
International Journal of Trend in Scientific Research and Development (IJTSRD)  
Volume 7 Issue 6, November-December 2023 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470 

 

@ IJTSRD  |  Unique Paper ID – IJTSRD60159   |   Volume – 7   |   Issue – 6   |   Nov-Dec 2023 Page 268 

Study of Software Defect Prediction using Forward 

Pass RNN with Hyperbolic Tangent Function 

Swati Rai1, Dr. Kirti Jain2 

1Research Scholar, 2Associate Professor, 
1, 2SSOAC, SAGE University, Bhopal, Madhya Pradesh, India 

 

ABSTRACT 

For the IT sector and software specialists, software failure prediction 
and proneness have long been seen as crucial issues. Conventional 
methods need prior knowledge of errors or malfunctioning modules 
in order to identify software flaws inside an application. By using 
machine learning approaches, automated software fault recovery 
models allow the program to substantially forecast and recover from 
software problems. This feature helps the program operate more 
efficiently and lowers errors, time, and expense. Using machine 
learning methods, a software fault prediction development model was 
presented, which might allow the program to continue working on its 
intended mission. Additionally, we assessed the model's performance 
using a variety of optimization assessment benchmarks, including 
accuracy, f1-measure, precision, recall, and specificity. 
Convolutional neural networks and its hyperbolic tangent functions 
are the basis of the deep learning prediction model FPRNN-HTF 
(Forward Pass RNN with Hyperbolic Tangent Function) technique. 
The assessment procedure demonstrated the high accuracy rate and 
effective application of CNN algorithms. Moreover, a comparative 
measure is used to evaluate the suggested prediction model against 
other methodologies. The gathered data demonstrated the superior 
performance of the FPRNN-HTF technique. 
 

 

KEYWORDS: FPRNN-HTF (Forward Pass RNN with Hyperbolic 

Tangent Function), precision, recall, specificity, F1-measure, and 

accuracy 

 

How to cite this paper: Swati Rai | Dr. 
Kirti Jain "Study of Software Defect 
Prediction using Forward Pass RNN 
with Hyperbolic Tangent Function" 
Published in 
International 
Journal of Trend in 
Scientific Research 
and Development 
(ijtsrd), ISSN: 
2456-6470, 
Volume-7 | Issue-6, 
December 2023, pp.268-273, URL: 
www.ijtsrd.com/papers/ijtsrd60159.pdf 
 
Copyright © 2023 by author (s) and 
International Journal of Trend in 
Scientific Research and Development 
Journal. This is an 
Open Access article 
distributed under the 
terms of the Creative Commons 
Attribution License (CC BY 4.0) 
(http://creativecommons.org/licenses/by/4.0) 

 

1. INTRODUCTION 

The presence of flaws in software significantly 
impacts its dependability, quality, and upkeep 
expenses. Even with diligent application, it might be 
difficult to get bug-free software since most defects 
are buried. A significant issue in software engineering 
is also creating a software bug prediction model that 
might identify problematic modules early on. 
Predicting software bugs is a crucial task in software 
development. This is so that user happiness and 
overall program performance may be increased by 
anticipating the problematic modules before software 
is deployed. Additionally, early software problem 
prediction enhances software adaptability to various 
situations and maximizes resource efficiency. 

Numerous research have been conducted on the 
prediction of software bugs with machine learning 
methods. Take the linear Auto-Regression (AR) 
technique, for instance, to forecast the defective  

 
modules. Based on previous data on software 
accumulated flaws, the research forecasts future 
software errors. The research also used the Root 
Mean Square Error (RMSE) method to assess and 
compare the AR model with the Known Power Model 
(POWM). Three datasets were also included in the 
research for assessment, and the outcomes looked 
good. The research examined the suitability of several 
machine learning techniques for defect prediction. 
The key earlier studies on each machine learning 
approach and the most recent developments in 
machine learning-based software bug prediction. 

