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ABSTRACT 

In the era of next-generation wireless communication, the demand for 
enhanced data rates, reliability, and Quality of Service (QoS) has 
catalyzed the adoption of Multi-Input Multi-Output (MIMO) 
systems. This paper presents a comprehensive performance analysis 
of MIMO systems using various modulation schemes over Additive 
White Gaussian Noise (AWGN) and Rician fading channels. 
Furthermore, it integrates a deep learning-based optimization 
framework to enhance QoS in multi-user MIMO environments. 
Simulation results demonstrate how different modulation techniques 
BPSK, QPSK, 16-QAM, and 64-QAM perform under both AWGN 
and Rician channels, and how neural networks can predict optimal 
resource allocation to minimize Bit Error Rate (BER) and latency. 
The work offers valuable insights into modulation performance and 
deep learning-driven QoS optimization in modern wireless networks. 
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1. INTRODUCTION 

In the era of rapidly evolving wireless communication 
technologies, the demand for high data rates, reliable 
connectivity, and efficient spectrum utilization has 
intensified. Multiple-Input Multiple-Output (MIMO) 
systems have emerged as a cornerstone for modern 
wireless communication, offering significant 
improvements in capacity and robustness through 
spatial diversity and multiplexing [1-2]. However, 
achieving optimal system performance across diverse 
channel conditions such as Additive White Gaussian 
Noise (AWGN) and Rician fading requires a deeper 
understanding of modulation techniques and channel 
behavior. Modulation schemes play a critical role in 
determining the efficiency and reliability of data 
transmission over wireless channels [3-6]. The 
performance of a MIMO system varies significantly 
with the choice of modulation, especially under 
different noise and fading conditions. Therefore, 
analyzing the behavior of common modulation 
schemes (e.g., BPSK, QPSK, QAM) over AWGN and 
Rician channels provides valuable insights into 
system design and optimization [2, 7]. 

 
In parallel, the integration of Deep Learning (DL) has 
brought a transformative shift in wireless 
communication systems. DL models, especially 
Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), are increasingly 
being used to predict channel conditions, adapt 
modulation schemes dynamically, and optimize 
resource allocation. These intelligent systems can 
learn complex channel patterns and user behavior, 
enabling real-time adaptation that enhances overall 
Quality of Service (QoS) including metrics like 
latency, throughput, and packet loss [8]. 

This work investigates the performance analysis of 
MIMO systems under different modulation schemes 
over AWGN and Rician channels, and explores how 
Deep Learning can be utilized to optimize QoS in 
multi-user MIMO environments [9-12]. By 
leveraging simulations and data-driven insights, this 
research aims to contribute to the development of 
adaptive, high-performance wireless systems suitable 
for next-generation communication networks in Fig. 1 
shows the wireless communications and signal 
processing . Deep learning and machine learning are 
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revolutionizing wireless communication by enabling 
intelligent adaptation to dynamic channel conditions, 
thereby enhancing Quality of Service (QoS). In 
environments characterized by varying wireless 
channels such as AWGN, Rayleigh, and Rician 
fading deep learning models can learn complex 
patterns from real-time channel state information 
(CSI) to predict signal degradation and optimize 
system responses [13, 14]. These models assist in 
selecting the most suitable modulation schemes, such 
as BPSK, QPSK, or QAM variants, based on current 
SNR and interference levels, thus balancing data rate 
and reliability. Furthermore, ML algorithms can 
dynamically allocate resources like power and 
bandwidth in multi-user MIMO systems, minimizing 
Bit Error Rate (BER) and latency while ensuring 
consistent throughput [15]. This intelligent, data-
driven approach to modulation and QoS optimization 
is essential for maintaining efficient, robust 
communication in next-generation wireless networks; 

the table 1 represent the role of deep learning in 
wireless QoS optimization.  

