

@ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Investigative Study on Scheduling Procedures f
Real Time Operating System

M.Tech Scholar, Dept. o
University, Raipur,

ABSTRACT

Scheduling procedures are a backbone of any operating
system. In this paper I analyze and conclude that the
types of different scheduling procedures used in real
time. As I know scheduling procedures are basically
divided into two main streams: first is the uniprocessor
and another one is multiprocessor.

This paper describes the uniprocessor system which are
based on static rate monotonic (SRM) and
monotonic (SDM). Here I studied and analyzed different
SRM and SDM procedures to conclude that which
algorithm or which policy is best for real time
scheduling. This paper is also defined that which static
algorithm take less time for the completion of different
tasks whether it is SRM or SDM. I also have given short
details about the dynamic approach of scheduling. Under
this I have explained Earlier deadline first (EDF) and
Least laxity first (LLF) in brief.

Keywords: Static Rate Monotonic (SRM), Static
Deadline monotonic (SDM), Earlier deadline first
(EDF), Least laxity first (LLF)

INTRODUCTION

The scheduling of real-time tasks is very different from
general scheduling. Ordinary scheduling procedures
attempt to ensure fairness among tasks
progress for any individual task, and prevention of
starvation and deadlock. Within computer science real
time systems are an important while often less known
branch. I use Real-time systems in so many ways today
more than PCs in our real life, still I are not so familiar
about it when I use the devices in which they reside.
Some of the devices in which real time system resides

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

Study on Scheduling Procedures f
Real Time Operating System

Pallavi Ganeshpurkar

M.Tech Scholar, Dept. of CSE Kalinga
University, Raipur, Chhattisgarh, India

Scheduling procedures are a backbone of any operating
system. In this paper I analyze and conclude that the

res used in real
time. As I know scheduling procedures are basically
divided into two main streams: first is the uniprocessor

This paper describes the uniprocessor system which are
based on static rate monotonic (SRM) and static deadline
monotonic (SDM). Here I studied and analyzed different
SRM and SDM procedures to conclude that which
algorithm or which policy is best for real time
scheduling. This paper is also defined that which static

completion of different
tasks whether it is SRM or SDM. I also have given short
details about the dynamic approach of scheduling. Under
this I have explained Earlier deadline first (EDF) and

c (SRM), Static
Deadline monotonic (SDM), Earlier deadline first

time tasks is very different from
general scheduling. Ordinary scheduling procedures
attempt to ensure fairness among tasks, minimum
progress for any individual task, and prevention of
starvation and deadlock. Within computer science real-
time systems are an important while often less known

time systems in so many ways today
till I are not so familiar

about it when I use the devices in which they reside.
Some of the devices in which real time system resides

are cars, planes and entertainment system which
govern the working of those devices which I do not
consider that such system exist within the chosen
device .Basically I can say that a real
computer based system in which the major aspect of
the system is to perform tasks on time, not finishing
too early nor too late. A classic example is that of the
opening of para suit; it is of great importance that the
para suit must be pulled in time not too soon not too
late in order to land safely while skydiving. One more
example is of the air- bag in a car; it is of great
importance that the bag inflates neither too so
too late in orders to be of aid and not be potentially
harmful.

In this paper I survey several procedures developed
over the last few years that are designed to schedule
real-time tasks in distributed systems. The choice of
algorithm can influence the behavior of a real
system and for this reason there are many available
procedures. For the different categories of real
systems there are specialized procedures developed.
With the help of this paper I will attempt to provide
an overview of many of the different available real
time procedures.[1]

Before examining the actual procedures, it is helpful
to establish the exact meanings of the terms real
task and distributed system. I provide a basic
definition of what a real- time task is and
different dimensions along which this definition may
vary.