2. BACKGROUND 

Robotic programming deformity expectation (SDP) 
tactics are gradually used, sometimes with the use of 
artificial intelligence (AI) processes, according to 
Görkem Giray et al. [1]. But existing machine learning 
methods need physically removed highlights, which 

 
 

IJTSRD60159 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD60159   |   Volume – 7   |   Issue – 6   |   Nov-Dec 2023 Page 269 

are cumbersome, time-consuming, and only partially 
capture the semantic information disclosed in bug 
describing equipment. Professionals have the 
invaluable opportunity to extract and benefit from 
more complex and multi-layered knowledge as a 
result of profound learning (DL) techniques.  

According to Iqra Batool et al. [2], programming 
engineers may identify problematic builds-like 
modules or classes-early in the product advancement 
life cycle with the use of programming 
issue/deformity expectation. Information mining, 
artificial intelligence, and deep learning techniques are 
used to program expectations that are not satisfied.  

Heterogeneous deformity expectation (HDP), as 
introduced by Haowen Chen et al. [3], refers to the 
imperfection prediction amongst projects with 
different measurements. The majority of current HDP 
methods severely limit their interpretability by 
mapping source and target data into a conventional 
measurement space where each element has no real 
significance. Furthermore, HDP often faces the 
problem of class inequality. 

According to Cagatay Catal et al. [4], phishing attacks 
aim to steal personal information by using 
sophisticated techniques, tools, and tactics. Some 
examples of these are happy infusion, social 
engineering, online forums, and mobile apps. A 
number of phishing location techniques were 
developed in order to prevent and lessen the risks of 
these attacks; deep learning calculations proved to be 
one of the most effective.  

Xieling and others [5], A number of open-source and 
endeavor-supported information diagrams have 
emerged in recent years, marking a remarkable 
advancement in the application of information 
portrayal and thinking into a variety of domains, 
including computer vision and natural language 
processing. The goal of this research is to thoroughly 
examine the current state and trends of information 
diagrams, with a focus on the topical examination 
structure.  

Cagatay et al. (2006) Innovative techniques are put 
forward for identifying and eliminating the various 
types of malware, with deep learning computations 
playing a crucial role. Even while the development of 
DL-based portable malware detection techniques has 
received a great deal of attention, it hasn't been 
thoroughly examined yet. The objective of this effort 
is to identify, compile, and review the published 
publications related to the use of deep learning 
techniques to the detection of portable malware.  

One of the major challenges in programming 
advancement and programming language research for 

further enhancing programming quality and 
dependability is ality expectation (Akimova et al., 
Deform et al., 2007). The problem in this area is to 
accurately and very precisely identify the corrupted 
source code. Developing a prediction model with 
shortcomings is a challenging problem for which 
several approaches have been put out throughout 
history. 

3. PROBLEM IDENTIFICATION 

It is typical development practice to verify and 
examine source codes using analytical techniques. 
This procedure may be carried either automatically or 
manually with the use of tools for dynamic and static 
code analysis, among other things. Static code 
analysis has seen a recent surge in tool development, 
offering really useful, added-value solutions to many 
of the issues that software development companies 
encounter. However, these techniques are difficult to 
utilize in real-world scenarios due to a large number 
of false positive and false negative outcomes. 
Therefore, another technique or approach-such as 
Machine Learning (ML) algorithms-must be 
discovered for static code analysis.  

The problems that have been identified based on 
previous studies are listed below: 
 It is not always possible to identify relevant 

software flaws. 
 A software bug's recovery is not entirely 

recognized. 
 Because of its poor precision, the unnamed 

software problem may be detected. 

4. RESEARCH OBJECTIVES 
The objectives of the proposed work:  
 To increase accuracy for flawless software bug 

retrieval.  
 To increase recall for software faults that are 

absolutely applicable throughout the retrieval 
process. 

 To increase the precision of software bug 
detection. 