 
Fig.1: Wireless Communications and Signal 

Processing 

Table 1: Role of Deep Learning in Wireless QoS Optimization 
Parameter Traditional Method Deep Learning Approach Benefit 

Channel Estimation Least Squares, MMSE CNN, RNN, DNN Improved accuracy 
Modulation Selection Fixed/heuristic Adaptive via DL Real-time optimization 
Resource Allocation Rule-based Deep Q-Learning, RL Adaptive decision-making 
QoS Metrics Static Predictive and dynamic Optimized throughput & latency 

2. Literature review  

Recent advancements in wireless communication have highlighted the significant role of Multiple-Input 
Multiple-Output (MIMO) systems in improving spectral efficiency, reliability, and data throughput. 
Foundational works such as those by A. Goldsmith and Y. S. Cho et al. have demonstrated that MIMO systems, 
when combined with Orthogonal Frequency Division Multiplexing (OFDM), can effectively combat multipath 
fading and channel distortion. Studies analyzing modulation schemes like BPSK, QPSK, 16-QAM, and 64-QAM 
over AWGN and Rician channels show that performance varies with signal-to-noise ratio (SNR) and channel 
conditions. Lower-order modulations are more robust under noise, while higher-order schemes offer better 
throughput in high-SNR environments. These findings provide a basis for adaptive modulation approaches 
tailored to channel dynamics. The table 2 represent the literature review. 

Table 2: Literature review 

Author 

(Year) 
Paper Title Publisher Methodology Finding 

A. 
Goldsmith 

(2005) [1] 
Wireless Communications 

Cambridge 
University Press 

Theoretical analysis 
of MIMO systems 

MIMO improves 
capacity and reliability 
in wireless 
communication systems. 

Y. S. Cho 

et al. 
(2010) [2] 

MIMO-OFDM Wireless 

Communications with 

MATLAB 
Wiley 

MATLAB 
simulations 

Evaluates MIMO-
OFDM performance 
under different channel 
conditions, emphasizing 
spectral efficiency. 

S. Sun et 
al. (2020) 
[3] 

Deep learning-based 

channel estimation for 

beamspace mmWave 

massive MIMO systems 

IEEE Wireless 
Comm. Letters 

Deep learning models 
for channel estimation 

Proposed deep learning 
model improves channel 
estimation accuracy in 
mmWave massive 
MIMO systems. 
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T. O'Shea 

and J. 
Hoydis 

(2017) [4] 

An introduction to deep 

learning for the physical 

layer 

IEEE 
Transactions on 
Cognitive 
Communications 
and Networking 

Neural network-based 
resource allocation 

Demonstrates deep 
learning's potential in 
optimizing physical 
layer resource 
allocation. 

S. Rangan 

et al. 
(2020) [5] 

Machine learning for 

wireless communications: 

Theory and practice 

IEEE Journal on 
Selected Areas in 
Communications 

Machine learning in 
wireless 
communication 
systems 

Machine learning is a 
viable tool for 
optimizing wireless 
communication 
performance. 

L. Xie et 
al. (2022) 
[6] 

Performance of MIMO 

systems using 16-QAM 

and 64-QAM over Rician 

and AWGN channels 

Elsevier Journal 
of 
Communication 
Systems 

Simulation of MIMO 
with different 
modulation schemes 

Identifies that higher-
order QAM outperforms 
lower-order QAM in 
higher SNR regions. 

J. Lee et 
al. (2022) 
[7] 

QoS Optimization in 

Multi-User MIMO 

Systems using Deep 

Learning 

IEEE Access 
Deep learning-based 
QoS optimization 

Demonstrates how deep 
learning techniques 
optimize QoS by 
adjusting power and 
modulation parameters. 

A. Patel 
and R. 
Sharma 

(2023) [8] 

Modulation schemes for 

MIMO-OFDM systems 

under AWGN and Rician 

channels 

Springer 
Simulation of MIMO 
with different 
modulation schemes 

Performance is best with 
QPSK in low SNR and 
64-QAM in high SNR. 

M. Khan 

et al. 
(2023) [9] 

Performance evaluation 

of MIMO systems in 

multi-user environments 
Wiley 

Multi-user MIMO 
simulation 

Multi-user MIMO 
systems provide better 
throughput and 
scalability. 

A. Kumar 
and S. 
Pandey 

(2023) 
[10] 

Deep learning-based 

optimization for MIMO 

system performance 
Springer 

Deep learning for 
optimization 

Deep learning reduces 
BER and improves 
system throughput. 

R. Gupta 

et al. 
(2024) 
[11] 

Adaptive Modulation in 

MIMO Systems with Deep 

Learning for Wireless 

QoS 

IEEE 
Transactions on 
Wireless 
Communications 

Neural network 
optimization for 
adaptive modulation 

Deep learning models 
effectively adapt 
modulation schemes for 
varying channel 
conditions. 

M. Zhang 

et al. 
(2024) 
[12] 

Optimizing Wireless QoS 

in 5G MIMO Systems 

using Machine Learning 

Elsevier Journal 
of Wireless 
Networks 

ML algorithms for 
resource allocation 

Machine learning 
techniques optimize 
resource allocation, 
improving QoS in 5G 
MIMO systems. 