Other overviews of real-time scheduling procedures
have been presented by Burns[1], Burns and

Dec 2017 Page: 770

| www.ijtsrd.com | Volume - 2 | Issue – 1

Scientific
(IJTSRD)

International Open Access Journal

Study on Scheduling Procedures for

are cars, planes and entertainment system which
govern the working of those devices which I do not

tem exist within the chosen
device .Basically I can say that a real-time-system is a
computer based system in which the major aspect of
the system is to perform tasks on time, not finishing
too early nor too late. A classic example is that of the

f para suit; it is of great importance that the
para suit must be pulled in time not too soon not too
late in order to land safely while skydiving. One more

bag in a car; it is of great
importance that the bag inflates neither too soon nor
too late in orders to be of aid and not be potentially

In this paper I survey several procedures developed
over the last few years that are designed to schedule

time tasks in distributed systems. The choice of
he behavior of a real-time

system and for this reason there are many available
procedures. For the different categories of real- time
systems there are specialized procedures developed.
With the help of this paper I will attempt to provide

any of the different available real-

Before examining the actual procedures, it is helpful
to establish the exact meanings of the terms real-time
task and distributed system. I provide a basic

time task is and identify the
different dimensions along which this definition may

time scheduling procedures
have been presented by Burns[1], Burns and

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 771

Audsley[2] and by Mohammadi and Akl[3]. Those are
somewhat more in depth on some topics then this
overview.

The rest of the paper is organized as follows: - In section
2 basic concepts of real-time system and scheduling are
explained. Section 3 deals with the different scheduling
procedures being the main section of this paper. Here I
have discussed about Uniprocessor algorithm under
which static and dynamic scheduling procedures are
covered. The final section, 4, covers summary and
conclusions.

REAL TIME SYSTEM

Real-time applications usually are executed on top of a
Real- time Operating System .scheduling procedures are
the rule set that defines that how I manage the real-time
system in the scheduler, that is, how processor-time is
allotted to the task present in any queue. The choice of
algorithm depends on whether our system base is
uniprocessor, multiprocessor or distributed.

A uniprocessor system executes only one process at a
time and is capable of switching between processes, due
to this reason context switching add some more time to
the overall execution time when I preempt the process.

Multiprocessing is the use of two or more central
processing units (CPUs) within a single computer
system. A multiprocessor system will range from multi-
core, essentially several uniprocessors in one processor,
to several separate uniprocessors controlling the same
system.

A distributed system will range from a geographically
dispersed system to several processors on the same
board. In a distributed system the nodes are autonomous
while in a

In real-time systems processes are referred to as tasks
and these have certain temporal qualities and restrictions.
First of all a real-time task is a task like any other.
HoIver, there is essential difference to other
computation: the notion of time. Maintaining the
Integrity of the Specifications

Each of the tasks will have a deadline, an execution time
and a release time. In addition there are other temporal
attributes that may be assigned to a task. The three
mentioned are the basic ones. The release time, or ready
time is when the task is made ready for execution. The
deadline is when a given task must be done executing
and the execution time is how long time it takes to run
the given task. In addition most tasks are recurring and

have a period in which it executes. Such a task is
referred to as periodic. The period is the time from
when a task may start until when the next instance of
the same task may start and the length of the period of
a task is static.

An example, shown in Figure 1, of scheduling can be
made using three tasks T1, T2 and T3 with execution
time and deadline of (1, 3), (4, 9) and (2, 9)
respectively and periods equal to their deadlines.
These tasks can be scheduled so that all tasks get to
execute before the deadlines.

Figure 1: Scheduling of T1, T2 and T3.

The example is very simple as it does not show
priorities or use preemption. There are also other
properties of interest when looking at scheduling.
Properties a task may use briefly explained:

 Release/ready time: The time a task is ready to
run and just waits for the scheduler to activate it.

 Deadline: The time when a task must be finished
executing.

 Execution/run time: The active computation time
a tasks need to complete.

