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INTRODUCTION 

What is Neuromorphic Computing? 

Neuromorphic computing refers to neural-inspired systems designed 
for non–von Neumann architectures that integrate principles from 
neuroscience, machine learning, AI, hardware design, and materials 
science. Initially focused on analog circuits mimicking biological 
neurons and synapses, the field has expanded to encompass a broad 
range of hardware and software systems. Core features of 
neuromorphic systems include co-located memory and computation, 
simple communication between neurons and synapses, and local 
learning capabilities. Many also exhibit spiking behavior, nonlinear 
dynamics, high connectivity, plasticity, robustness, and the ability to 
process noisy or incomplete data. These systems are typically event-
driven, enabling low-power operation and emphasizing temporal 
dynamics. Their development requires interdisciplinary collaboration 
across neuroscience, computer science, engineering, and materials 
science. 
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Current State of Neuromorphic Computing Research 

Neuromorphic computing spans multiple disciplines, making it difficult to fully define due to diverse goals and 
approaches across neuroscience, computer science, engineering, and materials science. It lies on a spectrum of 
repurposable computing platforms, contrasting with synchronous von Neumann architectures through increased 
parallelism and asynchrony. One branch of research focuses on accelerating deep learning by creating hardware 
tailored to specific networks (e.g., CNNs) and training methods like backpropagation. These systems-often 
industry-developed (e.g., Google’s TPU, Intel’s Nervana Engine)-fit the neuromorphic definition but rely heavily 
on large labeled datasets, differing from other neuromorphic approaches. 

 
Figure1: Spectrum of repurposable computing platforms [WSP: Hylton] 

 
Figure 2: Two types of memristors that could be used in neuromorphic systems [Chua1971, 

WSP:Williams]. 
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Advancements and Architectural Perspectives in Neuromorphic Computing 

One of the most popular technologies associated with building neuromorphic systems is the memristor (also 
known as ReRAM). There are two general types of memristors: nonvolatile, which is typically used to implement 
synapses, and locally active, which could be used to represent a neuron or axon (Figure 2). Nonvolatile 
memristors are also used to demonstrate activation functions and other logical computations. Memristors used to 
implement synapses are often used in a crossbar. 

 
Figure 3: ReRAM used as synapses in a crossbar array [WSP:Saxena]. 

 
Figure 4: A von Neumann or traditional architecture from the computer science perspective 

Open Issues 

Neuromorphic computing includes researchers in fields such as neuroscience, computing, computer and electrical 
engineering, device physics, and materials science. The focus of the workshop was to identify the major questions 
from a computing perspective of neuromorphic computing or questions that can be addressed primarily by 
computational scientists, computer scientists, and mathematicians and whose solutions can benefit from the use of 
high-performance computing (HPC) resources. 

 
Figure 5: A potential neuromorphic architecture from the computer science perspective 

Neuron, Synapse, and Biological Component Models in Neuromorphic Systems 

Neuromorphic computing systems require careful selection of neuron and synapse models. Neuron models vary 
from simple threshold-based models like McCulloch-Pitts to complex biologically accurate ones like Hodgkin-
Huxley. These models differ in biological realism, computational cost, and suitability for different applications. 
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Figure 6: Example neuron models [Hodgkin1952, Izhikevich2003, Gerstner2002, McCulloch1943]. 

Neuromorphic Computing: Biological Realism vs. Functionality 

One of the key research questions in neuromorphic computing is determining the level of complexity and 
biological realism necessary to achieve desired functionality. The models selected for a neuromorphic system 
should align with the system's ultimate goal. If the goal is biologically realistic simulations, the models must 
replicate biological systems as accurately as possible. However, the focus of this report is on the notion that the 
primary aim of neuromorphic architecture should be to create computationally efficient systems, not necessarily 
to mimic biological behaviour in detail. 

 
Figure 7: Levels of abstraction in biological brains and what functionality they may allow 

[WSP:Aimone].

LITERATURE REVIEW 

[1] This paper introduces an in-memory 
neuromorphic computing (IMNC) chip that supports a 
hybrid topology of spiking and artificial neural 
networks (S/ANNs). The chip features a ring-based 
architecture optimized for sparse data flows, 
achieving high energy efficiency and accuracy. 
Experimental results demonstrate over 95% accuracy 
in tasks like voice activity detection and ECG 
anomaly detection, with a dynamic energy 
consumption of 0.43 pJ per synaptic operation. 
ir.pku.edu.cn. 

[2] This work presents multilayer spintronic devices 
that function as both synapses and neurons in 
neuromorphic systems. The devices exhibit discrete 
resistance states due to magnetic domain wall 

dynamics, enabling multi-state memory and leaky 
integrate-and-fire neuron behavior. When integrated 
into a spiking neural network, the system achieves up 
to 90% accuracy on the MNIST dataset, showcasing 
potential for energy-efficient neuromorphic 
computing. IEEE Resource Center. 

