
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 9 Issue 1, Jan-Feb 2025 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD75049 | Volume – 9 | Issue – 1 | Jan-Feb 2025 Page 685

A Study on Inheritance and its Type in Object Oriented

Programming using JAVA

Sh. Pritosh Godara

Lecturer in Computer Engineering, Government Polytechnic, Uttawar (Palwal), Haryana, India

ABSTRACT

This paper presents the first comprehensive empirical investigation of
the widespread use of inheritance in a modern OO programming
language. We provide a set of standardized metrics for quantifying
inheritance in Java programs. This article will cover the fundamentals
of object-oriented programming in Java. Encapsulation, abstraction,
inheritance, and polymorphism are among the core principles of this
programming language. In this paper, we will discuss. A Study of
Inheritance and Its Type in Object-Oriented Programming with Java.

KEYWORDS: Inheritance, Object Oriented Programming, Java,

Language, Encapsulation, Abstraction, Inheritance and

Polymorphism, Class, Single Inheritance, Multi-Level Inheritance,

Hierarchical Inheritance, Hybrid Inheritance, Subclass

How to cite this paper: Sh. Pritosh
Godara "A Study on Inheritance and its
Type in Object Oriented Programming
using JAVA" Published in International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN:
2456-6470,
Volume-9 | Issue-1,
February 2025,
pp.685-690, URL:
www.ijtsrd.com/papers/ijtsrd75049.pdf

Copyright © 2025 by author (s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an
Open Access article
distributed under the
terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0

INTRODUCTION
Java: Java is both a programming language and a
platform. Java is a powerful, secure, and object-
oriented programming language.

A platform is any hardware or software environment
that allows a program to run. Platform refers to Java's
runtime environment (JRE) and API.

In Java, inheritance is a key component of OOP. It is
the mechanism in Java that allows one class to inherit
features (fields and methods) from another.

In Java, inheritance means generating new classes
from existing ones. A class that inherits from another
class may reuse its methods and fields. In addition,
you can modify your existing class by adding
additional fields and methods. [1]

Since the introduction of the object-oriented
paradigm, much has been written about the concept of
"inheritance". Some people associate the term
"object-oriented Ness" with inheritance. Inheritance
appears to be a major theme in conversations about
good design.

All design patterns include it, frameworks rely on it,
and it is even used in UML. Some presentations of

the object-oriented paradigm (for example, in
textbooks) lay so much emphasis on inheritance that
any design without "lots of inheritance" is not good
(or certainly not "object-oriented"). At the same time,
there is a lot of advice advocating prudence when it
comes to inheritance, such as "Favor object
composition over class inheritance". There have also
been studies that provide inconsistent answers as to
its benefits, while also implying that "too much"
inheritance is harmful. [2]

Used in Java Inheritance

Class: A class is a collection of objects that share
common characteristics/behavior and
properties/attributes. Class is not a real-world entity.
It is simply a template, blueprint, or prototype from
which items are built.

Super Class/Parent Class: The class whose features
are inherited is known as a superclass (or a base class
or a parent class).

Sub Class/Child Class: A subclass is a class that
inherits from another class. In addition to the fields

IJTSRD75049

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD75049 | Volume – 9 | Issue – 1 | Jan-Feb 2025 Page 686

and methods provided by the superclass, the subclass
may include its own.

Reusability: Inheritance supports the concept of
"reusability," which means that if we want to
construct a new class and there is already a class that
contains some of the code we need, we can derive our
new class from the current class. By doing so, we
reuse the current class's fields and functions.

Object-Oriented Programming in Java:

Object-oriented programming (OOP) is a high-level
computer programming language that uses objects
and associated procedures inside a programming
context to develop software programs. The object-
oriented language employs an object-oriented
programming technique that ties related data and
functions into an object, encouraging reuse of these
objects within the same and other systems.

Java is a class-based object-oriented programming
(OOP) language centered on the concept of objects.
OOP concepts aim to increase code readability and
reusability by specifying how to structure a Java
program efficiently.

Object-oriented programming combines data and
behavior (methods) into a single location (object),
making it easier to comprehend how a program
operates. [3]

Simula is recognized as the first object-oriented
programming language. A true object-oriented
programming language is one that represents
everything as an object. Smalltalk is regarded as the
first genuinely object-oriented programming
language.

Object-oriented programming (OOPs) is an approach
for simplifying software development and
maintenance by establishing basic rules.