5. METHODOLOGY 

The Algorithm of proposed methodology FPRNN-
HTF (Forward Pass RNN with Hyperbolic Tangent 
Function) is as follows 

I = Number of input layers 

H = Number of hidden layers 

O = Number of output layers 

S = Number of data set instances 

Step 1: for i = 1 to H 

Step 2: for j = 1 to S 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD60159   |   Volume – 7   |   Issue – 6   |   Nov-Dec 2023 Page 270 

calculating the forward for the forward hidden layers 
with activation function 

( )1tanhf f f f f

t h t x t hh W h W x b−= + +  

end for 

Step 3: for j=S to 1 

calculating the backward pass for the backward 
hidden layer’s activation function  

( )1tanhb b b b b

t h t x t hh W h W x b−= + +  

end for 

end for 

Step 4: for i =1 to O 

calculating the forward pass for the output layer using 
the previous stored activation function  

{ }( ) ( )f f b b

t i y t y t yi t
P y x W h W h bσ

≠
= + +  

Wy is the weight matrix connecting the hidden layer 
to output layer,  

Wh is the weight matrix that connects hidden to 
hidden layer,  

and Wx is the weight matrix that connects input layer 
to hidden layer.  

by is the output layer bias vectors, and bh is the hidden 
layer bias vectors.  

For the final nonlinearity r, and use tanh as an 
activation function for classification. According to 
this form, the RNN will evaluate the output yt 
according to the information propagated through the 
hidden layer regardless of whether it depends directly 

or indirectly on the values { } { }1 21
, ,....,

t

i ti
x x x x

=
= . 

end for 

end for 

The Architecture of proposed methodology FPRNN-
HTF (Forward Pass RNN with Hyperbolic Tangent 
Function) is as follows 

 
Figure 1: Process of proposed work 

6. RESULTS AND ANALYSIS 

Python 3.11.1 on Anaconda Navigator and a Jupyter 
notebook are used to take the following metrics. The 
computation of precision, recall, F1-Score, and 
accuracy is determined by using the recommended 
FPRNN-HTF method on CS1.csv data from the 
PROMISE dataset. 

 
Figure 2: Complexity Evaluation of Bug 

Frequency for FPRNN-HTF (Proposed 

Prediction Model) 

 
Figure 3: Calculation of confusion matrix, 

precision, recall, F1-Score and accuracy among 

different models and FPRNN-HTF (Proposed 

Prediction Model) 

Table 1: Estimation of Precision, Recall, F1-

Score and Accuracy among different models and 

FPRNN-HTF (Proposed Prediction Model) 

Models Precision Recall 
F1-

Score 
Accuracy 

Random 
Forest 

0.9 0.83 0.9 80.65 % 

Naïve 
Bayes 

0.94 0.82 0.88 80.10 % 

Logistic 
Regression 

0.93 0.8 0.88 79.5 % 

Decision 
Tree 

0.83 0.84 0.83 74.86 % 

ANN 0.92 0.84 0.9 82.77 % 
FPRNN-

HTF 

(Proposed) 

0.95 0.96 0.98 96 % 

 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD60159   |   Volume – 7   |   Issue – 6   |   Nov-Dec 2023 Page 271 

 
Figure 4: Graphical Analysis of Precision among 

different models and FPRNN-HTF (Proposed 

Prediction Model) 

When compared to alternative models in the context 
of bug prediction, the following graphic shows that 
the recommended model offers higher accuracy. In 
terms of accuracy, FPRNN-HTF beats Naive Bayes 
by a margin of 0.01. 

 
Figure 5: Graphical Analysis of Recall among 

different models and FPRNN-HTF (Proposed 

Prediction Model) 

The graph above illustrates how the proposed model 
outperforms earlier models in terms of recall for bug 
prediction. FPRNN-HTF has a 0.12 improvement in 
recall over the Decision Tree and ANN prediction 
models. 

 
Figure 6: Graphical Analysis of F1-Score among 

different models and FPRNN-HTF (Proposed 

Prediction Model) 

The graph above illustrates how the proposed model's 
F1-score is greater than that of earlier models. In 

terms of F1-score, FPRNN-HTF is superior than 
Random Forest and ANN by 0.08 points. 

