

@ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

A Pattern Mining Approach for Identifying Identical Design
Structures in Object Oriented Design Model

Assistant Professor, Department of ISE,

ABSTRACT

Object-oriented design patterns are frequently used in
real-world applications. Detection of design patterns is
essential for comprehension of the intent and design of
a software project. This paper presents a graph
approach for detecting design patterns. Our approach is
based on searching input design patterns in the space of
model graph of the source code by isomorphic sub
graph search method. We developed a tool called
DesPaD to apply our pattern detection approach in an
automated-way. We successfully detected 23 GoF
design patterns in the demo source code of the Applied
Java Patterns book and also obtained encouraging
results out of our experiments that we conducted on
JUnit 3.8, JUnit 4.1 and Java AWT open source
projects.

Keywords: Software project, design pattern,
subgraphs mining, object-oriented.

I. INTRODUCTION

Object-oriented principles and reusable design patterns
are frequently used in software projects. Due to lack of
documentation, it would typically take a long time for a
developer to comprehend the design of the entire source
code. As the developers of a software project can
change during the project life cycle, getting insights of
the source code for the new developers will be a
repeating process. Therefore, it is crucial to have a tool
for revealing the intent and design of a software project.
As design patterns are used for solving a common
recurring design problem in a particular context in
terms of reusable object-oriented design, they are
important for understanding software architecture and
assessing its nature and quality. Furthermore, keep
up maintenance tasks on a software project takes more

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

115

A Pattern Mining Approach for Identifying Identical Design
Structures in Object Oriented Design Model

Vijayalakshmi MM

Assistant Professor, Department of ISE,
GSSSIETW, Mysore

oriented design patterns are frequently used in
world applications. Detection of design patterns is

essential for comprehension of the intent and design of
a software project. This paper presents a graph-mining
approach for detecting design patterns. Our approach is

erns in the space of
model graph of the source code by isomorphic sub-
graph search method. We developed a tool called
DesPaD to apply our pattern detection approach in an

way. We successfully detected 23 GoF
e of the Applied

Java Patterns book and also obtained encouraging
results out of our experiments that we conducted on
JUnit 3.8, JUnit 4.1 and Java AWT open source

Keywords: Software project, design pattern,

oriented principles and reusable design patterns
are frequently used in software projects. Due to lack of
documentation, it would typically take a long time for a
developer to comprehend the design of the entire source

ers of a software project can
change during the project life cycle, getting insights of
the source code for the new developers will be a
repeating process. Therefore, it is crucial to have a tool
for revealing the intent and design of a software project.

s design patterns are used for solving a common
recurring design problem in a particular context in

oriented design, they are
important for understanding software architecture and
assessing its nature and quality. Furthermore, keeping
up maintenance tasks on a software project takes more

than 2/3 of the total cost, where comprehension
activities constitutes considerable amount [1, 2].
Consequently, a design pattern detection tool for an
object-oriented software project is essential
using such a tool, intent, design and general view of a
software project can be extracted easily.

Detecting design patterns from a software project
attracted attention after object
principles were established and design pattern
GRASP [3] and GoF [4] were described. Within this
context, capturing static and dynamic aspects of the
software by using reverse- engineering methods [5, 6,
3], defining patterns based on software metrics and
their roles [7, 8], identification of mi
similar to design patterns [9, 10] and some graph
approaches [11, 12, 13, 14, 15] are
literature. Our approach is to build a high
graph of a given software project, to represent design
patterns as graphs and to implement sub
mining search using open-source tool, Subdue [16, 17].
We target at a high-level understanding of a project by
extracting and visualizing design patterns used in it,
which will help developers or architects of the p
to comprehend it conveniently.

We developed a fully automated tool, DesPaD (Design
Pattern Detector) for detecting design patterns
conducted our experiments by using the demo source
code came with the Applied Java Patterns text book
[23] and also on some open software projects namely
JUnit 3.8, JUnit 4.1 and Java AWT projects. Our
experiments showed promising results.

The rest of the paper is organized as follows.
Background and related work are defined in Section 2.

Dec 2017 Page: 1115

| www.ijtsrd.com | Volume - 2 | Issue – 1

Scientific
(IJTSRD)

International Open Access Journal

A Pattern Mining Approach for Identifying Identical Design
Structures in Object Oriented Design Model

than 2/3 of the total cost, where comprehension
activities constitutes considerable amount [1, 2].
Consequently, a design pattern detection tool for an

oriented software project is essential because, by
using such a tool, intent, design and general view of a
software project can be extracted easily.

