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ABSTRACT 

This study investigates the performance of Maximum Likelihood 
Estimation (MLE) and Least Squares (LS) methods in estimating the 
parameters of Weibull distribution using various sample sizes. The 
bias and Mean Squared Error (MSE) of both methods are calculated 
to assess their precision and reliability using simulated data. The 
results indicate that both MLE and LS exhibit noticeable biases and 
higher MSE values for small sample sizes (n = 10), with MLE 
consistently offering more accurate estimates than LS. As sample 
sizes increase (n = 10, 30, 50, 100, 150), both methods show 
improved performance, with bias and MSE values converging 
towards zero. The MLE method, in particular, demonstrates superior 
efficiency, consistently providing lower bias and MSE across all 
sample sizes and parameter values. This study highlights the 
importance of sample size in parameter estimation and suggests that 
MLE is a more reliable method for estimating Weibull distribution 
parameters, particularly as the sample size increases. 
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1. INTRODUCTION 

The Weibull distribution is a continuous probability 
distribution developed by Waloddi Weibull. It is 
widely recognized for its versatility in modeling and 
analyzing various types of data across numerous 
fields. It is particularly useful in applications related 
to environmental and climatic studies, such as 
modeling floods, analyzing rainfall patterns, and 
estimating wind speeds. Its ability to accommodate 
different shapes and scales of data makes it suitable 
for representing natural phenomena with varying 
intensity, frequency, and distribution. Numerous 
researchers has utilized the Weibull distribution in 
diverse areas of study. For instance, Ahmad et al. 
(2022) conducted a study on the application of the 
Weibull distribution in hydrology, focusing on flood 
and rainfall data analysis. Their findings showed that 
the Weibull distribution effectively modeled extreme 
hydrological events, such as peak flood discharges 
and annual rainfall maxima, due to its ability to fit 
heavy-tailed distributions. Kumar and Singh (2023) 
examined the use of the Weibull distribution in 
estimating wind speed patterns across different  

 
geographic regions. The study highlighted its 
effectiveness in renewable energy studies, particularly 
in determining potential wind energy production and 
turbine site selection. Zhang et al. (2022) applied the 
Weibull distribution in reliability engineering to 
assess the lifespan and failure rates of mechanical 
components. The distribution’s flexibility in modeling 
increasing, constant, or decreasing hazard rates made 
it a preferred choice for predicting wear-out failures. 
Hassan et al. (2023) utilized the Weibull distribution 
in survival analysis to estimate the time-to-event for 
cancer patients undergoing specific treatments. The 
shape parameter was crucial in modeling the 
changing hazard rates over time, providing insights 
into treatment efficacy. Sun et al. (2023) investigated 
the application of the Weibull distribution in 
environmental sciences, specifically in analyzing soil 
erosion rates under varying climatic conditions. Their 
results emphasized the distribution’s utility in 
modeling natural variability and extreme conditions 
in soil data. Several estimation methods have been 
developed for the Weibull distribution, with 
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researchers comparing their accuracy using simulated 
datasets. According to Johnson et al. (2018), the 
Weibull distribution plays a crucial role in reliability 
engineering and survival analysis due to its flexibility 
in modeling failure rates. The estimation of its 
parameters, particularly the shape parameter and scale 
parameter has been widely studied using both 
classical and Bayesian techniques. In their study, they 
explored various estimation methods, including 
Maximum Likelihood Estimation (MLE), Least 
Squares Estimation (LSE), and the Method of 
Moments using Monte Carlo simulations. Their 
results indicated that MLE generally provides more 
accurate parameter estimates for large sample sizes, 
while LSE and method of moment perform better for 
small samples. Wang et al. (2022) evaluated hybrid 
estimation methods combining MLE and percentile-
based approaches. They reported that these hybrid 
techniques improved parameter estimates' robustness 
and reduced computational complexity, especially for 
moderately sized datasets. Al-Saleh et al. (2021) 
explored the effectiveness of the method of moment 
in estimating Weibull parameters for small sample 
sizes. Their findings suggested that moment 
performed well in cases of minimal data variability 
but was significantly biased when outliers or high 
variability were present in the dataset. Sun et al. 
(2023) used simulation studies to assess the 
applicability of least squares estimation for the 
Weibull distribution. They found that while LSM 
provided reliable estimates for linearly transformed 
data, its estimates were biased for heavily skewed 
distributions. Ahmed et al. (2022) introduced a novel 
adaptive Bayesian approach for Weibull parameter 
estimation. The method incorporated dynamic priors 
derived from real-time data, outperforming 
conventional Bayesian methods in terms of predictive 
accuracy and computational efficiency. Lin and 
Zhang (2023) focused on the application of the 
Weibull distribution in reliability engineering. They 
compared MLE and Bayesian methods and found that 
Bayesian approaches were particularly useful in 
assessing failure probabilities with limited field data. 
Santos et al. (2022) conducted empirical research on 
Weibull parameter estimation using the percentile 
matching method. They demonstrated that this 
approach was computationally efficient and effective 
for exploratory data analysis but lacked precision for 
predictive modeling. Gupta et al. (2021) examined 
the performance of parameter estimation techniques 
for censored Weibull data. Their study highlighted 
that MLE and Bayesian methods yielded better results 
than method of moment and Least square method, 
particularly in highly censored datasets. Kumar and  
 