SCHEDULING PROCEDURES

A. STATIC SCHEDULING
Scheduling procedures themselves can be categorized
as being static or dynamic.[4] The static scheduling
procedures are those procedures which come under
uniprocessors. The tasks present here have enough
execution time and are ensured to fulfill the condition
of deadline if possible. It calculates (or pre-
determines) schedules for the system. Static approach
requires prior knowledge of the process characteristics
in order to process it in particular time. Certainly in
safety critical systems it is reasonable to argue that no
event should be unpredicted and that schedulability
should be guaranteed before execution. This implies
the use of a static scheduling algorithm. When all the
scheduling decisions are made prior to the running of
the system then it is static and offline. A table is
generated which carry the scheduling decisions which
are to be used during run-time.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 772

Rate monotonic (RM) is a scheduling algorithm [5,6]
used in real time operating systems with static priority
preemptive scheme. It is static-priority in the sense that
all priorities are determined for all instances of tasks
before run time. The length of the period of respective
tasks determines the priority of a task. Tasks with short
period times are assigned higher priority. Periodic tasks
are scheduled using RM. The following are
preconditions for the rate monotonic algorithm
formalized by Liu and Layland.

1. Periodic tasks have constant known execution times

and are ready for execution at the beginning of each
period(T).

2. Deadlines(D) for tasks are at the end of each period:
(D = T)

3. The tasks are independent, that is, there is no
precedence between tasks and they do not block each
other.

4. Scheduling overhead due to context switches and
swapping etc. are assumed to be zero.

The rate monotonic priority assignment is optimal
meaning that if any static priority scheduling algorithm
can meet all the deadlines, then the rate monotonic
algorithm can too. The Utilization For the given process
is obtained by the given formula which was proposed by
Lui & Layland(1973)[8] which is as:

 .……….…..(1)
Where Ci=Computation Time, Ti=Release Time Period,
N=No. of processes to be Scheduled.

An Example for rate monotonic is explained as follows:

TABLE 1: Process Timing

Process Execution
Time

Period

P1 3 7

P2 4 9

P3 6 10

The utilization for the given processes present in table 2
will be solved by the given formula:

The Utilization will be: 3/7 + 4/9 + 6/10 = 0.6492.
With the help of this utilization time I conclude the
feasibility of the algorithm.

Figure 2: Scheduling example of Rate-Monotonic

One more example for RM is shown below which
shows the two different tasks T1 and T2 are shown
with their execution time T1 with a shorter period &
therefore higher priority runs before T2. They then run
as they are release.

Deadline Monotonic is a scheduling algorithm is an
algorithm that uses fixed priority preemptive
scheduling. The tasks in this procedures assigned
according to the deadline of the given processes are
assigned according to the given deadline. The task
having the shortest deadline is assigned with the
highest priority. Each task is assigned a priority
inversely proportional to its relative Deadline.
Deadline monotonic priority assignment is not
optimal for fixed priority non-pre-emptive scheduling.

An Example that shows the feasibility for deadline

can be shown by the example below:

Figure 3: Scheduling example for deadline
monotonic.

Can I derive utilization based tests with the Given
Formula:

 …………………......(2)

Here Di=Deadline of the task, Ci=Computation Time,
N=no. of process to schedule.

B. DYNAMIC SCHEDULING:

Dynamic Scheduling procedures are those procedures
in which the priorities to the processes are given to
them at the time of execution of the task. The main

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 773

moto behind this is to adapt to dynamically changing
progress of processes and form an optimal configuration
for tasks in a self-sustained manner. Earlier Deadline
First (EDF)[8] is a dynamic priority driven scheduling
algorithm in which the priorities of tasks is based on the
given deadline uses the simple system model given
earlier. Like the RM algorithm, a preemptive priority-
based scheduling scheme is assumed. The algorithm used
for scheduling is: the process with the (current) closest
deadline is assigned the highest priority in the system
and therefore executes. The schedulability
constant is given by:

 …………………………(3)

For example let us Consider 3 periodic processes
scheduled on a preemptive uniprocessor. The execution
times and periods are as shown in the following table:

TABLE 2: Process Timing.

Process Execution Time Period

P1 1 8

P2 2 5

P3 4 10

Least laxity first (LLF) a process is defined as the
deadline minus remaining computation time. With the
least laxity approach[9], the schedulability constraint is
again given by equation above(figure 3). It assigns
priority based on the laxity. The smaller the laxity value
of a task is, the sooner it needs to be executed. Its most
common use is in embedded system. When two or more
tasks have same or approximate laxity values, LLF
scheduling algorithm leads to frequent switches among
tasks, causes extra overhead in a system, and therefore,
restricts its application.