Detecting design patterns from a software project
attracted attention after object-oriented design
principles were established and design patterns like
GRASP [3] and GoF [4] were described. Within this
context, capturing static and dynamic aspects of the

engineering methods [5, 6,
3], defining patterns based on software metrics and
their roles [7, 8], identification of micro-architectures
similar to design patterns [9, 10] and some graph-based
approaches [11, 12, 13, 14, 15] are published in the
literature. Our approach is to build a high- level model
graph of a given software project, to represent design

as graphs and to implement sub-graph
source tool, Subdue [16, 17].

level understanding of a project by
extracting and visualizing design patterns used in it,
which will help developers or architects of the project
to comprehend it conveniently.

We developed a fully automated tool, DesPaD (Design
detecting design patterns. We

conducted our experiments by using the demo source
code came with the Applied Java Patterns text book

so on some open software projects namely
JUnit 3.8, JUnit 4.1 and Java AWT projects. Our
experiments showed promising results.

The rest of the paper is organized as follows.
Background and related work are defined in Section 2.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1116

DesPaD’s approach for detecting design patterns is
explained in Section

3. The results we obtained from our experiments are
given and discussed in Section 4 Section 5 concludes
the paper.

II. RELATED WORK

There is graph-based design pattern detection
approaches submitted in the literature [12, 13, 14, 15].
A template matching method is implemented to detect
design patterns in a given source code in [12]. They
determine some features of design patterns to create
templates and, then look them up in a given source
code. As compared to our work, their approach does
not go deep into pattern specifics as much as we do. In
our work, we build a model graph of the given source
code with twelve relation types, which is more specific
than design features implemented in [12]. For example,
while they have a single design feature to cover
generalization pattern, we have three specific relations,
which are extends, implements and overrides to cover
the same feature. Building a detailed model graph helps
us prevent from false-positives while detecting patterns.
Calculating the similarity scores of each vertex in
matrices representing the features of patterns is used for
detecting design patterns in [13]. The drawback of this
study is that the algorithm presented calculates only the
similarity between vertices, instead of sub-graphs. As a
result, high similarity score of two vertices can produce
false-positively detected design patterns. Our matching
algorithm, on the other hand, depends on isomorphic
sub-graph search and we compare two graphs to find
the candidate design patterns in the software project.

Similar to our work, an isomorphic graph matching
method used to detect design patterns is given in [14].
This approach uses only class diagrams of the GoF
design patterns for detecting patterns which might
cause false- positive outputs. They do not consider
sequence diagrams of patterns where the behavior of
pattern lies. Our approach considers sequence diagrams
as well as class diagrams. For example, “Class A
creates an object of Class B” is a behavior type relation
that we take into consideration. Shortly, our relation set
is more specialized in terms of structure and behavior
of patterns. Detecting design patterns by using graph
matching and Constrain Satisfaction Problem (CSP)
search algorithms in an Abstract Semantics Graph
(ASG) of a given software project is another method
applied in [15]. While they take the entire AST of a
given project into the ASG of the project, we build a
high-level model graph by taking only four kinds of

nodes and twelve types of relations, which are
considered sufficient for detecting the GoF design
patterns. This helps us to find design patterns in a more
simplified way.

There are also studies in the literature for detecting
design patterns in a software project by means of
reverse- engineering methods [5, 6]. PINOT is a tool
presented in [5] which allows searching for design
patterns based on their structures and then performing
static program analysis, e.g. data flow analysis and
control flow analysis to detect methods collaboration.
As compared to our work, there are three basic
differences. First, PINOT uses specific keywords to
detect design patterns while we remain more generic.
For instance, PINOT detects “template method” design
pattern by specifically looking up final methods.
Consequently, our approach decreases the rate of false-
positive detected patterns. Second, while PINOT
depends on the java compiler (Jikes) for searching
patterns, our isomorphic sub-graph search algorithm is
independent of any programming language. Third, it is
not easy to add new patterns or modify existing ones in
PINOT while we can simply perform such tasks
without requiring any coding or compilation. An
approach based on static and dynamic analysis of
software project’s ASG (Abstract Semantics Graph) is
presented in [6]. The detection process of this approach
is executed during the run-time of the software by
means of log analysis. Therefore, it can only detect
patterns that occur at run-time as difference to our work
where we analyze the entire source code.