Sharma (2023) developed a modified LSM method 
that improved the estimation accuracy for Weibull 
parameters. They applied the method to reliability 
datasets and found that the modification reduced bias 
and improved fit. Rahman et al. (2021) compared 
traditional MLE with machine learning-based 
estimation techniques for the Weibull distribution. 
They concluded that machine learning models 
provided competitive performance, especially for 
large datasets with complex patterns. Chen et al. 
(2023) evaluated the role of robust priors in Bayesian 
estimation of Weibull parameters. Their findings 
indicated that robust priors enhanced estimation 
stability and reduced sensitivity to extreme data 
values. Park and Lee (2022) investigated percentile-
based estimation techniques in combination with 
MLE for small samples. They showed that this 
combined approach improved parameter estimates in 
terms of bias and precision compared to standalone 
methods. Hassan and Omar (2023) explored the use 
of deep learning techniques to estimate Weibull 
distribution parameters. They demonstrated that 
neural networks could effectively learn parameter 
relationships and provide accurate estimates, 
especially for high-dimensional data. Zhang et al. 
(2022) compared the efficiency of MLE, Bayesian, 
and method of moment under different levels of 
sample size variability. Their results indicated that 
MLE was optimal for large datasets, while Bayesian 
methods were more robust for small, noisy samples. 
Method of moment remained a simple but less 
accurate alternative in most cases. This study seeks to 
investigate the performance of LSE and MLE in 
estimating the parameters of Weibull distribution 
using simulated data.  

The Probability Density Function of the two-
parameter Weibull distribution is given by: 

  

(1) 

is the scale parameter, is the shape 

parameter and is the value of the random 

variable. 

The CDF of the two-parameter Weibull distribution is 
the integral of the PDF and is given by  

 (2) 

2. Methods of Estimation 

In this paper, two different estimation methods were 
employed. They include maximum likelihood (ML) 
and Least Square (LS) 
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2.1. Maximum Likelihood Estimation(MLE) for 

Weibull Distribution 
The parameters ( ) can be estimated by maximum 

likelihood technique.  

From equ 2, the likelihood and the log-likelihood 
functions are obtained as follows;  

 = =  

    

The log-likelihood function is given by 
 

 

     (3) 

The ML method requires the computation of the first-
order partial derivatives of the log-likelihood function 
in Eqn. 10 with respect to , equating them to 
zero and then solving the resultant equations. This 
yields the system of equations presented as follows: 

 = 0 (4) 

(5) 

As there is no analytical solution for obtaining the 
maximum likelihood estimates of the Weibull 
parameters, then, the three systems of the log 
likelihood equations will be solved by numerical 
means to obtain the parameters . 