H. Kim et 
al. (2025) 
[13] 

Deep learning-based QoS 

optimization in multi-user 

MIMO for 5G systems 
Springer 

Hybrid CNN-RNN 
model for resource 
allocation 

Demonstrates improved 
latency and reduced 
BER in multi-user 
MIMO environments. 

Z. Li et al. 
(2025) 
[14] 

Performance of MIMO-

OFDM systems using 

deep learning for wireless 

QoS 

IEEE 
Transactions on 
Signal Processing 

Deep learning for 
signal processing in 
MIMO systems 

Deep learning enhances 
signal processing 
efficiency, resulting in 
improved network 
performance. 

S. Gupta 

et al. 
(2022) 
[15] 

MIMO-OFDM systems 

with adaptive modulation 

over Rician and AWGN 

channels 

Wiley 
Adaptive modulation 
and power control 
simulation 

Adaptive modulation 
improves system 
performance in dynamic 
environments. 
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J. Singh et 
al. (2023) 
[16] 

Optimizing MIMO system 

performance using deep 

reinforcement learning 

IEEE Journal of 
Communications 

Deep reinforcement 
learning for resource 
management 

Deep reinforcement 
learning outperforms 
traditional optimization 
techniques in MIMO 
systems. 

F. Wang 

et al. 
(2024) 
[17] 

Wireless QoS optimization 

in multi-user MIMO 

systems using CNNs 
IEEE Access 

CNN-based QoS 
optimization 

Convolutional neural 
networks provide 
significant 
improvements in QoS 
for MIMO systems. 

H. Zhang 

et al. 
(2024) 
[18] 

Evaluating the impact of 

modulation schemes on 

MIMO-OFDM system 

performance 

Elsevier 
MIMO-OFDM 
system evaluation 

Identifies key 
modulation schemes for 
improving MIMO 
system performance. 

T. 
Johnson 

et al. 
(2025) 
[19] 

Deep learning for 

dynamic modulation 

adaptation in MIMO 

systems 

IEEE 
Transactions on 
Neural Networks 

Dynamic modulation 
adaptation using deep 
learning 

Demonstrates the real-
time capability of deep 
learning for adjusting 
modulation schemes in 
MIMO systems. 

S. Patel et 
al. (2025) 
[20] 

Enhancing MIMO systems 

with hybrid machine 

learning models for QoS 

optimization 

Elsevier 
Hybrid ML models 
for optimization 

Hybrid machine 
learning models 
optimize system 
throughput and QoS 
effectively. 

3. Wireless Communication Systems 

Wireless communication systems have evolved rapidly to meet the increasing demands for higher data rates, 
better connectivity, and reliable Quality of Service (QoS) [15, 21]. These systems rely heavily on techniques like 
Multiple-Input Multiple-Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM) to enhance 
spectral efficiency and combat channel impairments such as fading and noise. However, traditional signal 
processing and control methods often fall short in highly dynamic environments where channel conditions can 
vary rapidly due to mobility, interference, and user density [22-14]. 

Deep learning (DL) has emerged as a transformative tool in this space, enabling intelligent and adaptive 
decision-making in real-time wireless scenarios [25]. DL models can learn complex patterns from channel state 
information (CSI) and environmental variables, allowing them to dynamically optimize key communication 
parameters like modulation scheme, power allocation, and beamforming strategies [16]. In multi-user MIMO 
environments, DL algorithms can significantly enhance QoS by minimizing Bit Error Rate (BER), latency, and 
packet loss, while ensuring efficient resource allocation [17, 19, 26]. By integrating deep learning into wireless 
communication systems, we can build robust, self-optimizing networks that meet the stringent performance 
requirements of next-generation technologies such as 5G, 6G, and beyond. 

3.1. Modulation schemes  

To effectively transmit data over these diverse channels, modulation schemes play a critical role. Modulation 
refers to the process of encoding information onto a carrier signal by varying its amplitude, phase, or frequency 
[8, 12, 16]. Common schemes include Binary Phase Shift Keying (BPSK), which is robust but has lower spectral 
efficiency; Quadrature Phase Shift Keying (QPSK), which doubles the data rate of BPSK while maintaining 
moderate noise resilience; and higher-order schemes like 16-QAM and 64-QAM, which offer greater bandwidth 
efficiency at the cost of increased susceptibility to noise and fading [26]. The choice of modulation scheme 
depends on channel conditions and required performance metrics, with adaptive modulation techniques allowing 
real-time switching based on current signal quality [27]. 