Properties of design patterns are correlated with some
of the software metrics in other works. Creating design
pattern fingerprints by specifying the roles and metrics
of classes is studied in [7]. They reduce the search
space by implementing a machine-learning algorithm in
their repository. There also exists another one in which
they implemented multi-stage reduction process by
using object- oriented software metrics and structural
properties to detect design patterns from a software
project’s source code [8]. Because they hard-coded
rules for detection process and they experimented with
only five GoF patterns in their implementation. Our
approach, however, works on higher levels to extract
design patterns and this makes our approach more
flexible. Thus, we are able to experiment all of the GoF
patterns.

To the best of our knowledge, the most relevant study
to our work in terms of building graph model of a
source code is another graph mining approach for

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1117

detecting frequently used identical sub-structures in a
software project by a frequent sub-graph mining
method using open-source Parsemis tool [11, 18].
While we focus on detecting especially GoF design
patterns in a software project and tag them
automatically, they detect frequent sub-graph identical
structures and then tag them manually. We also add
some new relations like “Class A has the return type of
Class B”, “Class A related with its method of Class B”
etc. in order to form design patterns’ template properly.

III. DETECTING DESIGN PATTERNS

Our approach to detect design patterns consists of three
basic steps. First, we analyze the source code and
extract ASTs out of it. Then, we build a graph model by
using these ASTs. Second, we generate templates for
all the GoF design patterns. These patterns will be used
basically as query items and they will be generated only
once unless new design patterns are introduced in the
literature. Third, we search for the pattern templates in
the model graph by using Subdue’s sgiso sub-graph
mining algorithm. The overview of DesPaD’s design
pattern detection architecture is seen on Fig. 1.

We developed a fully automated, java based design
pattern detection tool called DesPaD (Design Pattern
Detector) to execute all the steps given above. It is fast,
convenient to use and targets at finding design patterns

in a high-rate of correctness. DesPaD is freely available
at Github [29].

Details of these steps will be explained in the following
subsections.

A. Model Graph Creation

In this step, a high-level graph representation of an
object-oriented software project’s source code is
generated. A software project is represented as a simple
labeled and directed graph (G). Formally, a graph is
defined for a formation by vertices and edges
connecting the vertices [19].

Software Model Graph (G): Let G = (V, E, Le, Lv) be
a labeled digraph, where V is a set of vertices or nodes,
E is a set of edges or arcs, Lv is a set of labels for the
vertices and Le is a set of labels for the edges [11].

Sub-graph: A graph is a sub-graph of G, defined as Gs
G, if the vertices and edges of Gs embodies a subset of
the vertices and edges of G (Vs V and Es E).

Isomorphic sub-graph: The two graphs G1 = (V1, E1)
and G2 = (V2, E2) are isomorphic if labeling the
vertices of G1 bijectively with the elements of V2 gives
G2 and multiplicity of edges are maintained.

Figure 1: Overview of DesPaD’s pattern detection architecture

The vertices of our model graph (G) are classes,
abstract classes, template classes and interfaces. The

edges of (G) include the specific relations of
inheritance, aggregation, association and composition

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1118

properties used commonly in object-oriented
programming. The vertex and edge properties in a
model graph (G) are shown in Table I and Table II,
respectively.

TABLE I. VERTEX LABELS AND TYPES

Vertex
Label

Entity Type

C Class
I Interface
A Abstract Class
T Template Class

TABLE II: EDGE LABELS, RELATIONS
AND TYPES

As our final goal is to catch the relations of GoF
design patterns in the source code, we analyzed
the class diagrams and collaborations (also called
sequence diagrams) within every GoF design
pattern [4]. As a result of this analysis, we
identified relations listed in Table II. “Class A
calls method of Class B”, “Class A creates an
object of Class B” and “Class A has the return
type of Class B” in Table II are high level
behavioral relations extracted from sequence
diagrams. All other relations are extracted from
class diagrams.
The building process of our model graph starts
with generating the abstract syntax tree of each
class of the given software. ANTLR (Another
Tool For Language Recognition) [20] which is
an open source Java library that contains a top-
down parser for a subset of context-free
languages is used for generating ASTs. ANTLR
library is able to generate lexers, parsers and tree
parsers and, provide the ability of traversing
trees.