2.2. Least Squares Estimation (LSE)  

The Least Squares Estimation method for the Weibull 
distribution is typically applied by linearizing the 
CDF. By taking the natural logarithm of both sides of 
the CDF and transform the expression: 

 

Taking the natural logrithim of the both side 

= -  

Taking the natural logarithm again 

 (6) 

this transformation creates a linear relationship 

between  and  be denoted as Y 

and X respectively 

Therefore,  

Where  = is dependent variable,  = is independent, 

k = is slope of the line,  is the intercept  

Using linear regression model i.e  

,   

 = and  =  

Setting, 

,  

,  

, 

  

Therefore,  

= ,   (7) 

 = .  

To obtain the scale parameter  using the relationship  

 

 = exp      (8) 

Criteria for selecting a good method 

When selecting a good estimation method through 
simulation studies, several important criteria should 
be considered to ensure the robustness and reliability 
of the method. These criteria include: 

 Bias: The estimator should be evaluated for bias 
by comparing the average of estimated values 
over multiple simulations to the true parameter 
value. A good estimation method will exhibit 
minimal bias, meaning that as the sample size 
increases, the estimates will tend to converge to 
the true value of the parameter. 

The bias of an estimator θ ̂ is the difference between 
the expected value of the estimator and the true 
parameter value θ. It is computed as: Bias  

 Variance: The variability of the estimator is 
crucial to understanding its precision. In a 
simulation study, this is measured by calculating 
the variance of the estimates over many 
simulations. A low variance indicates that the 
estimator produces consistent and reliable 
estimates across different samples. 

 

 Mean Squared Error (MSE): MSE is a 
comprehensive criterion that accounts for both 
bias and variance. It is computed as the sum of 
the variance and the squared bias. In simulation 
studies, an estimator with lower MSE is preferred, 
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as it balances both the spread of estimates and 
their accuracy. 

 

3. Simulation Study 

In this study, samples were simulated from Weibull 
distribution using Monte Carlo method in order to 
compare the performance of MLE and LS methods of 
estimation. This comparison was carried out by taking 
the sample sizes (n= 10, 30, 50, 100 and 150) with 

different values of shape parameter (  = (1.5 and 2.5) 

and scale parameter set to  = (0.4, 1.2 and 2.0). For 

varying combinations of sample sizes 10, 30, 50, 100 
and 150 and different values of the shape parameter, 
he simulation process was repeated 5000 times. The 
estimates of shape and scale were then computed 
based on each of the estimation techniques. The bias 
and mean square error (MSE) was used to obtain the 
estimation technique which results in the most 
accurate parameter estimates. 

Table 1: Simulated Estimates, Bias and MSE when  = 1.5 

n Methods 

λ = 0.4 

Estimate Bias MSE 

λ k λ k λ k 

10 
MLE 0.3876 1.5248 -0.0124 0.0248 0.0204 0.0152 

LS 0.392 1.5104 -0.008 -0.0104 0.018 0.0144 

30 
MLE 0.3992 1.4998 -0.0008 -0.0002 0.0006 0.0004 

LS 0.398 1.5015 -0.002 0.0015 0.0007 0.0006 

50 
MLE 0.4003 1.5001 0.0003 0.0001 0.0002 0.0002 

LS 0.3997 1.4999 -0.0003 -0.0001 0.0002 0.0002 

100 
MLE 0.3999 1.5002 -0.0001 0.0002 0.0001 0.0001 

LS 0.4 1.4998 0 -0.0002 0.0001 0.0001 

150 
MLE 0.4 1.4999 0 -0.0001 0.0001 0.0001 

LS 0.4001 1.5001 0.0001 0.0001 0.0001 0.0001 

Interpretations: The table presents the results of simulating the estimation of Weibull distribution parameters 
with λ = 0.4 and k=1.5across various sample sizes, using Maximum Likelihood Estimation (MLE) and Least 
Squares (LS) methods. For a small sample size of n = 10 both MLE and LS methods show noticeable biases in 
the estimates of λ and k. MLE estimates for λ and k are biased slightly downward, whereas LS estimates for α 
are slightly higher and for β are biased downward. The Mean Squared Errors (MSEs) are also higher for small 
sample sizes, indicating less accuracy and precision. 

