that a test-
taker gets the correct answer on an item is dependent 
on the test-taker’s ability and on the item’s difficulty. 
In addition, MMT assumes that a given construct 
could have multiple dominant traits other than the 
one-dimensional trait assumed in the IRT. The MMT 
therefore require different types of not just objective 
but also subjective (academic and non-academic) tests 
to be administered for a construct to be sufficiently 
measured. In the context of the present study, while 
the CTT provided a better framework for interpreting 
mathematics achievement scores, the IRT and the 
MMT on the other hand provided a much reliable 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD79998   |   Volume – 9   |   Issue – 3   |   May-Jun 2025 Page 724 

framework for interpreting results from the 
questionnaire on mathematics achievement. 

Contextually, surveys and other subjective tests are 
very popular methods of data collection in the 
Cameroon research milieu and have been widely 
utilized in studies as a primary data collection tool. 
This is due to the fact that they are relatively cheap to 
produce and distribute, and secondly because 
secondary data collection in the entire Country is still 
riddled with administrative bottlenecks. 
Consequently, in the face of such challenges, 
constructs such as mathematics performance and 
achievement which require standardized direct 
measurement tools and resources in their effective 
measurement pose a headache. Standardization is 
systematic and demands resources which makes it 
difficult for many researchers to develop these 
instruments using their limited personal resources. As 
such, the use of indirect measurement tools presents 
an easy escape, and for that reason are increasingly 
gaining consideration in the place of direct 
measurement tools. As evidence, a number of studies 
have utilized self-report tests in the measurement of 
mathematics achievement, without clear proof of 
unrefuted measurement quality of the instruments 
used in terms of instrument validation, and 
reliability/stability in the face of such considerations.  

Statement of the Problem 

In correlational studies that model the association of 
psychological variables, usually between one or more 
predictor variables and a response variable, the use of 
standard measurement instruments or substitutes with 
demonstrable convergent validity power have often 
been recommended in their effective measurement. 
Upholding higher measurement quality standards in 
the measurement of unobserved constructs, ensures 
that third variables (covariates, extraneous, and 
confounding variables) which have the ability to 
influence the outcome of measured variable can be 
effectively controlled (Suresh, 2017). To guarantee 
quality in the measurement of mathematics 
achievement in studies, often requires that a 
standardized written test be completed by the 
participants for the effective measurement of 
respondents’ mathematical content knowledge, skills, 
and abilities (Vos, 2005). Elsewhere, in cases where 
teacher-made tests are utilized, there is always need 
to show that scores from such instruments sufficiently 
provide evidence of criterion validity, judged from 
how well such scores compare with those from the 
criterion variable concurrently or in the future 
(Bellamy, 2015).  

Recently, however a trend is emerging in social 
science studies in which researchers (especially 

beginning researchers and graduate students) are 
increasingly utilizing scores from self-reported, 
sample-based instruments (ordinal scale), for 
example, questionnaire measures on students’ 
abilities in solving specific mathematical tasks in the 
measurement of mathematics achievement in 
different research endeavours and inquiries. The 
points of contention are that; studies in which self-
reported items have been utilized in the measurement 
of mathematics achievement, have failed to provide 
convincing evidence of effective construct validation 
on the one hand, and scale validation on the other 
hand. In addition, some studies have failed to clarify 
the construct actually being measured, perceived 
mathematics performance (performance behaviour or 
attitudes) or mathematics performance (knowledge, 
skills on a limited number of mathematics measures), 
given that such a distinction will obviously translate 
into the type of datasets to be obtained. Moreover, 
even in situations where performance behaviour is 
measured, items have often captured general 
mathematics abilities, rather than testees abilities in 
specific mathematics topics, and often no efforts are 
made in the control of covariates. The consequences 
are that if the situation is not addressed, novice 
researchers in particular will continue to utilize 
instruments of doubtful quality or unsuitable 
substitutes in the measurement of mathematics 
achievement. The research problem addressed in this 
study is twofold: assessing the conditions under 
which self-assessment instruments (questionnaires 
measuring mathematics performance behaviour), 
teacher-made tests measuring mathematics 
performance, and standardized mathematics tests 
measuring mathematics achievement, would actually 
measure a common mathematical ability. 
Furthermore, the study explores the conditions under 
which questionnaires, teacher-made tests, and 
mathematics achievement tests together would 
provide a much more holistic measurement of 
mathematics learning outcomes.  

The specific research objectives of the study were to 
determine if; 
1. Student-reported mathematics outcomes, and 

mathematics performance differentially predict 
mathematics achievement.  

2. Student-reported mathematics outcomes, 
mathematics performance, and mathematics 
achievement all measure a common ability.  

3. Student-reported mathematics outcomes, 
mathematics performance, and mathematics 
achievement together provide a better measure of 
mathematics learning outcomes.  
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The research objectives for the study were 
transformed into statistical hypotheses as follows; 
H01: Student-reported mathematics outcomes, and 
mathematics performance do not significantly differ 
in their prediction of mathematics achievement 
measures.  

H02: There is significantly no common ability 
measured across all three mathematics learning 
outcome subscales.  

H03: Student-reported mathematics outcomes, 
mathematics performance, and mathematics 
achievement together do not significantly provide a 
holistic measurement of mathematics learning 
outcomes  

The following observations were made as a 
justification to the present study. According to 
Manizade et al. (2023, p. 198), “both affective and 
self-belief constructs may be specified as learning 
outcomes, given that competent participants within a 
field also hold certain beliefs about the field itself”. It 
is on this basis that a self-report (self-assessment) test 
was approached as a ‘could be’ credible substitute 
instrument for mathematics achievement in the 
present study. Consequently, in some studies, we 
have witnessed indirect measurement instruments 
utilized in the measurement of mathematical content 
knowledge, skills and abilities (Buchwald & 
Schwarzer, 2010). Additionally, in situations where 
indirect measures have been utilized in the 
measurement of knowledge, skills and abilities, 
general measures of perceived mathematics 
performance rather than measures of perceived 
mathematics abilities on specific topics have been 
utilized, further putting in doubt the validity and 
reliability of such measurements. Moreover, several 
studies have utilized scores from teacher-made test in 
measuring mathematics achievement (Maree et al., 
2006; Montanya, 2018; Ndlovu, 2017), and in a few 
other cases, teachers and some stakeholders (school 
administrators, parents) have been required to 
assessed students’ learning by rating the quality and 
quantity of their learning (Schunk, 2012). 
Furthermore, a few studies have requested students to 
report their grades in previous performances (Bieleke 
et al., 2022; Mazana et al., 2019). Though the use of 
the above-mentioned instruments in the measurement 
of mathematics achievement are fair to an extent, 
their use especially in situations requiring subjective 
assessments of content knowledge must however be 
supported with convincingly best measurement 
quality practices which demonstrate the degree to 
which such instruments compare to the standards. In 
contrast to these however, the situation is different in 
some studies, in which a clear distinction is made 

between the measurement of mathematics 
performance and ‘perceived mathematics 
performance’ or attitudes (Ngeche, 2017; Saini & 
Arora, 2017).  