Java language grammar is already available as
BNF (Backus Normal Form) diagrams [21].
DesPaD uses these BNF diagrams to detect
relations listed in Table II. For instance, the
inheritance relations like “extends” and
“implements” in class declaration are detected by
using the BNF diagram in Fig. 2.

Figure 2: BNF Diagram of class declaration in
Java Grammar Language

As a result, a model graph for sub-graph mining process
is created similar to the one in Fig. 3. DesPaD prepares
and creates the model graph in a file formatted for the
open- source sub-graph mining tool, Subdue.

Edge
Label

Relation Typea

X Class A extends Class B

I Class A implements Class B

C Class A creates object of Class B

O Class A overrides a method of Class B

MC Class A calls a method of Class B

F Class A has the field type of Class B

MR Class A has a method with the return
type of Class B

ML Class A has a method that defines a
local variable with the type of Class B

MI Class A has a method that has an input
parameter with the type of Class B

M Class A has related with its method of
Class B

R Class A has the return type of Class B

G Class A uses Class B in a generic type
declaration

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1119

Figure 3: An example of a model graph

B. Design Pattern Template Generation

After having built the model graph as our search
space, our goal is to search for sub-graphs that might
represent the GoF design patterns. To achieve this,
we analyzed the class and sequence diagrams of all
23 GoF design patterns and generated template
graphs for each of them. An example template that
was generated for the bridge design pattern is seen in
Fig. 4.

Figure 4: Bridge design pattern’s template

As seen in Fig. 4, vertices were tagged with 1, M and
N. 1 means that the vertex and its edges occur only
once. M and N mean that the vertex and its edges can
occur more than one. DesPaD determines the
maximum values for M and N by counting the
numbers of times a node has a specific relation. That
is, for the bridge pattern given in Fig. 4, maximum
numbers of times any class in the entire source code
was extended or implemented are assigned to M and
N, respectively. Afterwards, all possible design
patterns template graphs are generated. For example,
according to the bridge pattern template graph in Fig.
4, if M is 11 and N is 5, the number of the bridge
pattern template graphs that will be generated is 55.
These 55 patterns are saved in input files for sub-
graph mining tool, Subdue.

C. Design Pattern Detection

After having generated the model graph of the
software and the design patterns’ template graphs, we
can execute sub-graph mining search. To do this, we
used an isomorphic sub-graph mining algorithm
called “sgiso” provided by the open-source graph-
mining tool, Subdue [17].

The algorithm for detecting design patterns is given in
Algorithm 1. Maximum numbers for M and N are
given as input to the algorithm. However, it will be
time and resource consuming to implement all
combinations of the candidate templates to the
isomorphic sub-graph search tool. For example, if
you consider the bridge pattern in Fig. 4, if M is 11
and N is 5, there would be 55 combinations to run
the isomorphic search for. Instead, the algorithm
stops trying after some value i, if the sub-graph
search returns nothing for i+1.

Algorithm 1: Detection of Design Patterns by Sub-
graph Isomorphic Search.

Data: Relations’ count of the design pattern template
{Mi}, {Nj} (M ≥ N);
Generated candidate input files
input_file[M][N];

foreach x ∈ {Mi} do

/* After running sub-graph isomorphism
algorithm(sgiso) in Subdue, we get output
files in outputs[]. */

execute sgiso on input_file[x][0]; add
output of sgiso to outputs[];

if no output exists then
break;

end

foreach y ∈ {Nj} do
execute sgiso on input_file[x][y]; add
output of sgiso to outputs[];

if no output exists then
break;

end end
end

foreach y ∈ {Nj} do
execute sgiso input_file[0][y];
add output of sgiso to outputs[];

if no output exists then

break;
end

end

After the algorithm is executed, there might be
overlapping sub-graphs in the output list. Overlapped
sub- graphs are eliminated accordingly. And finally,
found design patterns can be visualized by DesPaD. To

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1120

achieve this, DesPaD uses the open source GraphViz
application [22]. An example bridge pattern extracted
from Java AWT
1.3. project is visualized as seen in Fig. 5.

Figure 5: An example bridge pattern extracted
from Java AWT 1.3.

IV. EVALUATIONS

We have conducted extensive experiments to test our
approach and its performance. We also compared our
tool and its results against its closest rivals, PINOT [5],
HEDGEHOG [13], FUJABA [14] and DP-Miner tool
[15] that we mentioned in this paper.