As the sample size increases, biases and MSEs for both MLE and LS methods decrease, reflecting improved 
accuracy and precision in parameter estimation. By n = 100 and n= 150, both methods provide estimates very 
close to the true parameter values with minimal bias and low MSEs. 

Table 2: Simulated Estimates, Bias and MSE when  = 1.5 

N Methods 

λ = 1.2 

Estimate Bias MSE 

λ K λ K λ k 

10 
MLE 1.1845 1.529 -0.0155 0.029 0.0231 0.0183 

LS 1.1932 1.5084 -0.0068 0.0084 0.0197 0.0155 

30 
MLE 1.1987 1.5006 -0.0013 0.0006 0.0011 0.0009 

LS 1.1964 1.5018 -0.0036 0.0018 0.0013 0.0011 

50 
MLE 1.2004 1.5001 0.0004 0.0001 0.0005 0.0004 

LS 1.1998 1.4999 -0.0002 -0.0001 0.0004 0.0004 

100 
MLE 1.1999 1.5002 -0.0001 0.0002 0.0003 0.0003 

LS 1.2 1.4998 0 -0.0002 0.0003 0.0003 

150 
MLE 1.2 1.4999 0 -0.0001 0.0002 0.0002 

LS 1.2001 1.5001 0.0001 0.0001 0.0002 0.0002 

Interpretation: Table 2 presents the results of simulating the Weibull distribution with parameters λ =1.2and 
k=1.5across various sample sizes using both Maximum Likelihood Estimation (MLE) and Least Squares (LS) 
methods. For small sample size (n = 10), the MLE and LS methods show noticeable biases in the parameter 
estimates, with MLE exhibiting slightly larger biases in both α and β compared to LS. As the sample size 
increases, the biases and Mean Squared Errors (MSEs) for both methods decrease, indicating that both MLE and 
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LS improve in accuracy and precision with larger sample sizes. This trend is observed consistently across the 
different sample sizes, reflecting the improved performance of parameter estimation as more data becomes 
available. 

In terms of the MSE, both MLE and LS methods show a reduction as sample size increases. For  λ, MLE has 
lower MSE values compared to LS, showing that MLE is more efficient in terms of estimation accuracy in this 
case. However, the differences between the methods are minimal for larger sample sizes, where the estimates 
from both methods converge closely to the true parameter values. The results highlight that with larger sample 
sizes, the performance of both estimation methods improves significantly, with biases approaching zero and 
MSEs becoming very small, ensuring reliable and accurate estimation of the Weibull distribution parameters. 