Basic concepts of OOPs are:

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

6. Encapsulation [4]

The Benefits of the Object-Oriented Programming

Approach

Whether or not you develop programs in an object-
oriented manner, you must first create a model of
what the software must be capable of and how it
should function. Abstraction, encapsulation,

inheritance, and polymorphism are fundamental
concepts in object-oriented modeling. The general
supporters of the object-oriented approach believe
that this model provides:

• Better abstractions (modelling information and
behavior together)

• Better maintainability (more comprehensible, less
fragile)

• Better reusability (classes as encapsulated
components) [5]

Review of Literature:

James Gosling invented the Java programming
language in 1995. Java has gained popularity as a
class-based, object-oriented, and high-level
programming language. It is intended to enable the
"write once, run anywhere" (WORA) capability,
which allows written Java code to execute without
further compilation on any platform that supports
Java. Java is well-known for its simplicity,
portability, and platform independence, making it a
popular choice for creating a variety of applications
such as mobile apps, web apps, desktop apps, and
games. One of Java's distinguishing advantages is its
platform independence, as it is compiled into
bytecode that may run on any platform that supports
the Java Virtual Machine. This allows developers to
create code once and run it across multiple platforms
without worrying about platform-specific details
[Hachadi,2023]. Furthermore, Java is widely utilized
in industry and academia, with numerous firms
relying on it for important business applications. [6]

The most frequently mentioned inheritance-related
metrics are Chidamber and Kemerer's DIT and NOC
measures [7]. A class's DIT is defined as the length of
the longest path from the class to the root of its
inheritance hierarchy. The authors claim that the
deeper the class, the more complex it will be because
it will inherit from more ancestors, but also the
greater the opportunity for reuse. NOC for a class is
defined as the number of its immediate subclasses.
The authors proposed that having more children leads
to more reuse, but it also increases the chance of
erroneous abstraction. They also discovered that NOC
provides an indication of the influence a class has on
the design.

Daly et al. investigated the impact of depth of
inheritance on maintenance, as assessed by the time
required to complete a maintenance activity [8]. Their
findings indicated that inheritance had a detrimental

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD75049 | Volume – 9 | Issue – 1 | Jan-Feb 2025 Page 687

impact on maintenance time. This study was later
duplicated, and the results indicated the opposite
effect: inheritance increased maintenance time. The
fact that these two experiments produced such
disparate results shows that there may be more to
heredity than just "depth," yet both were modest
enough that an influence other than inheritance could
have been noticed.

Objectives:

• To Study on Inheritance and Its Type in Object
Oriented Programming Using JAVA

• To understand object-oriented principles like
abstraction, encapsulation, inheritance,
polymorphism and apply them in solving
problems

• Describe the benefits of the Object-Oriented
programming approach

Research Methodology:

The study's findings are based on secondary data
gathered from credible sources such as publications,
books, magazines, and the internet. The research
design for the study is primarily descriptive. Readings
from journals These reputable articles were
discovered using search engine platforms such as
Google Scholar, global economics and business
journals, open educational materials, and other
popular websites.

Result and Discussion:

Types of Inheritance in Java

• Single Inheritance

• Multi-level Inheritance

• Hierarchical Inheritance

• Hybrid Inheritance

1. Single Inheritance

In Java, single inheritance refers to a subclass that
extends only one superclass. Here's an example that
demonstrates single inheritance.

Figure 1: Single Inheritance

2. Multi-level Inheritance

In Java, multi-level inheritance refers to a scenario in
which one class inherits properties and behaviors
from another, which then inherits from another. This
generates a hierarchical system of classes, with each
class inheriting from the one above it. [9]

Figure 2: Multi-level Inheritance

3. Hierarchical Inheritance

In Java, hierarchical inheritance refers to how several
classes inherit properties and behaviors from a single
parent class. This inheritance structure consists of a
single parent class and numerous child classes that
inherit from it. [10]

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD75049 | Volume – 9 | Issue – 1 | Jan-Feb 2025 Page 688

Figure 3: Hierarchical Inheritance

4. Hybrid Inheritance

Hybrid inheritance in Java is a blend of multiple
inheritance and hierarchical inheritance. In hybrid
inheritance, a class is derived from two or more
classes, each of which can have its own subclasses.
Due to the diamond problem, Java does not natively
enable multiple inheritance. However, hybrid
inheritance can be produced by combining
hierarchical inheritance and interface implementation.

Figure 4: Hybrid Inheritance

Object-Oriented Programming in Java:

Object-Oriented Programming (OOP) is a
programming paradigm that employs objects and
classes to generate models of the real world. Java,
being an object-oriented programming language, uses
these notions to give a clear modular framework for
applications. [11]

OOPs concepts in Java:

Figure 5: OOPs concepts in Java

• Class

• Object

• Encapsulation,

• Inheritance,

• Polymorphism,

• Abstraction,

Class: A class is a user-defined data type that
includes data members and member functions for
manipulating those data members. It is a group of
related types of objects. A class is a general
description of an object. It is the blueprint of an
object. Class is an extension of the structure used in
the C language. In the structure, we can merge
multiple data elements into a single entity. In the
class, we can combine various data elements and
member functions. Class is a user-defined data type
that allows us to specify both variables and functions.
Class is the most important aspect of object-oriented
programming. The class implements encapsulation,
data abstraction, and data hiding.

Object: Objects are the fundamental runtime
elements in object-oriented programming. Each
object has data and code for manipulating that data.
Objects can interact without needing to comprehend
certain statistics or code. In structured programming,
problems are tackled by separating them into
functions. In contrast, object-oriented programming
separates the problem into objects. Thinking in terms
of objects rather than functions simplifies
programming design.