As test bed, we used codes from four different sources.
We chose source codes that were used as benchmarks
by our rivals. These are demo source codes from
“Applied Java Patterns” (AJP) text book [23] and
source codes of three open source projects, i.e. JUnit
3.8, JUnit 4.1 [24] and Java AWT 1.3 [25]. However,
we also plan to use real-world applications on industry
in the future. Projects in the test bed are all Java
projects. Note that our approach is not bound to a
specific project. DesPaD can be adapted for another
programming language, e.g. C++ or C#.

Experiments were done on a Linux running quad-core
CPU commodity computer with 8 GB of RAM.
Evaluation results are analyzed in terms of precision
and recall. Precision is the rate of true pattern instances
found out of the total number of instances extracted by
the tool. Recall is the rate of the true pattern instances
found by the tool in the actual existing pattern
instances. Actual true instances are based on the
documentation of the open-source projects [26, 27, 28].
First, we compared DesPaD against similar tools in
terms of capabilities. Table III shows which patterns in
the AJP example can be detected by each tool. The AJP
example is chosen since it contains all GoF design
patterns. Patterns are grouped as creational, structural
and behavioral in the table. OK means that pattern can

be detected by the tool. X means that the tool has failed
to detect that pattern. If the tool does not cover the
pattern at all, it is showed with the “- “ symbol.
According to Table III, DesPaD is the only tool which
can detect all 23 GoF patterns (100 %). The closest
rival, PINOT can only detect 17 out of 23 patterns
(74%).

TABLE III: COMPARISON ABOUT
VERIFICATION OF DESIGN PATTERNS

 Tools

PINO
T

HEDGEH
OG

FUJAB
A

DesPa
D

Creational
Abstract
Factory

OK

OK

X

OK

Builder - - - OK
Factory
Method

OK

OK

X

OK

Prototype - X - OK
Singleton OK OK OK OK
Structural
Adapter OK OK X OK
Bridge OK OK OK OK
Composite OK OK X OK
Decorator OK OK X OK
Facade OK - OK OK
Flyweight OK OK X OK
Proxy OK OK - OK
Behavioral
CoR OK - X OK
Command - - - OK
Interpreter - - - OK
Iterator - OK X OK
Mediator OK - X OK
Memento - - X OK
Observer OK OK X OK
State OK X - OK
Strategy OK OK OK OK
Template
Method

OK

OK

OK

OK

Visitor OK OK - OK

Second, we tested DesPaD against the open source
projects that we have in our test bed. Numbers of
classes and lines of code regarding these projects are
given in Table IV.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1121

TABLE IV: SIZE OF SELECTED PROJECTS
Project Number of Classes Thousands of

lines of code
(KLOC) JUnit 3.8 54 4.7

JUnit 4.1 157 4

AWT 1.3 407 102

Test results of DesPaD against JUnit 3.8, JUnit 4.1 and
Java AWT 1.3 projects are seen in Table V, Table VI
and Table VII, respectively. Actual instances are the
number of times a pattern really occurs in the source
code. Found instances is the number of patterns that
was returned by DesPaD and claimed as found in the
source code? True instances are the number of correctly
found patterns by DesPaD.

According to test results, we detect design patterns with
80% precision and 88% recall values in average.
DesPaD works almost perfect for the smallest project in
our test bed, i.e. JUnit 3.8. As the number of classes and
lines of codes in projects increase, precision and recall
values may suffer. However, 78% of the actual patterns
are still correctly detected and, for precision values
below average, only the 21% of the cases generates
false positives.

TABLE V. JUNIT 3.8 TEST RESULTS

(DESPAD)
Pattern
Name

Found/
True

Actual
Instances

Precision Recall

Bridge 2/2 2 100 100
Composit 1/1 1 100 100
Decorato 1/1 1 100 100
Singleton 0/0 0 NA NA
Template
Method

12/11 11 92 % 100 %

TABLE VI: JUNIT 4.1 TEST RESULTS

(DESPAD)

Pattern
Name

Found/
True

Actual
Instances

Precision Recall

Bridge 4/1 1 25 % 100 %

Composite 2/2 2 100 % 100 %

Decorator 1/1 4 100 % 25 %

Singleton 4/1 1 25 % 100 %

Template
Method

22/20 20 91 % 100 %

TABLE VII: JAVA AWT 1.3 TEST RESULTS
(DESPAD)