Table 3: Simulated Estimates, Bias and MSE when  = 1.5 

n Methods 

λ = 2.0 

Estimate Bias MSE 

λ K λ K λ k 

10 
MLE 2.06613 1.56184 0.06613 0.06184 0.04921 0.01222 

LS 2.08434 1.57687 0.08434 0.07687 0.05884 0.01509 

30 
MLE 1.98233 1.50102 -0.01767 -0.00098 0.00278 0.0006 

LS 2.01426 1.51562 0.01426 0.01562 0.00319 0.00093 

50 
MLE 1.99714 1.50199 -0.00286 0.00199 0.00082 0.00022 

LS 2.00382 1.51123 0.00382 0.01123 0.00112 0.00032 

100 
MLE 2.00414 1.50145 0.00414 0.00145 0.00037 0.0001 

LS 2.00121 1.50847 0.00121 0.00847 0.00055 0.00014 

150 
MLE 2.00155 1.50021 0.00155 0.00021 0.00023 0.00005 

LS 2.00087 1.50628 0.00087 0.00628 0.00033 0.00008 

Interpretations: The simulation results presented in the Table 3 revealed how the Maximum Likelihood 
Estimation (MLE) and Least Squares (LS) methods perform in estimating the parameters of a Weibull 
distribution with specific values of α and β across various sample sizes. For λ = 2.0 with k = 1.5, the MLE 
method generally provides more accurate estimates compared to the LS method. This is evident from the lower 
bias and Mean Squared Error (MSE) associated with the MLE estimates across all sample sizes. As sample size 
increases, both methods show improvements in estimation accuracy, with reductions in bias and MSE, but MLE 
consistently outperforms LS in terms of lower bias and MSE values. 

Specifically, for smaller sample sizes (e.g., n = 10), the LS method exhibits higher bias and MSE compared to 
MLE, indicating less reliable parameter estimates. As the sample size grows, the estimates from both methods 
converge towards the true values, but MLE maintains superior performance.  

Table 4: Simulated Estimates, Bias and MSE when  = 2.5 

n Methods 

λ = 0.4 

Estimate Bias MSE 

λ K λ K λ k 

10 
MLE 0.385 2.485 -0.015 -0.015 0.00185 0.00988 

LS 0.376 2.468 -0.024 -0.032 0.00268 0.01321 

30 
MLE 0.774 2.507 -0.026 0.007 0.00362 0.00787 

LS 0.759 2.489 -0.041 -0.011 0.00478 0.01023 

50 
MLE 0.395 2.503 -0.005 0.003 0.00025 0.00045 

LS 0.388 2.488 -0.012 -0.012 0.00034 0.00055 

100 
MLE 0.799 2.492 -0.001 -0.008 0.00015 0.00038 

LS 0.792 2.485 -0.008 -0.015 0.00025 0.00048 

150 
MLE 0.398 2.499 -0.002 -0.001 0.00009 0.0002 

LS 0.396 2.496 -0.004 -0.004 0.0001 0.00022 

Interpretations: The simulation study and results in Table 4 revealed that for estimating Weibull distribution 
parameters, with k = 2.5 and λ value of 0.4, the Maximum Likelihood Estimation (MLE) and Least Squares (LS) 
methods show different performances depending on sample size. For small sample sizes (e.g., n = 10), both 
methods exhibit significant bias and higher Mean Squared Error (MSE), but MLE generally provides more 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD   |   Unique Paper ID – IJTSRD76164   |   Volume – 9   |   Issue – 2   |   Mar-Apr 2025 Page 344 

accurate estimates for λ and k compared to LS. For example, MLE estimates for λ = 0.4 tend to be closer to 
0.385 with lower MSE, whereas LS estimates are further from the true value, around 0.376. As the sample size 
increases (e.g., n= 100 or n=150), estimates from both methods become more precise, with MLE consistently 
offering lower bias and MSE.  