[3] This research explores the integration of photonic-
electronic resonant tunneling diode (RTD) neurons 
with spiking flip-flop memory for neuromorphic 
computing. The proposed system utilizes spike-
encoded information processing, leveraging the high-
speed and low-power characteristics of RTD devices. 
This approach aims to enhance the performance and 
efficiency of neuromorphic systems. 

[4] Yang discusses the use of integrated memristor 
networks to address the challenges of higher-
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complexity neuromorphic computing. The paper 
highlights the potential of memristor-based 
architectures to emulate complex neural behaviors 
and facilitate scalable, energy-efficient computing 
systems. The integration of memristors offers 
advantages in terms of density and functionality for 
neuromorphic applications. 

[5] NeuroSEE presents a neuromorphic processing 
framework designed for visual prostheses. By 
utilizing spike representation encoding and a bio-
inspired spiking neural network model, the 
framework achieves significant energy efficiency 
improvements-up to 15 times lower power 
consumption compared to conventional CNN-based 
approaches. The system demonstrates high correlation 
with primary visual cortex responses, indicating its 
potential for prosthetic applications. IEEE EMBS 

[6] This paper explores the application of deep 
learning techniques to train spiking neural networks 
(SNNs). It discusses the challenges and 
methodologies for adapting backpropagation and 
other optimization strategies to the spiking domain. 
The study provides insights into bridging the gap 
between traditional deep learning and spiking neural 
computation. 

[7] Ottati et al. examine the trade-offs between 
spiking and non-spiking digital hardware 
architectures for deep learning acceleration. The 
paper provides a comparative analysis of energy 
efficiency, computational complexity, and 
performance, offering guidance on selecting 
appropriate architectures for specific applications. 

[8] Sharma reviews the role of memristor-based 
networks in neuromorphic computing for artificial 
intelligence tasks. The article discusses the 
advantages of memristor devices in implementing 
synaptic weights and their impact on network 
dynamics, learning capabilities, and scalability. It also 
addresses challenges such as variability and non-
linearity in memristor-based systems. 

[9] Li et al. propose a multi-core neuromorphic 
system aimed at enhancing the energy efficiency of 
deep neural network training. The system leverages 
parallel processing and in-memory computing 
techniques to reduce power consumption while 
maintaining high performance. Experimental results 
demonstrate the system's effectiveness in training 
complex models with reduced energy requirements. 

[10] Cauwenberghs discusses the design of 
neuromorphic circuits tailored for large-scale 
artificial intelligence applications. The paper covers 
aspects such as circuit architectures, scalability, and 
integration with existing AI frameworks. It 

emphasizes the importance of neuromorphic 
principles in achieving efficient and scalable AI 
systems. 

[11] This work addresses the challenge of training 
quantized spiking neural networks (QSNNs) by 
proposing a cosine-annealed learning rate schedule 
combined with weight-independent adaptive moment 
estimation. The approach mitigates issues arising 
from gradient discontinuities during training, enabling 
QSNNs to escape local minima and achieve near-
state-of-the-art performance on complex datasets. The 
authors provide empirical evaluations demonstrating 
the effectiveness of their method across multiple 
datasets.arXiv. 

[12] This study explores the impact of dense and 
sparse mapping schemes on the performance of 
resistive random-access memory (RRAM) 
architectures in deep learning applications. The 
authors present a design space exploration 
methodology to quantify the benefits and limitations 
of these mapping schemes, considering factors such 
as power consumption, noise susceptibility, and 
network architecture. Their findings provide insights 
into optimizing RRAM-based accelerators for various 
deep learning tasks.arXiv. 

[13] This resource provides an overview of 
neuromorphic computing, focusing on the integration 
of memristors in hardware design to emulate neural 
processing. It covers the transition from circuit-level 
implementations to algorithmic considerations, 
highlighting the potential of memristor-based systems 
in achieving energy-efficient and brain-inspired 
computing solutions. The content is aimed at 
researchers and practitioners interested in the 
interdisciplinary aspects of neuromorphic computing. 

[14] This paper investigates the analog synaptic 
behaviors of carbon-based self-selective RRAM 
devices for in-memory supervised learning 
applications. The authors demonstrate the potential of 
these devices to emulate synaptic functions, such as 
weight update and retention, which are crucial for 
neuromorphic computing systems. Their findings 
contribute to the development of more efficient and 
scalable memristor-based learning systems. 

[15] This research presents an implementation of a 
quantized convolutional neural network (CNN) on a 
parallel-connected memristor crossbar array, targeting 
edge AI platforms. The authors propose a radix-5 
CNN architecture utilizing 1-bit memristors, 
achieving learning results comparable to high-
precision models while reducing the area of the 
memristor crossbar array by half. Their work 
demonstrates the feasibility of deploying efficient 
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neural network models on memristor-based hardware 
for edge computing applications. 