Pattern
Name

Found/
True

Actual
Instances

Precision Recall

Bridge 20/20 30 100 % 66 %

Composite 9/2 2 22 % 100 %

Decorator 7/7 7 100 % 100 %

Singleton 18/14 14 78 % 100 %

Template
Method

55/55 128 100 % 43 %

Third, we compared our work with PINOT as we
described it as the closest work in literature which is
close to DesPaD in terms of capabilities the closest
work available. In addition, we did not have access to
HEDGEHOG [13] or FUJABA [14] test results on the
chosen source codes. We were not able to produce
them, either. DP-Miner [15] provides promising results
similar to DesPaD. However, since it does not cover all
design patterns and uses a hard- coded mechanism by
using specific properties of design patterns and related
programming language, we did not include it in the
comparisons. We are going to consider it in our future
work when we add optimizations to our algorithm
similar to what DP-Miner has.

Table VIII compares precision and recall performances
of DesPaD to PINOT tools when they worked against
the Java AWT 1.3 source codes. Regarding precision,
PINOT seems to perform 8% better then DesPaD in
average.

However, recall values are 47% better for DesPaD in
average. That is, DesPaD detects much more design
patterns than PINOT does. Recall values for PINOT
can be as low as 3% while it can be only 35% in
average.

TABLE VIII: DESPAD VS. PINOT
Pattern
Name

Precision Recall
DesPaD PINOT DesPaD PINOT

Bridge 100 % 75 % 66 % 10 %

Composit
e

22 % 67 % 100 % 100 %

Decorato 100 % 100 % 100 % 43 %
Singleton 78 % 100 % 100 % 22 %

Template
Method

100 % 100 % 43 % 3 %

Averages 80 88 82 35

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1122

Finally, we evaluate the performance of DesPaD in
terms of run time. Run times required to detect five
different design patterns within the chosen open
source projects are seen in Table IX. As isomorphic
sub-graph mining search is an NP-Complete
problem, it is a big challenge to reach a good
performance in case of large sized software
systems. JUnit 3.8 and JUnit 4.1 are small projects
and DesPaD performs at the level of few seconds
except for detecting the Template Method pattern.
Java AWT 1.3, on the other hand, is a relatively
large project, where the performance of DesPaD
varies from few minutes to few hours. Note that we
performed these evaluations on a simple commodity
computer with limited CPU and memory. In case of
a more powered experimental infrastructure,
numbers for AWT 1.3 evaluations can be pulled
down. Our future goal, however, is to optimize our
algorithm to get better results.

TABLE IX: DESPAD PERFORMANCE
EVALUATIONS

Pattern
Name

JUnit
3.8

JUnit
4.1

AWT
1.3

Time Input
file

count

Time Input
file

count

Time Input
file

count

Bridge 0,00
8

9 1 66 10560 690

Composite 0,07 9 3 36 9872 900

Decorator 0,05 18 1 132 950 1380

Singleton 22 1 2 1 5 1

Template
Method

2 10 4758 42 4690 90

V. CONCLUSIONS AND FUTURE WORK

In this work, we built a high-level model graph out of
source codes of a project, generated representative
graphs for design patterns and tried to detect those
patterns in the model graph by using an isomorphic
graph-matching algorithm.

We developed an automated detection tool called
DesPaD. We tested it against source codes from four
different projects and compared it with the related
work. To the best of our knowledge, DesPaD is the
only tool which can detect all GoF design patterns.
Also, it outperforms the closest work by creating 47%
better recall values.

As future work, we intend to optimize our approach.
Due to the complexity of the sub-graph search

algorithms, DesPaD’s performance might suffer in case
of large-sized projects. To alleviate this problem, some
partitioning or optimization algorithms will be
investigated. Additionally, we plan to analyze software
metrics of the given source code and use them in the
pattern detection process for optimization in the future.

Accordingly, detecting design patterns which are
described in some novel catalogues proposed in
the literature will be the part of our future work.

REFERENCES

1. C. Gravino, M. Risi, G. Scanniello, G. Tortora,
Does the documentation of design pattern instances
impact on source code comprehension ? Results
from two controlled experiments, Proceedings of
the Working Conference on Reverse Engineering,
IEEE CS, 2011, pp. 67-76.