It was projected that findings from the present study 
could be significant to a number of stakeholders 
including social science researchers in general and 
mathematics education researchers in particular, and 
in improving the measurement quality of latent 
constructs in surveys. In addition, the study could 
inform accurate data collection procedures leading to 
better interpretability and generalizability of findings 
(Jenn, 2006). Moreover, by comparing scores from 
three major mathematics learning outcome 
instruments, and by applying bifactor modelling in 
doing so, the present study sought to establish the 
degree of integration between three different 
theoretical perspectives regarding the nature of test 
items (IRT), their difficulty levels and the ability of 
test-takers (MMT), and standard measurement 
procedures (CTT). 

Operational Definition of Terms 

According to Roopa and Rani (2017), a questionnaire 
is a primary data collection instrument that is defined 
as a self-assessment tool for collecting and recording 
information about a particular issue of interest and 
consist of a list of questions (items or measures) that 
respondents answer either by supplying required 
information (open-ended) or by choosing responses 
from a continuum of options (closed-ended). A 
questionnaire basically gathers the attitudes and 
opinions of respondents on some general or specific 
topic or issue of interest. In the context of the present 
study, a self-report questionnaire refers to ordinal data 
measures (5-point Likert scales). While mathematics 
performance or teacher-made achievement tests are 
constructed by the teacher to assess teaching 
effectiveness and the learning progress of learners 
and tend to cover just a limited amount of content 
(Milawati, 2019), a standardized test on the other 
hand, is a test that follows certain norms (possesses a 
mean score for measuring achievement) and is 
intended for general use, covering a wider content 
(Qassimi, 2021). In the context of the present study, 
mathematics performance was measured through the 
pre-mock (teacher-made test), while mathematics 
achievement was measured through the regional 
mock examination. According to Cronbach and 
Meehl (as cited in Shou et al., 2022) criterion validity 
‘indicates how well the scores or responses of a test 
converge with the criterion variables with which the 
test is supposed to converge and in the context of the 
present study, criterion validity refers to the degree to 
which scores from the questionnaire on students’ 
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perceived performance in mathematics on specific 
mathematics topics, and scores from teacher-made 
test individually and collectively compare with scores 
from the mock GCE examination (a standardized 
examination). 

Methodology 

Research Design  

The cross-sectional survey research design was 
utilized as the study’s inquiry strategy. This research 
design is characterized by a single wave of data 
collection from a representative sample of the 
population of the study and there is no manipulation 
of the variables of the study. The area of the study 
was the Fako Division of the South West Region 
(SWR) of Cameroon. The Fako Division is a vibrant 
educational hub, teeming with different institutions of 
learning consisting of; primary, secondary, and 
tertiary institutions with experts in different research 
fields who manage and work in these institutions. In 
addition, the Fako Division is one of six 
administrative Divisions in the SWR. The other 
Divisions are; Manyu, Meme, Lebialem, Ndian and 
Kupe-Muanenguba. The Fako Division has six sub-
divisions consisting of Buea, Muyuka, Tiko, Limbe I, 
Limbe II, and Limbe III sub-divisions. 

Population of the Study 

The population of the study consisted of all secondary 
school students from the Fako Division. Due to the 
heterogeneous nature of the population, first cycle 
students from public, confessional, and lay private 
schools were targeted from the Buea sub-division. 
The sampling frame for the study therefore consisted 
of a list of all 154 secondary schools in the Buea sub-
division made up of 46 public, 25 confessional, and 
83 lay private schools. With the help of the study’s 
sampling frame, an accessible population made up of 
form 4 & form 5 students from three secondary 
schools in the Tiko and Buea sub-divisions was 
selected. Finally, a sample of 206 form 5 students was 
selected from the three secondary schools. To resolve 
the heterogeneous population, such that uniformity 
could be achieved in all possible sample units of the 
study, a suitable probability sampling technique was 
employed in the selection. Specifically, the 
proportionate sampling technique was used to select 
the sample of the study. This technique ensured that 
homogeneity and uniformity were achieved in 
individual sample units. This ensured that all 
elements (students in this case) chosen for the sample 
possessed an identical trait in terms of their classes, 
ages, and level of study. The proportionate sampling 
technique, entailed that students were selected from 
each stratum (public, confessional, and lay private) in 
proportion to the population representing the 

particular stratum, such that the most populated 
schools received the greater percentage of 
respondents and vice versa. Numerically speaking, 90 
students were selected from public schools, 60 from 
confessional, and 56 from lay private schools. The 
population of girls was 116, while there were 90 
boys. These gender and school type quotas presented 
above ensured that the desired uniformity was 
achieved in sampling units. 

Instruments of Data Collection 

Data for the study were collected using three different 
instruments. The instruments consisted of a student-
reported test, a teacher-made test, and a standardized 
achievement test. The student-reported test was a 5-
point Likert scale questionnaire measuring perceived 
mathematics (behavioural) performance which 
requested students to rate their abilities on a set of 10 
tasks. The pre-mock examination which is designed 
to mimic the regional Mock for the General 
Certificate of Education Examination (GCE), was 
utilized as the instrument for measuring mathematics 
performance. The pre-mock does not undergo any 
form of harmonization or standardization, and is 
therefore more or less a school-based or teacher-made 
test, given that its design, content, and weighting of 
items are determined solely by the classroom teacher 
and therefore vary from one school to another. 
Finally, the regional mock examination for 
mathematics for the 2023/2024 academic year was 
utilized as the main instrument for measuring 
students’ mathematics achievement. The regional 
mock paper for mathematics provides evidence of 
predictive criterion validity in relation to the GCE 
Ordinary Level (a certificate examination) 
mathematics paper (Nekang & Anyi, 2022). The 
regional mock mathematics paper was therefore taken 
to be the criterion variable in the present study. The 
GCE ‘O’ Level mathematics paper’s assessment 
objective is to test learning at 5 levels of learning 
from knowledge (30%), understanding (40%), 
application (20%), to analysis and synthesis (10%). 
The examination is made up of two papers (I & II). 
Paper I, contains 50 MCQ type questions, written for 

1  hours and carries a total weight of 30% of the 

examinations. Paper II contains two sections (A & B) 
and has two questions types; structural, and essay. 
There are 15 structural questions, and 5 essay 
questions which together make up 70% of the total 
examination. Test questions are pretested and item 
analysis is carried out to vet and remove any 
misleading test items from the examination. In 
addition, examination conditions, and rules guiding 
test corrections, moderation, and interpretation of 
results are applied the same for every candidate in the 
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region. The “O-level” regional mock mathematics 
paper was therefore taken to constitute the criterion 
variable for the study, and therefore acted like the 
benchmark to which the questionnaire and pre-mock 
datasets could be compared to. 

Measures 

Mathematics achievement measures comprised of 
eleven factors or competencies, consisting of topics 
prescribed by the GCE syllabus for Ordinary Level 
Mathematics. These factors consisted of numbers, 
sets and logic, functions, euclidean geometry, 
mensuration, rectangular coordinate geometry and 
graphs, algebra and networks, trigonometry, vectors, 
matrices and transformations, and statistics and 
probability. Following this, the teacher-made test and 
the mathematics achievement test were each made up 
of eleven items, selected such that an item 
represented each competence of the measured 
variable.  