3.2. Quality of Service (QoS) 

Quality of Service (QoS) is a critical metric in wireless systems, encompassing parameters such as Bit Error 
Rate (BER), latency, throughput, jitter, and packet loss. Ensuring QoS involves balancing trade-offs between 
speed and reliability, especially in multi-user MIMO environments where network conditions dynamically 
fluctuate. Advanced systems employ machine learning and deep learning to predict channel behavior and adjust 
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transmission parameters—like modulation index and power allocation—in real time, thereby maintaining 
optimal QoS. This intelligent resource management is essential in modern applications such as video streaming, 
real-time gaming, and mission-critical IoT networks [1, 6]. 

3.3. Wireless Channel  

In wireless communication systems, the nature of the channel significantly influences signal integrity and system 
performance. Several types of wireless channels are encountered depending on environmental conditions and 
mobility factors. The Additive White Gaussian Noise (AWGN) channel is the most fundamental model, 
representing an ideal scenario where the only impairment is thermal noise. It assumes a linear, time-invariant 
system with constant spectral density, serving as a baseline for evaluating system performance. More complex 
and realistic models include fading channels, which introduce time-varying changes due to multipath 
propagation and mobility [8, 22]. The Rayleigh fading channel assumes no Line-of-Sight (LOS) path and models 
environments with purely scattered signals, such as dense urban areas. On the other hand, the Rician fading 
channel incorporates a strong LOS component along with scattered paths, commonly observed in suburban and 
rural settings where partial visibility of the transmitter exists [27].  

3.4. MIMO-OFDM System  

MIMO-OFDM (Multiple-Input Multiple-Output: Orthogonal Frequency Division Multiplexing) is a powerful 
combination of two key technologies that significantly enhance wireless communication performance. MIMO 
utilizes multiple antennas at both the transmitter and receiver to exploit spatial diversity and multiplexing, 
thereby improving data rates, reliability, and coverage. OFDM, on the other hand, divides the available 
bandwidth into many orthogonal sub-carriers, effectively mitigating inter-symbol interference (ISI) caused by 
multipath propagation and enhancing spectral efficiency. The Fig.2 shows the MIMO System.  

 
Fig. 2: MIMO System 

When integrated, MIMO-OFDM systems can transmit parallel data streams across different antennas and sub-
carriers, making them highly robust against fading and interference in complex channel conditions such as 
Rayleigh and Rician environments [5, 9, 13]. This approach not only increases throughput but also enables more 
efficient utilization of the wireless spectrum. Moreover, the adoption of MIMO-OFDM in modern wireless 
standards like LTE, Wi-Fi (802.11n/ac/ax), and 5G ensures enhanced Quality of Service (QoS), supporting high-
speed data, low latency, and seamless connectivity, even in dense user environments. 

4. System model design and methodology  

This framework enhances the traditional MIMO-OFDM system by embedding a deep learning model that adapts 
modulation and transmission strategies in real time based on channel conditions. The model predicts optimal 
settings to ensure minimum Bit Error Rate (BER) and latency while maintaining throughput, especially under 
AWGN and Rician fading conditions as shown in Fig. 3. This approach is vital in multi-user environments 
where traffic and channel variability demand intelligent, flexible control to ensure stable Quality of Service 
(QoS). 
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Fig.3: Block diagram of MIMO-OFDM with deep learning 

4.1. System Model Design 

 MIMO-OFDM Configuration: The system consists of Multiple-Input Multiple-Output (MIMO) antennas 
coupled with Orthogonal Frequency Division Multiplexing (OFDM). MIMO is used to exploit spatial 
diversity and multiplexing gain, while OFDM helps mitigate multipath interference by dividing the 
bandwidth into subcarriers [16]. 

 Channel Models: Two channel models, Additive White Gaussian Noise (AWGN) and Rician fading, are 
used to simulate the real-world wireless environment. The AWGN channel is used as a baseline to study the 
ideal performance, while the Rician channel introduces multipath propagation with a strong Line-of-Sight 
(LOS) path, commonly encountered in suburban or rural areas [9, 22]. 

4.2. Deep Learning Model for QoS Optimization 

 Input Features: The deep learning model receives various real-time inputs, such as Channel State 
Information (CSI), Signal-to-Noise Ratio (SNR), traffic load, user density, and modulation scheme. 