This scheduling algorithm first selects those processes
that have the smallest "slack time". Slack time is defined
as the temporal difference between the deadline, the
ready time and the run time.
More formally, the slack time for a process is defined as:
(d−t)−c′

where d is the process deadline, t is the real time since
the cycle start, and c′ is the remaining computation
time.

Multiprocessor systems are the future as I see it now,
but finding procedures that takes full advantage of
these systems is an arduous task in which much effort
has been and is being made by researchers. Future
work could be to focus on these new procedures being
produced as Ill as dynamic based server procedures.

CONCLUSION

As I have studied and analyzed the various procedures
based on static scheduling I discuss that rate
monotonic and deadline monotonic scheduling are
two procedures which are used for real time task
system which are periodic. In this paper I discuss the
feasibility decision for the given real time tasks when
the system is scheduled using rate monotonic and
deadline monotonic scheduling. The complexity of
both the procedures depends on the number of tasks
and the maximum periods given or on the deadlines of
the given processes. The time complexity for the
particular algorithm depends on the number of task. I
come to a conclusion that the rate monotonic is more
feasible as compared to the deadline monotonic
algorithm as the priorities for rate monotonic are
based on the process timing and for the deadline
monotonic it is based on the deadline of each process
which is preempted if higher priority task comes in
between.

ACKNOWLEDGMENT

I am using this opportunity to express my gratitude to
everyone who supported me in research analysis for
the given topic that is Investigative study on
scheduling procedures for real time operating system I
express my thank to Department of Computer science
& Engineering.

I also express my warm thanks to project
Incharge/guide Miss Shipra Rathore Asst. Professor
Department Of Computer Science & Engineering,
Kalinga University, Raipur (C.G.) India for the
guidance, inspiration and constructive suggestions
that helpful me in the preparation and execution of
this project.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 774

REFERENCES

1. Burns A.,”Scheduling hard real-time systems: a
review”Software Engineering Journal, May 1991.

2. Burns A. and Audsley N., ”REAL-TIME
SYSTEM SCHEDULING” Predicatably
Dependable Computer Systems, Volume 2, Chapter
2, Part II. or Department of Computer Science,
University of York, UK.

3. Mohammadi A. and Akl S. G., ”Scheduling
Procedures for Real-Time Systems”, Technical
Report No. 2005-499, School of Computing,
Queen’s University Kingston, Ontario Canada K7L
3N6, July 15, 2005.

4. S.Cheng,J.A.Stankovicand K. Ramamritham,
‘‘SchedulingProcedures forHard RealTime
Systems: ABrief Survey’’,pp.150-173 inHard Real-
Time Systems: Tutorial, ed.

5. Liu C.L. and Layland J.W., ”Scheduling Procedures
for Multiprogramming in a Hard-Real-Time
Environment” Journal of the Association for
Computing Machinery vol. 20, no. 1, pp. 46-61.,
year 1973.

6. Strosnider J. K., Lehoczky J. P. and Sha L., ”The
Deferrable Sernnver Algorithm for Enhanced
Aperiodic Responsiveness in Hard Real-Time
Environments”, IEEE Transactions on Computers,
vol. 44, no. 1, January 1995.

7. Leung J. Y.-T., Whitehead J., ”On the complexity
of ixed priority scheduling of periodic, real-time
tasks”, Performance Evaluation, vol. 2, issue 4,
pages 237-250, December 1982..

8. C.L. Liu and J.W.Layland, ‘‘Scheduling
Proceduresfor Multiprogramming in a Hard.

9. A.K. Mok and M.L. Dertouzos,‘‘Multiprocessor
Scheduling in a Hard Real- Time Environment’’,
inProc. 7th TexasConf.Comput .Syst. (November
1978).

10. Liu, C. L.; Layland, J. (1973), Scheduling
procedures for multiprogramming in a hard real-
time environment, Journal of the ACM 20
(1):46– 61, doi:10.1145/321738.3217