Perceived mathematics performance items were 
selected on an ordinal scale, while mathematics 
performance, and mathematics achievement tests 
yielded continuous data. The greatest challenge to 
overcome in the construction of the study’s data 
analysis model therefore, was how to transform the 
continuous scales in the teacher-made test and 
achievement test into an ordinal scale such that a 
common scale that could fit in a confirmatory factor 
analysis measurement model, could be established in 
all three instruments. In other words, the challenge 
was to make each item in the classical test which 
relies heavily on an aggregation of scores from 
several items to be as important and as informative as 
items in an item response theory-based test. 
Continuous scores had to be immediately transformed 
into ordinal categories. The performance and 
achievement tests were made up of MCQ, structural, 
and essay type questions. While the achievement test 
followed the standard prescribed by the GCE syllabus 
of 50 MCQ, 15 structural, and 5 essay questions from 
11 topics. The final scope of the mathematics 
performance test questions consisted of 25 MCQ’s, 
10 structural, and 4 essay questions from 10 topics 
(probability and statistics were not tested bringing the 
exams coverage to 55.7% with respect to number of 

questions and 90.9% with respect to number of 

topics). MCQ’s were weighted equally across both 
tests, a point per item. The weighting (mark 
distribution) of structural and essay type questions 
varied across items due to different demand 
intensities and different levels of difficulty for each 
item. The largest percentage of test items and 
consequently the largest weighting came from 
algebraic networks. 

The total scores for test questions on different 
measured variables of the study (topics) ranged from 
a minimum of 1 point per question in paper I to 12 
points per question in Paper II. To resolve these 
discrepancies within the framework of the CTT, the 
marks were all converted to a scale of 4. To do this, a 
student’s mark for a given question or group of 
questions from the same topic, was divided by the 
total mark for that question or group of questions, and 
the dividend was then multiplied by 4. 

Converted mark=((Marks scored on a 

given item)∕(Total marks per item)*4) 

The procedure brought all scores to lie within the 
range from 0 to 4, with 0 representing the lower 
bound and lowest test score possible, and 4 
representing the upper bound and highest score 
possible for any given test item. To transform 
continuous scores created from the conversion 
process into ordinal categories, such that they could 
be utilized in structural equation modelling (SEM) 
measurement models, the converted scores were 
recoded into different variables as demonstrated next. 
The range of marks from 0 to 0.4 was coded as 0 and 
evaluated as ‘Failed’, the range of marks from 0.5 to 
1.4 was coded as 1 and evaluated as ‘Weak’, the range 
of marks from 1.5 to 2.4 was coded as 2 and 
evaluated as ‘Average’, the range of marks from 2.5 
to 3.4 was coded as 3 and evaluated as ‘Good’, and 
finally, the range of marks from 3.5 to 4.4 was coded 
as 4 and evaluated as ‘Very Good’.  

During the transformation of mathematics 
performance and mathematics achievement scores, 
separate ‘data-forms’ (researcher’s constructed tables 
that show the distribution of marks from different 
topics assessed in the tests) were developed in line 
with the tasks selected by the different schools. One 
such ‘data-form’, for example, from one of the 
sample schools, consisted of 10 questions (9 MCQ’s 
1 mark each, and 1 essay question for 15 marks) 
tested on numbers. This made the total score on 
numbers alone to be 24 marks (these scores were later 
standardized on a 4-point scale). In addition, 3 
questions (1 MCQ, 1 structural, and 1 essay) tested on 
sets and logic. This made the total score on sets and 
logic alone to be 20 marks (and just like for numbers, 
the scores were later standardized on a 4-point scale) 
and so on. Though the tasks from the different 
schools were not standardized (different schools 
selected dissimilar tasks both in topics and 
weighting), some were alike, but most were however 
equivalent. According to Medley (as cited in 
Manizade et al., 2023, p. 198), the “successful 
assessment of students’ outcomes involves the above 
three essential steps”.  
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The student-reported test was made up of 10 
questions (with a 90.9% coverage rate with respect to 
topics) whose responses were selected on a 5-point 
Likert scale. Data from a 5-point scale is essentially 
continuous, even for a small sample in contrast to 
Likert scales with 4 or less response options which 
require a very large sample size to be considered 
continuous (Johnson & Creech, 1983; Sullivan & 
Artino, 2013). By that fact, a sample size of 206 was 
selected for the study. On the 5-point Likert scale, 
students were requested to rate their abilities on each 
of the items on a continuum from 0 to 4, with 0 being 
the lowest score and 4 being the highest score. Under 
the framework of the MMT (Rasch’s model) given 
variations in the difficulty of test items, and the 
discrepancies that exist in individual test-taker’s 
abilities, students were not timed while completing 
the questionnaire, and were therefore given maximum 
time to reflect on individual items. Following that, 
students were then requested to rate their abilities in 
correctly solving the tasks. The design and selection 
of the scale was guided by Ortiz (2016), 4-stage 
model of problem-solving of task in a mathematics 
classroom. According to this model, a student should 
effectively solve a given mathematical task in four 
stages; understanding the problem, devising a plan to 

solve the problem, carrying out the plan, and looking 

back. A student selecting a score of zero by 
implication did not have any knowledge on how to 
solve the problem. A score of 1 implied that the 
student could interpret the questions, a score of 2 
implied a student could provide a valid algorithm 
leading to the solution, a score of 3 implied a student 
could solve the problem but could not guarantee 
accuracy, and a score of 4 meant that a student could 
essentially solve the problem and get an accurate 
answer. Students’ performances on the scale were 
evaluated as follow; 0=No Idea on task, 1=Can 

interpret task, 2=Can provide valid steps, 3=Can 

solve correctly/not sure of answer, 4=Can solve and 

obtain correct answer. Students were drilled for 15 
minutes prior to completing the test, in order to 
familiarize and ensure accurate self-rating of tasks. 
Items were specific mathematical tasks for example, 
“I can get the correct answer in evaluating 15-

4*2+3”. 

Validity  

The instruments of data collection in the study were 
validated in four ways. To ensure face validity, the 
instruments were handed to two independent 
researchers who made an appraisal of the physical 
appearance of the instruments, in order to ascertain 
the extent to which the outlined items were in line 
with the stated objectives of the study. Secondly, 
content validation of the instruments entailed 

assessing the degree of homogeneity of different 
groups of items for the different measured variables 
in the study. Within the framework of the IRT, items 
for any given measured variable were formulated 
such that they were individually different but 
collectively measuring the same construct. In 
addition, instructions were clearly delineated on the 
instruments for clarity so as to effectively manage 
bias in the measurement process introduced by 
extraneous and confounding variables. Moreover, the 
demands of the tests were kept to a minimum such 
that unsolicited anxiety and tension did not 
characterize test-taking, given that test items were of 
varying difficulty, and that test-takers had varying 
abilities in answering them. In line with the MMT, 
test consisting of student-reported measures were not 
timed. Situational variables including classroom 
conditions and other environmental factors which 
interfere with test administration and test-taking were 
also checked. For example, classroom lighting, 
seating, and serenity/noise free classrooms were 
ensured during administration. In this light, the 
researchers hoped to dismiss any spurious 
correlations from the findings, leading to an accurate 
interpretation of findings.  

