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ABSTRACT 

In this paper, the existence of limit cycles 
of nonlinear systems is explored. Based on the time
domain approach with differential 
inequalities, the phenomenon of the stable limit cycle
can be accurately verified for such nonlinear 
Furthermore, the exponentially stable limit cycles
frequency of oscillation, and guaranteed convergence 
rate can be correctly calculated. Finally, 
numerical simulations are provided to demonstrate 
feasibility and effectiveness of the main result
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1. INTRODUCTION  

Nonlinear network may cause oscillations with fixed 
period and fixed amplitude. These oscillations are 
named limit cycles, e.g., RLC electrical circuit with a 
nonlinear resistor and Van der Pol equation. Limit 
cycles are special phenomenon of nonlinear networks 
and have been widely investigated; see, for example, 
[1-12] and the references therein.  
 
Prediction of limit cycles is very meaningful
of the fact that limit cycles can occur in any kind of 
physical system. Frequently, a limit cycle can be 
worthwhile. This is the case of limit cycles in the 
electronic oscillators utilized in factories and 
laboratories. There are at least four
explore the phenomenon of limit cycles, namely 
describing function technique, Poincare
theorem, Piecewise-linearized methodolog
Lyapunov-like approach. The disadvantages
describing function method are related to its 
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, and guaranteed convergence 
Finally, some 

demonstrate the 
feasibility and effectiveness of the main results. 

, nonlinear systems, stable limit 

oscillations with fixed 
These oscillations are 

named limit cycles, e.g., RLC electrical circuit with a 
Van der Pol equation. Limit 

phenomenon of nonlinear networks 
; see, for example, 

meaningful, in view 
in any kind of 

physical system. Frequently, a limit cycle can be 
of limit cycles in the 

factories and 
four methods to 

the phenomenon of limit cycles, namely 
Poincare-Bendixson 
methodology, and 

disadvantages of the 
describing function method are related to its 

approximate nature, and include the possibility of 
inaccurate predictions. Besides
Bendixson theorem only provides a necessary 
condition to ensure the existence of limit cycles. 
Therefore, even the conditions of the Poincare
Bendixson theorem are meted for 
existence of limit cycles cannot be guaranteed for 
such a system. 
 
In this paper, based on the time
differential and integral inequalit
of the stable limit cycle will be accurately verified for 
a class of nonlinear systems
exponentially stable limit cycles
oscillation, and guaranteed convergence rate
calculated. At last, several numerical simulations will 
offered to show the feasibility and effectiveness of the 
obtained results. 
 
2. PROBLEM FORMULATION AND MAIN 

RESULTS 

In this paper, we consider the following 
system: 
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   TT xxxx 302010:0  ,     (1d) 
 

Where          13
321:  Ttxtxtxtx  is the state vector, 

 Txxx 302010  is the initial value, and ba,  
represent the parameters of the system, with 0a . 
Clearly, 0x  is an equivalent point of system (1), i.e., 

the solution of system (1) is given by 0)( tx  if 
  00 x . To avoid the apparent case of   00 x , in the 

following, we only investigate the system (1) in case 

of   00 x . 
 
Definition 1  

Consider the system (1). The closed and bounded 

manifold 0)( xs , in the 31 xx   plane, is said to be an 
exponentially stable limit cycle if there exist two 

positive numbers   and   such that the manifold of 
0)( xs  along the trajectories of system (1) meets the 

following inequality  

     .,exp)( 00 tttttxs    
In this case, the positive number   is called the 
guaranteed convergence rate. 
 
Now, we are in a position to present the main results 
for the existence of limit cycles of system (1). 
 
Theorem 1. 

All of phase trajectories of the system (1) tend to the 
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It follows that 
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In the following, there are three cases to discuss the 
trajectories of the system of (1). 
 

Case 1: axx  )0()0( 2
3

2
1  (or equivalently;    00 xs ) 

In this case, from (2), it can be obtained that 
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in view of (3) and (4). 
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2
1   (or equivalently;    00 xs ) 

In this case, from (2), it can be obtained that  )(2 txs  is 
a strictly decreasing function of t with
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Applying the Bellman-Gronwall inequality with 
above differential inequality, one has 
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This implies 
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Consequently, by (3) and (5), we conclude that 
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This completes the proof.  □    
 
Remark 1.  It should be pointed out that, by Theorem 
1, the system (1) can be regarded as nonlinear 

oscillators with the amplitude a  and the frequency 
b. Such an oscillation is entirely independent of the 
initial condition and limit cycles of such an oscillation 
are not affected by parameter variation. 
 
3. NUMERICAL SIMULATIONS 

Example 1: Consider the system (1) with    4,2, ba  

and  Tx 2,0,2)0(  . By Theorem 1, we conclude that 
the phase trajectories of such a system tend to the 

exponentially stable limit cycle 02)( 2
3

2
1  xxxs  in 

the 31 xx   plane, with the guaranteed convergence rate
4 . Besides, the states )(1 tx  and )(3 tx  exponentially 

track, respectively, the trajectories 
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convergence rate 
1

2




. Some state trajectories of 
such a system are depicted in Figure 1 and Figure 2. 

Example 2: Consider the system (1) with    5,3, ba  

and  Tx 1.0,0,1.0)0(  . By Theorem 1, we conclude 
that the phase trajectories of such a system tend to the 

exponentially stable limit cycle 03)( 2
3

2
1  xxxs  in 

the 31 xx   plane, with the guaranteed convergence rate 
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exponentially track, respectively, the trajectories 
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with the guaranteed convergence rate 
14.0

2




. Some 
state trajectories of such a system are depicted in 
Figure 3 and Figure 4. 
 
4. CONCLUSION 

In this paper, the existence of limit cycles for a class 
of nonlinear systems has been considered. Based on 
the time-domain approach with differential and 
integral inequalities, the phenomenon of the stable 
limit cycle can be accurately verified for such 
nonlinear systems. The exponentially stable limit 
cycles, frequency of oscillation, and guaranteed 
convergence rate can also be correctly calculated. 
Finally, some numerical simulations have been given 
to demonstrate the feasibility and effectiveness of the 
main results. 
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Figure 1: Typical state trajectories of the system (1) 

with    4,2, ba  and  Tx 2,0,2)0(  . 

 
Figure 2: Typical phase trajectories of the system (1) 

with    4,2, ba  and  Tx 2,0,2)0(  . 
 

 
Figure 3: Typical state trajectories of the system (1) 

with    5,3, ba  and  Tx 1.0,0,1.0)0(  . 
 

 
Figure 4: Typical phase trajectories of the system (1) 

with    5,3, ba  and  Tx 1.0,0,1.0)0(   
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