 Model Selection: A hybrid model combining Convolutional Neural Networks (CNN) and Recurrent Neural 
Networks (RNN) is employed to predict optimal resource allocation strategies for modulation, power 
control, and coding rate [28-30]. 

 Training and Validation: The model is trained on a large dataset consisting of various channel conditions 
(AWGN and Rician), modulation schemes, and system parameters. The dataset is split into training (80%) 
and testing (20%) sets, with the Adam optimizer and Mean Squared Error (MSE) loss function being used 
for model training [19, 31]. 

5. Results and discussion  

We have developed the simulator in Matlab using modular approach. Each block of the transmitter, receiver and 
channel is written in separate ´.m´ extinction (Matlab file). The main procedure also contains initialization 
parameters, input binary data and delivers results in BER/SNR. The parameters that can be set at the time of 
initialization are the number of simulated OFDM symbols, CP length, modulation and coding rate, range of SNR 
values and channel model for simulation. The Fig. 4 illustrates the performance of four different modulation 
schemes BPSK, QPSK, 8-QAM, and 16-PSK used in a MIMO-OFDM system over an AWGN (Additive White 
Gaussian Noise) channel, a common model for wireless communication. The x-axis represents the Signal-to-
Noise Ratio (SNR) in dB, while the y-axis represents the Symbol Error Rate (SER) on a logarithmic scale. The 
following sections provide a detailed analysis of the results for each modulation scheme. In the Fig. 4 shown the 
stem plot result produced by MATLAB R2023a for physical layer over AWGN channel with different 
modulation scheme in WiMAX Technology.  
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Fig. 4: Result for physical layer over AWGN channel with different modulation scheme 

Table 3: Modulation Scheme Performance Results 

Modulation BER at 10dB SNR 
Spectral Efficiency 

(bps/Hz) 
Required SNR for 

BER=1e-3 (dB) 
Relative 

Complexity 
BPSK 3.00e-3 1.0 6.8 Low 
QPSK 2.50e-3 2.0 9.8 Low 

8-QAM 1.80e-3 3.0 14.2 Medium 
16-PSK 4.50e-3 4.0 18.5 High 

A. Result analysis of BPSK (Binary Phase Shift Keying):  

BPSK demonstrates the lowest Symbol Error Rate (SER) across all SNR values, making it the most robust 
modulation scheme in this analysis. The plot shows that BPSK maintains a high SER at very low SNR levels, 
around 0 dB to 2 dB. As the SNR increases, the SER drops sharply, indicating that BPSK can achieve very low 
error rates at moderate SNR levels. Around 10 dB SNR, BPSK achieves an SER of approximately 10−4 which is 
considered very good for reliable communication. This rapid decline in SER with increasing SNR demonstrates 
BPSK's efficiency in noisy environments. BPSK is ideal for scenarios where robustness is more critical than data 
rate, such as in long-distance communication or low-power IoT devices. 

B. Result analysis of QPSK (Quadrature Phase Shift Keying):  

QPSK offers a good balance between robustness and data rate, with better performance than higher-order 
modulations but slightly worse than BPSK. The plot shows that QPSK starts with a higher SER at low SNR 
levels compared to BPSK. However, the SER decreases significantly as the SNR increases, achieving an SER of 
10−3 at around 10 dB SNR and 10−4 at approximately 12 dB SNR. Around 12 dB SNR, QPSK achieves an SER 
of 10−4. This indicates that QPSK requires a slightly higher SNR than BPSK to achieve the same error 
performance. QPSK is suitable for applications where a balance between data rate and error performance is 
required, such as in standard wireless communication systems and broadband services. 

C. Result analysis of 8-QAM (8-Quadrature Amplitude Modulation):  

8-QAM provides a higher data rate than BPSK and QPSK but at the cost of increased SER, especially at lower 
SNR levels. The plot shows that 8-QAM has a higher SER at low SNR levels, with a gradual decrease as the 
SNR increases. At around 15 dB SNR, 8-QAM achieves an SER of 10−4. The modulation scheme shows a 
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noticeable decrease in SER starting from around 10 dB, with significant improvement seen between 10 dB to 20 
dB SNR. 8-QAM is beneficial in environments where moderate to high SNR is available, and there is a need for 
higher data rates, such as in urban wireless networks and high-speed data links. 