Construct validity was measured for each of the 
study’s variables through convergent and 
discriminant validity, and scale dimensionality was 
ascertained through a bifactor model analysis 
discussed under data analyses. Specifically, 
discriminant and convergent validities were 
ascertained through the calculation of average 
variances extracted (AVE) and composite reliability 
(CR) statistics respectively. AVEs and CRs were 
calculated for each of the five univariate (single-
factor) measurement models through confirmatory 
factor analysis (CFA) with the aid of the 
measurement quality calculator developed by Kesiki 
(2023). Besides the 5 single-factor CFA models (see 
table 1 for individual univariate model indices), a 
bifactor model was used to test the main research 
hypothesis for the study. The models were assessed in 
an attempt to establish measurement quality in the 
holistic measurement of mathematics learning 
outcomes.  

Covariates  

Though mathematics self-efficacy and mathematics 
self-concepts were not the focus of the present study, 
their potential to introduce spurious correlations in 
the link between perceived mathematics performance 
and mathematics achievement was taken into 
consideration. Mathematics self-efficacy refers to the 
extent to which students believe in their own ability 
to understand specific mathematics topics 
(behaviour), while mathematics self-concept refers to 
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students’ beliefs in their own mathematics abilities 
(Betz & Hacket, 1983; OECD, 2013). Beside 
requesting students to rate their abilities in specific 
mathematical tasks in measuring perceived 
mathematics performance, students’ self-efficacy and 
self-concepts of mathematics ability were also 
measured. Self-efficacy and self-concepts of 
mathematics ability were then taken to be covariates 
of perceived mathematics performance in addition to 
gender and school type; because of their potential to 
share with the later a considerable amount of the 
variance in mathematics achievement (Arens et al., 
2017). Students were requested to complete a 5-point 
Likert type questionnaire by stating their level of 
belief and confidence regarding their ability to 
demonstrate mastery on certain mathematics 
behaviours (topics). On that scale; 0=Never, 
1=Seldom (Not often), 2=sometimes, 3=Often, 
4=Always. The 6 items scale (5-point Likert) from 
PALMA, a 5-year large-scale long study on 
mathematics self-concept’s link with mathematics 
achievement by Arens et al. (2017) was adopted in 
the measurement of mathematics self-concept. The 
responses ranged from 0=Not at all true to 
4=completely true. In the present study, items 
involved very specific mathematical tasks measuring 
students’ perceived mathematics performance, and 
ability in certain mathematics topics measuring self-
efficacy, to attitudes on students’ general abilities in 
the subject of mathematics measuring self-concept. 
For example, “I can get the correct answer in 

evaluating 15-4*2+3”, “I believe I can distinguish 

with no errors between whole, natural, integers, 

rational, and real numbers”, and “In math, I am a 

talented student”, were typical items measuring 
perceived mathematics performance, self-efficacy, 
and self-concept, respectively.  

Measurement Models  

The measurement models for the five variables in the 
study (three main variables consisting of perceived 
mathematics performance, mathematics performance, 
and mathematics achievement; and two covariates, 
mathematics self-efficacy, mathematics self-concept) 
together with the measurement quality for each 
variable were presented. The fit statistics for the 
proposed 6-item mathematics performance model, 6-
item perceived mathematics performance model, 9-
item mathematics achievement model, 8-item 
mathematics self-efficacy model, and the 10-item 
mathematics self-concept model, each revealed good 
internal consistency for the group of measures in each 
observed variable of the study. Over four error terms 
were correlated in the mathematics performance 
model, three in the mathematics self-efficacy model, 
and over six in the mathematics self-concept model in 
order for best model fits to be achieved in the 
respective models. Fit indices, average variance 
extracted, composite reliability, and the Cronbach 
alpha coefficients for all three observed variables and 
covariates were presented in the table below. The 
values revealed that each measurement model 
provided a good fit for the data. 

Table 1: Measurement Models Fit Indices for Mathematics Performance, Perceived Mathematics 

Performance, Mathematics Achievement, Mathematics Self-Efficacy, and Mathematics Self-Concept 

Fit index Category 
Model fit 

index 
Obtained values Cut off values 

Best Fit MP PMP MA MSE MSC 

Absolute fit indices 

CMIN 31.811 11.811 6.483 31.939 76.712  

DF 16 9 9 17 28 > 1 

SRMR .0461 .0361 .0306 .0418 .0470 < .08 
GFI 1.000 .981 .990 .963 .922 < .95 
RMSEA .069 .039 .000 .065 .092 < .08 

Comparative fit indices 
CFI .979 .986 1.000 .964 .960 > .95 
IFI .979 .986 1.037 .965 .961 > .95 

Parsimonious 
Correction fit index 

PNFI .548 .567 .550 .563 .585 > .5 
CMIN/DF 1.988 1.312 .720 1.879 2.740 < 3 

Internal Consistency 
AVE .45 .32 .18 .36 .54 ≥ .50 
CR .82 .73 .57 .81 .90 ≥ .70 
Sig. .011 .224 .691 .015 .000 > .05 

DECISION Best Fit 
Best 

Fit 
Best 

Fit 
Best 

Fit 
Best 

Fit 
  

MP: Mathematics Performance; PMP: Perceived Mathematics Performance; MA: Mathematics Achievement; 
MSE: Mathematics Self-Efficacy; MSC: Mathematics Self-Concept; DF: Degree of Freedom; CMIIN: Chi 
Square; CMIN/DF: Chi Square/Degree of Freedom; CFI: Comparative Fit Index; GFI: Goodness-Of-Fit Index; 
RMSEA: Root Mean Square Error of Approximation; PNFI: Parsimonious-Adjusted Measures Index; IFI: 
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Incremental Fit Index; SRMR: Standardized Root Mean Square Residual; CR: Composite Reliability; AVE: 
Average Variance Extracted; Sig.: Significance Level; α: Cronbach Alpha Coefficient. 

Reliability 

Construct reliability for the study’s measured variables were assessed in two ways; through the calculation of the 
Cronbach alpha coefficient, and composite reliability following a test-retest procedure. The questionnaire 
measuring perceived mathematics performance, self-efficacy and self-concepts of mathematical ability was first 
examined for reliability through a pilot test. The reliability of the instrument was first tested with a sample of 40 
students during the first phase of pilot testing, and later to a different sample of 20 more students after a period 
of 3 months to determine the stability of the instrument (re-test). The Cronbach alpha coefficients for perceived 
mathematics performance, self-efficacy and self-concepts, for the study were respectively .797, .828, and .922. 
The sample for the pilot test involved students drawn from a school that did not constitute part of the final 
sample for the study. The final questionnaire that was answered by the students contained three sub-scales; 
perceived mathematics performance, self-efficacy, and self-concepts. Given that mathematics performance, and 
mathematics achievement possessed continuous data, the Cronbach alpha reliability coefficients for both 
measured variables was ascertained in two ways. Firstly, regarding the continuous data, an intraclass correlation 
coefficient was computed and was found to be .84 for the instrument. Secondly, after the continuous data were 
converted to a 4-point scale and recoded into a 5-point ordinal Likert scale data, the Cronbach reliability for the 
scores from both tests were respectively .810 and .726. 