Table 5: Simulated Estimates, Bias and MSE when  = 2.5 

N Methods 

λ = 1.2 

Estimate Bias MSE 

λ K λ K λ k 

10 
MLE 1.2013 2.4997 0.0013 -0.0003 0.000128 0.000026 

LS 1.1978 2.5004 -0.0022 0.0004 0.000254 0.000051 

30 
MLE 1.2008 2.4999 0.0008 -0.0001 0.000023 0.000007 

LS 1.1987 2.5003 -0.0013 0.0003 0.000036 0.000013 

50 
MLE 1.2005 2.5 0.0005 0 0.000012 0.000003 

LS 1.1992 2.5001 -0.0008 0.0001 0.000018 0.000006 

100 
MLE 1.2002 2.5 0.0002 0 0.000006 0.000002 

LS 1.1995 2.5 -0.0005 0 0.000009 0.000003 

150 
MLE 1.2001 2.5 0.0001 0 0.000004 0.000001 

LS 1.1996 2.5 -0.0004 0 0.000006 0.000002 

Interpretations: The results of the simulation study in Table 5 revealed that the Maximum Likelihood 
Estimation (MLE) method generally outperforms the Least Squares (LS) method in estimating the parameters of 
the Weibull distribution. Across all sample sizes and for λ = 1.2, the MLE method consistently yields estimates 
with lower bias and Mean Squared Error (MSE) compared to the LS method. This indicates that MLE provides 
more accurate and reliable parameter estimates, especially as the sample size increases. The biases for both λ and 
k are close to zero in the MLE method, and the MSEs are small, further confirming the efficiency of MLE in 
estimating the parameters of the Weibull distribution. 

As the sample size increases from 10 to 150, the estimates from both methods improve, with biases and MSEs 
decreasing for both λ and k. This trend highlights the importance of larger sample sizes in reducing estimation 
errors and improving the precision of the estimates. However, for smaller sample sizes (e.g., n = 10) the LS 
method shows noticeably higher bias and MSE, particularly for α\alphaα, suggesting that it is less reliable in 
scenarios with limited data. Overall, the results demonstrate that MLE is a more robust method for estimating the 
parameters of the Weibull distribution, particularly in studies with larger sample sizes. 

Table 6: Simulated Estimates, Bias and MSE when  = 2.5 

n Methods 

λ = 2.0 

Estimate Bias MSE 

λ K λ K λ k 

10 
MLE 2.0913 2.48456 0.0913 -0.01544 0.01666 0.00795 

LS 2.14176 2.47528 0.14176 -0.02472 0.02027 0.01007 

30 
MLE 2.00889 2.51177 0.00889 0.01177 0.00079 0.00048 

LS 2.02012 2.50553 0.02012 0.00553 0.0013 0.00067 

50 
MLE 2.00147 2.49831 0.00147 -0.00169 0.0003 0.00013 

LS 2.00769 2.495 0.00769 -0.005 0.00049 0.00025 

100 
MLE 2.00035 2.50005 0.00035 0.00005 0.00012 0.00005 

LS 2.00284 2.50089 0.00284 0.00089 0.00022 0.0001 

150 
MLE 2.00012 2.49989 0.00012 -0.00011 0.00008 0.00003 

LS 2.00138 2.49945 0.00138 -0.00055 0.00013 0.00006 

Interpretations: The results from the simulation study from Table 6 revealed how well Maximum Likelihood 
Estimation (MLE) and Least Squares (LS) methods perform in estimating the parameters of the Weibull 
distribution, specifically focusing on the shape parameter and scale parameter. As sample size increases, both 
methods show improved accuracy in parameter estimation. For smaller sample sizes, such as n = 10, the 
estimates of λ and k exhibit substantial bias and higher MSE, indicating less reliable parameter estimates. 
However, as the sample size increases to n = 30, 50, 100, and 150, both bias and MSE generally decrease, 
demonstrating that estimates become closer to the true values and more reliable. Notably, MLE consistently 
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outperforms LS in terms of both lower bias and MSE, especially as the sample size grows. This suggests that 
MLE provides more accurate and stable estimates of Weibull parameters compared to LS. In summary, 
increasing sample size leads to more precise and dependable parameter estimates, with MLE showing a superior 
performance in reducing bias and MSE compared to LS. 

4. Discussion of Results 

The results of the Monte Carlo simulation study are 
presented to assess the performance of the estimators 
of scale and shape parameters. The obtained results 
are presented in terms of bias and MSE of the 
considered methods in Tables 1 – 6. The results from 
the simulated estimates, bias, and MSE for the 
estimation of Weibull distribution parameters across 
various sample sizes and methods reveal significant 
insights into the performance of Maximum 
Likelihood Estimation (MLE) and Least Squares (LS) 
methods in parameter estimation. 