Encapsulation

Encapsulation is the process of combining data
(variables) and code (methods) that alter the data into

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD75049 | Volume – 9 | Issue – 1 | Jan-Feb 2025 Page 689

a single entity known as a class. It also limits direct
access to parts of an object's components, which helps
to prevent inadvertent interference and misuse of
methods and data.

Java Example of Encapsulation:

public class Employee {

 private String name;

 private int age;

 public void setName(String newName) {

 name = newName;

 }

 public String getName() {

 return name;

 }

 public void setAge(int newAge) {

 age = newAge;

 }

 public int getAge() {

 return age;

 }

}

Inheritance in Java

In Java, inheritance is a process by which one class
obtains another class's properties and behaviors
(methods). This facilitates code reuse and method
overriding. A subclass inherits from a superclass.

Java Example of Inheritance:

class Animal {

 void eat () {

 System.out.println("Eating...");

 }

}

class Dog extends Animal {

 void bark() {

 System.out.println("Barking...");

 }

}

public class TestInheritance {

 public static void main(String args[]) {

 Dog d = new Dog();

 d.bark();

 d.eat();

 }

}

Polymorphism in Java

Polymorphism in Java enables objects to be viewed as
instances of their parent class rather than their own
class. The most common application of
polymorphism in OOP is when a parent class
reference refers to a child class object.

Java Example of Polymorphism:

class Bird {

 void sing() {

 System.out.println("Bird is singing");

 }

}

class Sparrow extends Bird {

 void sing() {

 System.out.println("Sparrow is singing");

 }

}

public class TestPolymorphism {

 public static void main(String args[]) {

 Bird b;

 b = new Sparrow(); // Polymorphism

 b.sing();

 }

}

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD75049 | Volume – 9 | Issue – 1 | Jan-Feb 2025 Page 690

The Concept of Abstraction in Java

Abstraction is the process of masking implementation
details and presenting simply functionality to the user.
Abstraction in Java is performed using abstract
classes and interfaces. [12]

Java Example of Abstraction;

abstract class Shape {

 abstract void draw();

}

class Rectangle extends Shape {

 void draw() {

 System.out.println("drawing rectangle");

 }

}

class Circle extends Shape {

 void draw() {

 System.out.println("drawing circle");

 }

}

public class TestAbstraction {

 public static void main(String args[]) {

 Shape s = new Circle(); // In real scenario,
object is provided through method, e.g., getShape()
method

 s.draw();

 }

}

Conclusion:

Java, like any other programming language design, is
an experiment. Unlike most language designs, the
extensive adoption of Java, and the resulting
widespread availability of sizable "real-world" Java
programs, allows us to ultimately evaluate that
experiment in ways that most other languages simply
cannot. Object-Oriented Programming (OOP) is
critical in Java and other aspects of software
development. Embracing OOP principles such as
modularity, encapsulation, inheritance,
polymorphism, and abstraction allow developers to
design modular, maintainable, and scalable Java
applications.

References

[1] Cook, William R.; Hill, Walter; Canning, Peter
S. (1990). "Inheritance is not subtyping". POPL
'90: Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of
programming languages. pp. 125–
135.doi:10.1145/96709.96721. ISBN 0- 89791-
343-4.

[2] Procedure Oriented Programming (POP) vs
Object Oriented Programming (OOP). 2011.

[3] Bertrand Meyer (2009). Touch of Class:
Learning to Program Well with Objects and
Contracts. Springer Science & Business Media.
p. 329.

[4] Kindler, E.; Krivy, I. (2011). "Object-Oriented
Simulation of systems with sophisticated
control". International Journal of General
Systems. 40 (3): 313–343.

[5] Bertrand Meyer (2009). Touch of Class:
Learning to Program Well with Objects and
Contracts. Springer Science & Business Media.
p. 329.

[6] Hachadi, Z. Java Web Development Springboot
Security. (LinkedIn,2023),
https://tn.linkedin.com/posts/zakaria-hachadi-
176b871b0java − webdevelopment −springboot
− activity − 7047332925712785408 − x4Y 0

[7] Chidamber, S., Darcy, D., Kemerer, C.:
Managerial use of metrics for object-oriented
software: an exploratory analysis. IEEE Trans.
Software Engineering 24(8), 629–639 (1998)

[8] Daly, J., Brooks, A., Miller, J., Roper, M.,
Wood, M.: Evaluating inheritance depth on the
maintainability of object-oriented software.
Empirical Software Engineering 1(2), 109–132
(1996)

[9] V. T. Lokare, P. M. Jadhav, and S. S. Patil,
―An integrated approach for teaching object-
oriented programming (C++) course, ‖ Journal
of Engineering Education Transformations, vol.
31, no. 3, pp. 17–23, 2018.

[10] R. Fojtík, ―Teaching of object-oriented
programming, ‖ in Proc. the 12th International
Scientific Conference on Distance Learning in
Applied Informatics., 2018, pp. 273–282.

[11] kaur, l., kaur, n., ummat, a., kaur, j., & kaur, n.
(2016). research paper on object-oriented
software engineering. international journal of
computer science and technology, 36-38.

[12] Lafore, Robert, Object-Oriented Programming
in C++, Fourth Edition, Sams Publishing, 2002.
ISBN 0-672- 32308-7.