Methods of Data Analyses 

Data for the study were analyzed descriptively and inferentially. The specific descriptive statistics tools included 
frequencies, percentages, means, and standard deviations. The specific inferential statistics tools/models that 
were utilized in the study consisted of a confirmatory factor analysis (CFA) model, the bifactor model (BM), 
ANOVA, and multivariate regression analysis. In analyzing the main objective’s variable datasets, 5 univariate 
CFA models were first constructed to test the measurement quality for each of the five measured variables (see 
table 1). Following this, a bifactor model was used to test the dimension of the scale (or internal structure). The 
bifactor model was applied to determine whether the three subscales; the questionnaire, premock (teacher-made 
test), and the mock (mathematics achievement test) were all measuring a common mathematical ability or three 
separate/unique mathematical abilities. The bifactor model for the study, measuring, perceived mathematics 
performance, mathematics performance, and mathematics achievement was abbreviated the MLOM, standing for 
the ‘Mathematics Learning Outcome Model’. The MLOM initially consisted of three subscales, with a total of 
30 items. The finalized MLOM still retained three subscales, but had a total of 19 items. The 11 items deleted 
from the initial model showed extremely low correlations with the respective domain specific scales and were 
therefore removed from the model. Moreover, to determine the likelihood that students’ perceived mathematics 
performance and mathematics performance differentially predicted mathematics achievement, descriptive 
statistics, multivariate regression analysis, analysis of variance, and a line chart were used to analyzed and 
visualize the datasets respectively.  

According to Reise et al. (2007), a BM has two kinds of factors; a general factor and domain specific factors. 
The BM best addresses the question about the dimensionality of items of a construct (internal structure of the 
scale or a test). The combined sets of items across all domain specific factors load onto the general factor, and 
capture a domain (trait) common in all subscales. The general factor represents the variance common in all 
domain specific factors in the model, while domain specific factors represent variance unique in their respective 
domains (Fang et al., 2020; Reise, 2012). In the present study, the general factor (labelled as mathematics 
learning outcome) represented a common or general scale to which all the items of all three sub-scales loaded, 
and captured the variance common across domain-specific items and domain specific scales. The BM in the 
present study therefore tested the null hypothesis that the general scale did not significantly explain most of the 
variance in individual items across all three sub-scales (questionnaires, teacher-made test, and achievement test). 
In other words, the scales were hypothesized not to measure a common mathematical ability. Finally, to 
determine if the three subscales together provided a much more holistic measurement of mathematics learning 
outcomes, descriptive statistics tools were used to study trends and patterns that existed in the datasets.  

Findings 

The findings were presented according to the specific research questions of the study. Firstly, a visual 
representation of the results with regards to how respondents performed on all constructs under measurement 
including covariates were presented. Secondly different bifactor models were hypothesized in order to find a 
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fitting model for the data, and finally, an ANOVA test was carried out to determine differences in the means of 
the students’ scores in the different subscales.  

Research Question One: To what extent do student-reported mathematics outcomes, and mathematics 
performance predict mathematics achievement?  

The line chart below visualizes number of students against different categories of students’ scores from five 
different tests. The tests included student-reported scores or perceived mathematics performance (red line), 
teacher-made test or mathematics performance (black line), achievement test or standardized test (blue line), 
self-efficacy (green line), and self-concept (yellow line). Students’ scores were evaluated in categories as 
follows; 0% < Weak ≤ 25%, 25% < Average ≤ 50%, 50% < Good ≤ 75%, and 75% < Very Good ≤ 100%.  

 
Figure 1: Comparing Trends in Students’ Performances Across Different Instruments 

The visualization of students’ tests scores on the line chart revealed two different sets of patterns. Mathematics 
performance recorded the highest number of fails compared to mathematics achievement and perceived 
mathematics performance. While mathematics performance and mathematics achievement scores showed 
patterns that were similar (Pattern 1), perceived mathematics performance scores followed a pattern consistent 
with those of self-efficacy and self-concept scores (pattern 2). In particular, the first pattern of curves revealed 
that there were fewer students with higher scores, and that more ‘failed’ evaluations of the mathematics 
performance and mathematics achievement items were associated with a great number of students’ responses (as 
seen from the negative slopes in the equations for mathematics performance and achievement; -33.65 and -28.18 
respectively) compared to the second category of curves in which there were more students with higher scores, 
and more ‘very good’ evaluations were associated with a greater number of students responses of the perceived 
mathematics performance, self-concept, and self-efficacy items (as seen from the positive slopes of the dotted 
lines for perceived mathematics performance; 8.02). The equations of the straight lines for mathematics 
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performance and mathematics achievement in particular revealed that for every unit rise in the quality of 
students’ evaluation of learning, the number of students’ responses on mathematics performance and 
mathematics achievement items actually drooped by an average of 34 and 28 responses respectively. In general, 
more students performed better in the mathematics achievement test than in the mathematics performance tests. 
There were no differences in the number of ‘very good’ performances for students in both the mathematics 
achievement and the mathematics performance tests, given that an equal number of such performances were 
recorded in both tests. Moreover, in contrast perceived mathematics performance scores followed a pattern 
completely different from that of mathematics achievement and mathematics performance. Its pattern was 
similar to that followed by self-efficacy and self-concept. 

A multiple regression analysis of two predictor variables was first conducted without the inclusion of covariates, 
which were later added into the model. When covariates were added, this resulted in model misspecification, and 
neither mathematics performance, nor perceived mathematics performance showed any significant effects on 
mathematics achievement. However, when some covariates (gender and school type) were removed, both the 
model specification and the effect of perceived mathematics performance on mathematics achievement were 
significant. A further analysis (mediation and moderation informed by initial challenges in fitting the model) was 
conducted on the variables (mathematics self-concept and self-efficacy) to test for possible colliding and 
intermediary effects on the individual links between mathematics performance, perceived mathematics 
performance and mathematics achievement. When that was done both supposed covariates (mathematics self-
concept and self-efficacy) turned out to be partial mediators of each of the association between mathematics 
performance and mathematics achievement, and perceived mathematics performance and mathematics 
achievement. Both the direct and indirect effects of MSC and MSE in the models were significant.  

Table 2: Regression Model Summary on the Effect of mathematics performance and perceived 

mathematics performance on mathematics achievement 

Independent Variables 
Unstandardized Coefficients 

t-ratio Sig. 
Slope (B) Std. error 

Mathematics Performance .080 .073 1.082 .281 
Perceived Mathematics Performance .065 .031 2.124 .035 

Mathematics Self-Efficacy -.050 .038 -1.300 .195 
Mathematics Self-Concept .045 .034 1.342 .181 

Constant = 10.740 
R2 = .024 

F-Ratio = 2.449, P = .038 < .05 
SEE = 10.45108 

n = 206 

The data was significantly fitted into a linear model (p < .05) and together mathematics performance and 
perceived mathematics performance accounted for 2.4% of the movements or variations in students’ 
mathematics achievement. In addition, perceived mathematics performance was found to be a better predictor of 
students’ mathematics achievement (p < .05) than mathematics performance (p > .05). The researchers therefore 
rejected the null hypothesis and concluded that students reported outcomes and mathematics performance 
significantly differ in their predictions of mathematics achievement. 