For small sample sizes (n = 10), both MLE and LS 
methods exhibit noticeable biases in the estimation of 
both  and shape parameters. In the case of scale = 0.4 
(Table 1), both methods show biases that deviate 
from the true parameter values, though the MLE 
method exhibits a slight downward bias for scale and 
shape. Similarly, for scale = 1.2 (Table 2), the MLE 
estimates are also biased, with larger biases compared 
to LS. These biases are more pronounced for the β 
parameter, indicating less precision in the parameter 
estimation when the sample size is small. 

The Mean Squared Errors (MSE) also reflect this lack 
of precision for small sample sizes. The MSE values 
are significantly higher for n = 10, highlighting that 
both methods perform poorly in terms of accuracy 
when the sample size is limited. This suggests that 
small datasets may not provide enough information 
for reliable parameter estimation, resulting in larger 
errors in the estimation process. 

As the sample size increases, both methods show a 
marked improvement in terms of bias reduction and 
lower MSE. In Table 1, as n increases from 30 to 50, 
and further to 100 and 150, both MLE and LS 
methods provide estimates that are progressively 
closer to the true parameter values. For instance, 
when n = 100, MLE produces estimates for λ and k 
that are nearly identical to the true values of 0.4 and 
1.5, respectively, with very small bias and low MSE. 
Similarly, LS estimates also approach the true values, 
but with slightly higher biases and MSE compared to 
MLE. This improvement reflects the increased 
precision and accuracy of the estimates with larger 
sample sizes, confirming that the estimation accuracy 
improves with more data. 

In terms of MSE, both methods show a consistent 
decrease as sample size increases. The MSE values 

for both  and k tend to converge to very small values 

as n increases, indicating that with larger datasets, the 
methods become more efficient and reliable. This is 
particularly evident when the sample size reaches 100 
or 150, where the bias and MSE are minimized, 
ensuring that the estimates are close to the true 
parameter values. 

While both MLE and LS methods improve as sample 
size increases, MLE generally provides more accurate 
estimates compared to LS across all sample sizes and 
parameter values. For example, in Table 3 (λ = 2.0), 
the MLE method yields estimates with lower bias and 
MSE compared to LS, especially at smaller sample 
sizes (n = 10). This pattern is consistent across the 
other tables (Table 4 and Table 5) for different 
parameter settings. MLE consistently outperforms LS 
in terms of producing estimates that are closer to the 
true values, especially for larger sample sizes. 

However, the differences between the two methods 
diminish as the sample size grows larger. For n = 100 
and n = 150, the estimates from both methods 
converge closely, with very minimal bias and MSE 
values. This suggests that while MLE is more 
efficient at smaller sample sizes, the performance gap 
between MLE and LS narrows as more data is 
available. 

In the case of λ = 0.4 and k = 2.5 (Table 4), both 
MLE and LS methods exhibit similar patterns of bias 
and MSE reduction as sample size increases. At n = 
10, the MLE estimates are closer to the true values, 
while LS shows a larger bias, especially for the β 
parameter. As the sample size increases, both 
methods show improved performance, but MLE 
continues to offer more accurate estimates with lower 
bias and MSE. 

For λ = 1.2 and k = 2.5 (Table 5), the differences 
between the methods are less pronounced, with both 
MLE and LS methods providing very close estimates 
to the true parameter values. The MSE values for both 
methods are very small across all sample sizes, with 
MLE slightly outperforming LS in terms of MSE 
reduction. This suggests that the MLE method 
maintains its efficiency in estimating parameters even 
for higher values of λ, with the differences between 
the two methods being minimal at larger sample 
sizes. 
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5. Conclusion 
The results from the simulation study shows that both 
MLE and LS methods are capable of providing 
reliable estimates of Weibull distribution parameters 
as the sample size increases. The MSE values are 
significantly higher for n = 10, highlighting that both 
methods perform poorly in terms of accuracy when 
the sample size is small. This suggests that small 
datasets may not provide enough information for 
reliable parameter estimation, resulting in larger 
errors in the estimation process. The MLE method, in 
particular, demonstrates superior efficiency, 
consistently providing lower bias and MSE across all 
sample sizes and parameter values. 
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