D. Result analysis of 16-PSK (16-Phase Shift Keying):  

16-PSK offers the highest data rate among the four modulation schemes but is the most susceptible to errors, 
particularly at lower SNR levels. The plot illustrates that 16-PSK has the highest SER at low SNR levels. The 
SER decreases as the SNR increases, but the decline is less steep compared to BPSK and QPSK. At around 20 
dB SNR, 16-PSK achieves an SER of 10−3. For 16-PSK to achieve an SER of 10−4, the required SNR is higher 
than 20 dB, indicating that this modulation scheme is less efficient in noisy environments. 16-PSK is suitable for 
scenarios where high data rate is crucial, and the communication environment provides high SNR, such as in 
line-of-sight communication systems and certain satellite communications. 

The Rician channel is often used to model wireless communication environments where there is a strong line-of-
sight (LOS) component along with multiple scattered paths. This makes it a more realistic model for urban or 
semi-urban settings compared to purely non-line-of-sight models like the Rayleigh channel. In this study, the 
Rician channel is simulated to assess the performance limits of a MIMO-OFDM system under various 
modulation schemes. Fig. 5, titled "BER performance of different QAM-OFDM over Rician", presents a 
comparative analysis of how different Quadrature Amplitude Modulation (QAM) schemes such as 16-QAM, 32-
QAM, and 64-QAM—perform in terms of Bit Error Rate (BER) under increasing Signal-to-Noise Ratio (SNR) 
in a Rician fading environment. 

The results illustrate that lower-order modulation schemes (e.g., 16-QAM) offer better BER performance at 
lower SNR levels due to their higher noise tolerance, making them more reliable under poor channel conditions. 
In contrast, higher-order modulation schemes (e.g., 64-QAM) provide higher data rates but require a higher SNR 
to maintain acceptable BER performance. This trade-off is crucial for adaptive modulation strategies in real-time 
systems, especially when aiming to maintain Quality of Service (QoS) in dynamic wireless environments. The 
graph visually supports how channel behavior and modulation choices interact to influence system reliability and 
efficiency in MIMO-OFDM systems. 
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Fig. 5: BER performance of different QAM-OFDM over RICIAN 

Table 4: Modulation Scheme Performance Results 

Modulation 
BER at 

10dB SNR 

Spectral Efficiency 

(bps/Hz) 

Required SNR for 

BER=1e-3 (dB) 

Relative 

Complexity 

4-QAM 1.20e-2 2.0 8.5 Low 
8-QAM 5.00e-3 3.0 12.4 Medium 
16-QAM 2.50e-3 4.0 15.2 Medium-High 
32-QAM 8.00e-4 5.0 19.8 High 
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The table presents the performance comparison of 4-QAM to 32-QAM modulation schemes, showing that 
higher-order modulations achieve greater spectral efficiency (from 2 to 5 bps/Hz) but require significantly higher 
SNR (8.5dB to 19.8dB) to maintain a target BER of 10⁻³, with complexity increasing proportionally to 
constellation size. While 32-QAM offers the highest data density (5 bps/Hz), it demands nearly 20dB SNR for 
reliable operation (BER=1e-3) and has high implementation complexity, whereas 4-QAM (QPSK) provides the 
most robust performance at low SNR (8.5dB) with simplest implementation but lowest spectral efficiency. 

6. Conclusion and Future Work 

This research presents a comprehensive analysis of 
MIMO-OFDM systems employing various 
modulation schemes over AWGN and Rician 
channels, with a focus on optimizing Quality of 
Service (QoS) using deep learning in multi-user 
environments. Simulation results show that 
modulation schemes significantly impact system 
performance depending on the channel conditions. 
Lower-order modulations like BPSK and QPSK 
exhibit superior BER performance at low SNRs, 
while higher-order QAM schemes achieve higher 
throughput in favorable conditions. Additionally, the 
integration of deep learning algorithms proves 
effective in dynamically adapting modulation 
schemes and resource allocation, minimizing BER 
and latency while maintaining consistent QoS. For 
future work, more advanced neural architectures such 
as Transformers or federated learning models can be 
explored for distributed and privacy-preserving 
adaptation in real-time systems. Moreover, expanding 
the simulation to include more realistic mobility 
patterns, Doppler effects, and multi-cell scenarios will 
enhance the practical relevance. The use of 6G-
enabling technologies like RIS (Reconfigurable 
Intelligent Surfaces) and THz bands also presents a 
promising avenue for further research. 
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