Research Question Two: Is there any common ability measured by student-reported mathematics outcomes, 
mathematics performance, and mathematics achievement subscales? 

Three bifactor models were tested at this stage of the study. The aim was to assessed the internal structure or the 
dimensionality of the MLOM scale. Firstly, a classic orthogonal bifactor model with three domain specific 
factors (mathematics performance, perceived mathematics, and mathematics achievement) and a general factor 
to which all subscales loaded was developed. Secondly, a bifactor S-1 model, with two subscales (mathematics 
performance, and mathematics achievement) loaded onto a general factor. According to Eid et al. (2017), and 
later supported by Pekmezci (2022), the bifactor S-1 model allows correlation between specific factors and 
enables items that do not form a common specific factor to be loaded only on the general factor. It further 
resolved the problem of negative factor loadings which were recorded in the classic orthogonal bifactor model 
and persisted even after the items were reversed coded. During the analyses, in the classic orthogonal bifactor 
model, 4 items with negative factor loadings on the domain specific factors were recoded. Though the model fit 
was improved, data could not still be parsimoniously fitted into the model. This was exacerbated by negative 
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loadings which could not be completely eliminated despite steps to remove them. To resolve the issue of 
negative loadings in the classic orthogonal bifactor model, a 1-factor hierarchical model which according to 
Markon (2019) is equivalent to the classic orthogonal bifactor model was constructed. The 1-factor hierarchical 
model still did not provide a better fit for the data. In the bifactor S-1 model, perceived mathematics 
performance items were allowed to load onto the general factor but no domain specific factor was established for 
that measured variable. The model therefore had two subscales that loaded onto the general factor. Finally, an 
augmented oblique bifactor model which according to Zhang et al. (2023), is superior to the bifactor S-1 model 
(claim contended by Koch and Eid (2024)) was the third and final model to be tested in the study. In the 
augmented oblique bifactor model, items with negative loadings in the PMP subscale were removed. The 
augmented oblique bifactor model allows correlations between subscale factors that form a common factor, and 
in the present study, two subscale factors were correlated (MP and MA subscales). Out of all the three models, 
the augmented oblique bifactor model parsimoniously fitted the data. The results output for the augmented 
oblique bifactor model utilized in the present study is presented in figure 2 below. 

 
Figure 2: Results Output for the Augmented Oblique Bifactor Model 

The augmented oblique bifactor models produced better fit for the data compared to the bifactor S-1 and the 1-
factor hierarchical models. On that basis and for purposes of ancillary bifactor indices calculation, the 
augmented oblique model was selected over the other models despite having the second largest Akaike’s 
information criterion (AIC) value of the three hypothesized models. In the S-1 model specifically, the complete 
absence of loadings on the items of the PMP subscale made it impossible for the calculation of certain vital 
ancillary bifactor indices to be completed. The problem was resolved with the use of loadings from the 
augmented oblique bifactor model, which retained 6 out of the 10 loadings for that subscale.  
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Table 3: Measurement Models Fit Indices for the Bifactor S-1, 1-Factor Hierarchical, and the 

Augmented Oblique Bifactor Models 

Fit Index 

Category 

Model Fit 

Index 

Obtained Values 

Cut Off Values 

Acceptable Fit 
Bifactor S-1 

Model 

1-Factor 

Hierarchical 

Model 

Augmented 

Oblique Bifactor 

Model 

Absolute fit 
indices 

CMIN 198.370 214.320 200.911  

DF 122 120 134 > 1 

SRMR .0728 .0740 .0641 < .08 
RMSEA .055 .059 .049 < .08 

Comparative fit 
indices 

CFI .918 .898 .931 > .9 
IFI .920 .902 .934 > .9 

Parsimonious 
Correction fit 
index 

PNFI .651 .629 .646 > .5 
CMIN/DF 1.626 1.786 1.499 < 3 

AIC 296.370 316.320 312.911 Smallest taken 

DECISION 
Acceptable Fit 

(Rejected) 
Bad Fit 

(Rejected) 
Acceptable Fit 

(Accepted) 
 

To determine the internal structure or dimensionality of the mathematics learning outcome scale for the 
augmented oblique bifactor model, a number of ancillary bifactor indices were calculated. The calculation of 
these indices was facilitated by the use of the bifactor indices calculator developed by Dueber (2017). These 
indices included, the percent of uncontaminated correlations (PUC) which refers to the percentage of covariance 
which uniquely reflects variance from the general factor (MLO). According to Zhang et al. (2019), PUC values 
that exceeds .7 would reflect less bias in structural coefficients, and thus indicates that the MLO scale (general 
factor) can be treated as unidimensional. Another index that was calculated was the explained common variance 
(EVC) which according to Stuckey and Edelen (2015) represents the amount of common variance attributed to 
the general factor. An ECV value that exceeds .7 would be indicative of a strong general factor and would thus 
suggest unidimesionality of the MLO scale. In addition, the individual explained common variance (IECV), 
referring to the common variance in individual items attributed to the general factor was also computed. An item 
with an IECV that exceeds .8 would reflect the MLO scale more than the subscale factors. Moreover, omega 
coefficients were used in judging the reliability of the MLOM with higher Omega’s representing more reliable 
general and subscale factors. Finally, the degree to which latent constructs were well-defined in the study were 
assessed through the Hancock H indices, with values greater than .8 signifying greater internal consistency of the 
measures. 

Table 4: Calculated Augmented Oblique Bifactor Model’s Statistical Indices for Judging Scale 

Dimensionality 

 ECV 
(S&E) 

ECV 
(NEW) 

Omega/ 
OmegaS 

OmegaH/ 
OmegaHS 

Relative 
Omega 

H FD 
Crucial Ancillary 
Bifactor Indices 

GF .402 .402 .822 .539 .656 .791 .876 ECV = .402 

PMP .144 .396 .777 .259 .333 .622 .863 PUC = .819 

MP .381 .956 .947 .911 .962 .912 .991 Cutoffs for some 

Unidimesionality 

PUC < .8, ECVg > .7, 

ωHg > .7 
MA .073 .980 .241 .240 .995 .446 .668 

GF: General Factor; PMP: Perceived Mathematics Performance; MP: Mathematics Performance; MA: 
Mathematics Achievement; PUC: Percent of Uncontaminated Correlations; ECV: Explained Common Variance; 
ωH: Omega Hierarchical, H: Hancock & Mueller Correlation; FD: Factor Determinacy; g: The subscript g refers 
to the General Factor. 