2. L. Prechelt, B. Unger-Lamprecht, M. Philippsen,
W. Tichy, Two controlled experiments assessing
the usefulness of design pattern documentation in
program maintenance, IEEE Trans. Software
Engineering 28 (6), 2002, pp. 595-606.

3. C. Larman, Applying UML and Patterns : An
Introduction to Object- Oriented Analysis and
Design and the Unified Process, Prentice Hall,
2001.

4. E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

5. N. Shi, R. A. Olsson, Reverse Engineering of
Design Patterns from Java Source Code, 21st IEEE
ınternational Conference on Automated Software
Engineering (ASE’06), 2006.

6. H. Lee, H. Youn, E. Lee, A Design Pattern
Detection Technique that Aids Reverse
Engineering, International Journal of Security and
its Applications Vol. 2, No. 1, 2008.

7. Y. G. Gueheneuc, H. Sahraoui, F. Zaidi,
Fingerprinting Design Patterns, Proceedings of the
11th Working Conference on Reverse Engineering
(WCRE’04), 2004

8. G. Antoniol, G. Casazza, M. Di Penta, R.
Fiutem, Object-oriented design patterns
recovery, The Journal of Systems and Software
59, 2001, pp. 181-196.

9. Y. G. Gueheneuc, P-MARt : Pattern-like Micro

Architecture Repository, Proceedings of the 1st

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1123

EuroPLoP Focus Group on Pattern Repositories
(EPFPR), 2007.

10. Y. G. Gueheneuc, G. Antoniol, DeMIMA : A
Multilayered Approach for Design Pattern
Identification, IEEE Transactions on Software
Engineering, Vol. 34, No. 5, 2008.

11. U. Tekin, F. Buzluca, A graph mining
approach for detecting identical design
structures in object-oriented design models,
Science of Computer Programming, 2013.

12. N. Tsantalis, A. Chatzigeorgiou, G.
Stephanides, S.T. Halkidis, Design pattern
detection using similarity scoring, IEEE Trans.
Softw. Eng. 32, 2006, pp. 176-192.

13. Dong, J., Sun, Y., Zhao, Y., Design Pattern
Detection by Template Matching, Proceedings
of the 2008 ACM Symposium on Applied
Computing, Fortaleza, Brazil, 2008, pp. 765-
769.

14. M. A. Soliman, I. A. M. ElMeddah and A. M.
Wahba, Patterns Mining from Java Source
Code, Int.J. of Software Engineering, IJSE
Vol.4 No.2, 2011.

15. R. S. Rao, M. Gupta, Design Pattern Detection
by a Heuristic Graph Comparison Algorithm,
International Journal of Advanced Research in
Computer Science and Software Engineering
3(11), 2013, pp.251- 255.

16. D. Heuzeroth, T. Holl, G. Högström, W. Löwe,
Automatic Design the Pattern Detection,
Proceedings of the 11 IEEE International
Workshop on Program Comprehension
(IWPC’03), 2003.

17. Subdue, http://ailab.wsu.edu/subdue/.

18. U. Tekin, U. Erdemir, F. Buzluca, Mining
Object-Oriented Design Models for Detecting
Identical Design Structures, Sixth International
Workshop on Software Clones, IWSC 2012,
Zurich, Switzerland, 2012, pp. 43-49.

19. K. Ruohonen, Graph Theory Lecture Notes,
2013.

20. T. Parr, The Definitive ANTLR 4
Reference, The Pragmatic Bookshelf, 2012.

21. BNF Index of Java language grammar,
http://cui.unige.ch/isi/bnf/JAVA/BNFindex.h
tml.

22. GraphViz, www.graphviz.org.

23. S. Stelting and O. Maassen, Applied Java
Patterns, Prentice Hall, Palo Alto, California,
2002.

24. JUnit, http://www.junit.org/.

25. Java AWT,
http://docs.oracle.com/javase/7/docs/api/java/
awt/.

26. E. Gamma, JUnit A Cook’s Tour,
http://junit.sourceforge.net/doc/cookstour/coo
kstour.htm.

27. C. Sars, P. Wessman, and M. Halme, Design
Patterns and the Java AWT,
http://www.niksula.hut.fi/~ged/DesignPatterns/.

28. J. Zukowski, Java AWT Reference,
http://oreilly.com/catalog/javawt/book/index.html

29. DesPaD Design Pattern Detection Tool,
https://github.com/muratoruc2006/DesPaD.git.