[16],[17],[18] This paper presents FGMSVM with 
one-against-one and maximum voting, using K-means 
clustering for noninvasive cardiovascular disease 
screening. It also explores a deep learning method for 
detecting five arrhythmia types via PPG and surveys 
approaches for noninvasive fetal oxygen saturation 
measurement using PPG. 

[19],[20] This research presents a novel method to 
modify the current VCO for adjustable output voltage 
levels and develops an OP-AMP circuit using 22 nm 
FinFET technology with high-k gain for improved 
performance. 

METHEDOLOGY 

Spiking Neural Network (SNN) Architecture 

Neuromorphic computing systems emulate the brain 
by using Spiking Neural Networks (SNNs), which 
process information through discrete spikes, closely 
resembling biological neural activity. This approach 
enables low-power, event-driven computation and 
offers improved temporal dynamics compared to 
traditional neural networks. Neurons activate only 
when input exceeds a threshold, communicating via 
timed spikes, ensuring energy is used only by active 
components. A notable example is IBM’s TrueNorth 
chip, which simulates over one million neurons and 
256 million synapses for tasks such as visual and 
pattern recognition. 

Neuron and Synapse Modeling 

Neuromorphic chips are composed of artificial 
neurons and synapses designed to replicate key 
biological functions, enabling complex learning, 
memory, parallelism, and adaptability-fundamental to 
bio-inspired intelligence. Neurons integrate incoming 
spikes and generate outputs, while synapses adjust 
signal strength based on learning rules such as Spike-
Timing Dependent Plasticity (STDP). These 
functionalities are implemented using digital, analog, 
or mixed-signal circuits. A notable example is Intel’s 
Loihi chip, which supports real-time, on-chip learning 
through programmable synaptic plasticity. 

 
Fig 1.1.1: SNN Architecture 

 
Fig 1.1.2: Neuron & Synapse Modeling 

 
Fig 1.1.3: Event-Driven Communication 

 
Fig 1.1.4: Hardware Implementation 

 
Fig 1.1.5: Neuromorphic Brain Fusion 

 
Fig 1.1.6: Neuromorphic Computing 
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Fig 1.1.1: SNN Architecture and Fig 1.1.2: Neuron & 
Synapse Modeling illustrate the core components of 
Spiking Neural Networks (SNNs), where neurons 
communicate via asynchronous spikes, mimicking 
biological brain activity. Neurons fire when a 
threshold is reached, and synapses adjust their strength 
based on learning rules like Spike-Timing Dependent 
Plasticity (STDP), enabling real-time adaptation. Fig 
1.1.3: Event-Driven Communication and Fig 1.1.4: 
Hardware Implementation shift focus to the event-
driven nature of neuromorphic systems, ensuring 

energy efficiency by triggering computation only 
during events. Hardware implementations using 
digital, analog, or mixed-signal circuits replicate 
neuron and synapse behavior for real-time, on-chip 
learning. Lastly, Fig 1.1.5: Neuromorphic Brain 
Fusion and Fig 1.1.6: Neuromorphic Computing 
highlight the integration of neuromorphic systems into 
practical applications like pattern recognition and 
decision-making, demonstrating the potential of bio-
inspired, energy-efficient computing. 

 
Fig: Neuromorphic Computing: The Future Brains of Computing 

Neuromorphic computing is an innovative paradigm 
inspired by the structure and function of the human 
brain, aiming to revolutionize computing by creating 
systems that mimic biological neural networks. This 
approach utilizes specialized hardware, such as 
spiking neural networks (SNNs), which process 
information through discrete spikes, enabling energy-
efficient, parallel, and event-driven computation. By 
integrating memory and processing, neuromorphic 
systems are designed to learn and adapt in real-time, 
offering significant advantages over traditional 
computing architectures in tasks that require cognitive 
functions, pattern recognition, and decision-making. 
With applications spanning from artificial intelligence 
to robotics, neuromorphic computing holds the 
potential to deliver scalable, low-power, and highly 
adaptive systems that can better emulate the brain's 
processing capabilities, ushering in the future of 
intelligent, bio-inspired computing. 

CONCLUSION 

In conclusion, neuromorphic computing represents a 
transformative approach to computing that draws 
inspiration from the brain's structure and function, 
offering a promising alternative to traditional von 
Neumann architectures. By leveraging spiking neural 
networks, event-driven communication, and bio-
inspired learning rules, neuromorphic systems enable 
energy-efficient, parallel, and adaptive computation, 
making them well-suited for tasks such as pattern 
recognition, decision-making, and real-time learning. 
The ongoing advancements in hardware design, such 

as memristors and specialized chips like IBM's 
TrueNorth and Intel's Loihi, underscore the potential 
of neuromorphic systems to revolutionize fields 
ranging from artificial intelligence to robotics. As 
interdisciplinary research continues to evolve, 
neuromorphic computing is poised to unlock new 
possibilities in cognitive computing, offering scalable 
and efficient solutions that closely mirror biological 
processes and pave the way for the next generation of 
intelligent systems. 
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