In the present study, the ECV for the MLO was .402, meaning that only 40% of the variance was attributed to 
the MLO (general factor), while the remaining 60% was attributed to the subscale factors. ECV’s for the 
subscale factor were between .396 and .980, meaning that between 39.6% and 98% of the variance was 
attributed to the subscale factors. Items 9, 10, 11, 12, 13 and 14 had ICVE’s that exceeded .8, and the average of 
all IECV’s was .46, meaning that only 46% of the common variance was attributed to the MLO. The PUC index 
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was .819, meaning that the MLO reflected more bias in structural coefficients, and thus indicates that the MLO 
could not be treated as unidimensional. The omegaH value for the MLO was .539, and those for the subscales 
were between .240 and .911, signifying that the subscale factors were more reliable than the MLO factors. 
Finally, the Hancok (H) values reflected well defined constructs and good internal consistency of items of the 
MLO and its subscales, except for the mathematics achievement subscale with H value below .7. According to 
Reise et al. (2013, p. 22), when PUC values are lower than .80, general ECV values greater than .60 and 
OmegaH greater than .70 (of the general factor) “suggest that the presence of some multidimensionality is not 
severe enough to disqualify the interpretation of the instrument as primarily unidimensional". In the present 
study as detailed in table 4 above, the PUC = .819 > .80, general ECV = .402 < .6, ωH = .539 < .70 for the 
general factor, and 6 out of all 19 items had IEVC values that exceeded .8. According to Bonifay et al. (2015, p. 
6), "it appears that when ECV is above .70, relative bias is below the 10% benchmark and when ECV is above 
.80, relative bias is less than 5%". The researchers therefore deduced from the calculated bifactor indices and 
noted that; relative bias was above the 10% benchmark leading to the conclusion that, the presence of some 
multidimensionality was severe enough to disqualify the interpretation of the instrument as primarily 
unidimensional. Guided by these results and by the recommendations of Reise et al. (2013), regarding relative 
bias exceeding the 10% benchmark, it was concluded that, the MLO was primarily multidimensional. Therefore, 
the null hypothesis was rejected and it was concluded that, all three mathematics outcome subscales measure 
separate mathematical abilities. Evidence was contrary to a common mathematical ability measured across all 
subscales in the study. 

Research Question Three: Do student-reported mathematics outcomes, mathematics performance, and 
mathematics achievement significantly provide a holistic measurement of mathematics learning outcomes? 

To answer this research question, a one-way ANOVA test was carried out on the datasets of the study to 
investigate the effect of the three subscales on the mathematics learning outcome of secondary school students. 
The researchers hypothesized that there were significant differences in the means of the three mathematics 
learning outcomes subscales. If the null hypothesis were to be upheld, it would mean that evaluating the average 
of the three subscales would significantly influence students’ final scores. In addition, a justification for taking 
the mean of the three subscales to make the final score came from the fact that a multidimensional internal 
structure was found for the MLO scale (see table 4), meaning that such a method of scoring the instrument was 
correct and consistent with theory. Further proof to demonstrate the reliability of aggregating subscale scores 
was provided through a normality test which assessed and compared the likelihood of finding a students’ score 
within the mean of the various subscales, and a plot of trendlines to visualize patterns in the MLO dataset so as 
to assess and compare the distances between trendlines estimated values and actual subscale scores. 

The mean test scores and standard deviations of the subscales and the MLO scale were as follows; mathematics 
performance (M = 9.49, SD = 10.19), perceived mathematics performance (M = 55.49, SD = 24.30), 
mathematics achievement (M = 15.13, SD = 10.52); mathematics learning outcome (M = 24.15, SD = 9.26). The 
one-way ANOVA revealed a significant effect of the subscales on the mathematics learning outcome scale; 
indicating that there was a statistically significant mean difference in subscale scores between at least two 
groups, F (2, 608) = 478.715, p < .001. The effect size, eta squared (η²), was .61, indicating a large effect. 
Tukey’s HSD post hoc test for multiple comparisons showed that the mean subscale score was significantly 
different between mathematics performance and perceived mathematics performance (p = .000, 95% C.I. = [-
49.87, -42.25]). In addition, the mean subscale score was also significantly different between mathematics 
performance and mathematics achievement (p = .001, 95% C.I. = [-9.56, -1.89]). In summary, students scored 
significantly higher on the perceived mathematics performance subscale (p < .001), than on both the 
mathematics achievement (p < .001) and the mathematics performance (p < .001) subscales. The effect size of 
.61 confirmed that these differences were practically significant. More evidence that the aggregated subscale 
scores provided a better measurement for the MLO was provided by the test of normality. The Kolmogorov-
Smirnov tests of normality revealed that only the dataset for perceived mathematics performance was normally 
distributed (Statistic = .049, p = .200) as compared to mathematics performance and mathematics achievement 
datasets (Statistic = .246, p = .000; Statistic = .186, p = .000 respectively). Irrespective of that, the Kolmogorov-
Smirnov tests of normality for the aggregated dataset also revealed normally distributed scores (Statistic = .060, 
p = .071 respectively). The normally distributed scores for the different scales are visualized in the curves in 
figure 3 below.  
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Figure 3: Comparing Distributions of Subscale and Aggregated Scale Scores X~N( , SD) 

According to a normal distribution curve, 95% of students’ scores in all three subscales in the present study fall 
between the mean plus or minus two standard deviations of the mean (Mean ± 2SD). According to curve A, 95% 
of students’ perceived mathematics performance scores fall between (55.49 ± 48.6) % around the mean, and 
there is a high probability of finding a students’ score within ±48.6% of the mean on this scale. For the 
mathematics performance test, there is a high probability of finding a students’ score within ± 28.1% of the 
mean. According to curve C, 95% of students’ mathematics achievement scores fall between (15.13 ± 21.04) % 
around the mean. For the aggregated scale, there is a high probability of finding a students’ score within ± 
18.52% of the mean. The perceived mathematics performance and aggregated scales (Curve A and D) are 
perfectly bell shaped compared to the mathematics performance and mathematics achievement tests. While 
curve D is taller and narrower, Curve A is shorter and wider in shape depicting that there is a higher likelihood 
for curve D, than A for measuring a particular students’ score within a narrower range of scores. In other words, 
it is more common to find a student with an average score in the aggregated scale than it is to find a student with 
a very low or a very high score in the same tests. For the mathematics performance and mathematics 
achievement tests, the scores appear more centered towards the left, making it more common to finding a student 
with a very low score than it is to finding one with say an average or a very high score.  
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SMLO: Aggregated Frequency of Student Responses on the Mathematics Learning Outcome Scale 

Figure 4: A Comparison of Trends on Students’ Scores Between Individual Subscales and the Main 

Mathematics Learning Outcome Scale 

The line chart shows trends in students’ evaluations 
on the four different scales consisting of the three 
subscales and the mathematics learning outcome scale 
(the aggregated scale, gotten by taking the average of 
the three subscales). The chart revealed that students 
were evaluated better on the aggregated scale of 
subscales than on the individual subscales themselves 
(with the exception of the perceived mathematics 
performance subscale which remained better for 
evaluations of average, good and very good). In 
addition, the chart shows that when students’ scores 
were aggregated on the three subscales, the number of 
students evaluated as weak and very good improved 
significantly as failed evaluations dipped. Moreover, 
the trendlines revealed a much less negative slope for 
the aggregated scores (-21.3) than for students’ scores 
from mathematics performance (-29.9) and 
mathematics achievement (-27.9) subscales. More 
positive students’ evaluations of the test scores were 
associated with far fewer number of students’ 
responses in the mathematics performance and 
mathematics achievement test items than on the 
aggregated test. The linear regression models 
revealed that; 1 unit of improvement in students’ 
evaluation was associated with drops in averagely 21 
responses of students in mathematics performance 
items, while 1 unit of improvement in students’ 
evaluation was associated with significant drops in 
averagely 28 responses of students in mathematics 
achievements items. The mean students score on the 
aggregated scale (M = 24.15) was higher than for the 
mathematics performance (M = 9.49) and 

mathematics achievement (M = 15.13) as the standard 
deviation for the MLO dropped slightly than for all 
the other subscale scores. The estimated values for 
the PMP subscale trendline were further away from 
the actual values (10.9%) than the estimated trendline 
values for the other subscales (78.7% and 62.6% 
respectively). The model estimates for the trendline 
values were closer to the actual values for the 
aggregated scale (22.5%) than for the PMP subscale 
(10.9%), but these estimates were lower than for the 
MA and MP subscales. This together with results of 
the ANOVA, and normality tests clearly 
demonstrated that the aggregation of scores from all 
three subscales together provided a holistic, realistic 
and much better measurement of mathematics 
learning outcomes. This led to a rejection of the null 
hypothesis and it was concluded that all three 
mathematics outcome subscales provide a much more 
holistic measurement of mathematics learning 
outcomes.  

Discussions 

The findings of the study revealed that perceived 
mathematics performance and mathematics 
performance differentially predict achievement. The 
findings supported those by Fernández-Cézar et al. 
(2021) who found that cognitive (mathematics 
performance) and behavioural variables (attitudes) 
differed in their prediction of mathematics 
achievement. In addition, the findings revealed that 
students’ achievement improved with more positive 
students’ perceptions of their mathematics 
performance abilities. Also, in the present study 
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mathematics performance was found to have an 
indirect effect on mathematics achievement through 
mathematics self-efficacy and self-concept. The 
findings were similar to those by Kesiki and Nekang 
(2023), and Hidayatullah and Csíkos (2023) who 
found that prior performance and beliefs were 
indirectly associated with achievements through 
attitudes respectively. Moreover, the findings of the 
presents study revealed a multidimensional internal 
structure for the mathematics learning outcome scale 
consisting of both affective and cognitive measures. 
These findings were similar to evidence by Antara et 
al. (2020) pointing to the feasibility of developing an 
assessment instrument that effectively measures a 
two-dimensional measured variable. Finally, the 
findings from the present study supported evidence 
by Zhao et al. (2012), who found that a holistic 
measurement model for assessing mathematics 
learning should include both personal and contextual 
variables. Findings have implications for the MMT 
theory given that the interpretation of test scores on 
the MLO scale was based on the scores of individual 
subscales (different test types) rather than on scores 
from a single test.  

Recommendations and Suggestions 
Findings from the present study has demonstrated 
that, self-report scales especially closed ended 
questionnaires (excluding MCQs) should not 
substitute standard tests in the measurement of 
mathematics learning outcomes due to the fact that 
they do not provide sufficient evidence of predictive 
criterion validity when correlated with mathematics 
achievement. It’s dataset in the present study 
appeared to show an extremely low association with 
the mathematics achievement dataset when controlled 
for mathematics performance (r = .065, p < .05). 
Moreover, students sampled in the present study 
grossly exaggerated their own perceptions of their 
abilities in solving specific mathematics tasks 
compared to their actual abilities in solving the tasks 
as was demonstrated through a comparison of their 
mathematics performance and achievement scores. 
The trendline model estimate for the PMP subscale 
was less fitting to the data and the trendline estimate 
was further away from the actual scores than for the 
other subscales (compare R2 values for the trendlines 
in figure 4). As was the case in the present study 
students’ perceptions of their own mathematics 
abilities were a positive predictor of mathematics 
achievement but their actual class test performances 
were not a significant predictor of mathematics 
achievement. So, they appear to be a total divergence 
between students’ perceptions of their mathematical 
abilities and actual or concrete mathematical abilities. 
The mean students’ perceived performance in 

mathematics for the study was 55.49% compared to 
students’ mean scores in class and public test (9.49% 
and 15.13% respectively) which were significantly 
lower (p < .05). The difference in the mean 
performances of students in the three test that were 
carried out revealed that these differences in means 
were statically significant (see one-way ANOVA 
results).  

Furthermore, the calculated statistical indices from 
the standardized bifactor loadings of the augmented 
oblique bifactor model provided enough evidence that 
relative bias in the model was above the 10% 
benchmark in which Reise et al. (2013) suggested that 
a unidimensional internal structure should be ruled 
out for such an instrument. This led to the conclusion 
that the MLOM was multidimensional. At best this 
would mean that, mathematics performance, 
perceived mathematics performance, and 
mathematics achievement subscales measure separate 
mathematical abilities and a single subscale therefore 
cannot claim to either measure all of students’ 
mathematical abilities or act as a replacement for the 
other subscales. In other words, assessing a single 
dominant trait cannot be an effective measurement of 
students’ mathematics learning but that an assessment 
of different behaviours (traits) of learners can provide 
an effective measurement of the construct. The raw 
total score was not a reliable enough measure of the 
MLOM (unidimesionality) but the subscale scores 
were a reliable-enough measure of their specific 
factors (multidimensionality). The questionnaire and 
mathematics performance test did not provide any 
evidence of criterion validity and should not be used 
as substitutes in the measurement of mathematics 
achievement. 

Finally, the researchers reiterate that self-assessment 
instruments (questionnaire measures) should not be 
utilized as the lone instrument in the measurement of 
mathematics achievement. Dowrich (2008, p. 4) is 
emphatic on this by asserting that, ‘… a general rule 
in testing which states that no important decision 
should be made on the basis of one limited sample of 
behaviour’. However, in case a questionnaire is to be 
utilized in measuring students’ mathematics learning 
outcomes, the teacher should consider using a self-
assessment technique such as self-questioning or any 
other effective subjective performance-based 
intervention during the instructional and practical 
phases of mathematics learning to improve the 
accuracy of students’ self-assessment (Mastnak et al., 
2023). Secondly, the findings of the present study 
have implications for the MMT given that a 
multidimensional internal structure for the MLO 
warrants the use of different types of academic test in 
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the effective measurement of mathematics learning 
outcomes. This entails that, other instruments 
measuring cognitive attributes should be employed as 
well and the aggregate of the scores from all 
instruments utilized should make the final 
performance. As seen in the present study, the 
aggregation of scores from different instruments 
improved students’ mathematics performances while 
reducing the variations observed in the actual 
(individual subscales) panel test scores as they were 
slightly reduced (SD of aggregated scores= 9.26, SD 
of MP=10.19, and SD of MA=10.52). The results 
proved that aggregated scores from instruments 
testing both at the affective and cognitive domains 
sufficiently mimics normally distributed test scores 
(see figure 3).  

In context, class tests (premock included) were found 
not to be significant direct predictors of the regional 
mock examination (standard test) since they did not 
provide any evidence of predictive criterion validity, 
only the indirect effect was significant through self-
efficacy and self-concept of mathematical ability. To 
resolve this and reduce variations in teacher-made test 
(variations exist in test in terms of item difficulty, 
weighting, question format, and test duration, across 
classrooms and schools), the researchers 
recommended that class tests should be harmonized 
with the aim of reducing the variations that exist in 
the behaviours being tested. Though harmonizing 
class test would by no means make them standard, it 
would however reduce variations in test conditions.  
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