 
Figure 7: Graphical Analysis of Accuracy among 

different models and FPRNN-HTF (Proposed 

Prediction Model) 

When compared to current models, the following data 
shows that the recommended model offers a greater 
accuracy for predicting bugs. The accuracy of 
FPRNN-HTF prediction model is 13.23% greater 
than that of ANN prediction model. 

7. CONCLUSION 

We have used the FPRNN-HTF model in this 
investigation to get the intended findings. Our 
research demonstrates that prior attempts did not pay 
enough attention to feature selection and cross 
validation. The recommended technique outperforms 
other ones in terms of accuracy (98.16%) on large 
datasets. The combination of the five developed 
approaches yields the best results since it is 
computationally demanding (it avoids overfitting and 
gives fast prediction speeds) and versatile in 
application (it can be used for both regression and 
classification problems). Investigating this method 
further for bug prediction in deep learning models has 
been a continuous endeavor. 

There should be conclusions to these: 

1. The accuracy of the proposed model is higher 
than that of FPRNN-HTF. The accuracy has 
increased by 0.01 compared to Naïve Bayes.  

2. The proposed model achieves higher recall than 
FPRNN-HTF Regression. FPRNN-HTF has a 
0.12 improvement in recall over the Decision 
Tree and ANN prediction models. 

3. In terms of F1-Score, the suggested model 
performs better than the FPRNN-HTF. The 
difference between Random Forest and ANN is 
0.08. 

4. The proposed model has a greater accuracy in 
comparison to ANN. There is an accuracy 
increase of 13.23%. 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD60159   |   Volume – 7   |   Issue – 6   |   Nov-Dec 2023 Page 272 

Thus, for software bug prediction, FPRNN-HTF 
(Forward Pass RNN with Hyperbolic Tangent 
Function) is a more accurate method.  

We propose a technique that enhances diagnostic 
precision-a critical component of successful 
treatment. New datasets should be used to evaluate 
the accuracy in the future, and further AI approaches 
should be used to confirm the correctness of the 
estimate. Owing to the enormous amount of data 
required for train data performance estimate, the 
suggested model has a processing time limit. The 
effectiveness of the system will be estimated in the 
future using real-time data and the same algorithms. 

REFERENCES 
[1] Görkem Giray, Kwabena Ebo Bennin, Ömer 

Köksal, Önder Babur, Bedir Tekinerdogan, “On 
the use of deep learning in software defect 
prediction”, The Journal of Systems & 
Software, 2023. 

[2] Iqra Batool, Tamim Ahmed Khan, “Software 
fault prediction using data mining, machine 
learning and deep learning techniques: A 
systematic literature review”, Computers and 
Electrical Engineering, May 2022. 

[3] Haowen Chen, Xiao-Yuan Jing, Yuming Zhou, 
Bing Li, Baowen Xu, “Aligned metric 
representation based balanced multiset 
ensemble learning for heterogeneous defect 
prediction”, Information and Software 
Technology, July 2022. 

[4] Cagatay Catal, Görkem Giray, Bedir 
Tekinerdogan, Sandeep Kumar & Suyash 
Shukla, “Applications of deep learning for 
phishing detection: a systematic literature 
review”, Knowledge and Information Systems, 
2022. 

[5] Xieling Chen, Haoran Xie, Zongxi Li, Gary 
Cheng, “Topic analysis and development in 
knowledge graph research: A bibliometric 
review on three decades”, Neurocomputing, 
October, 2021. 

[6] Cagatay Catal, Görkem Giray, Bedir 
Tekinerdogan, “Applications of deep learning 
for mobile malware detection: A systematic 
literature review”, 2021. 

[7] Konstantin S. Kobylkin, Anton V. Konygin Ilya 
P. Mezentsev and Vladimir E. Misilov, “A 
Survey on Software Defect Prediction Using 
Deep Learning”, IEEE/ACM 41st International 
Conference on Software Engineering: Software 
Engineering in Practice (ICSE-SEIP), 2021. 

[8] Farah Atif, Manuel Rodriguez, Luiz J. P. 
Araújo, Utih Amartiwi, Barakat J. Akinsanya & 
Manuel Mazzara “A Survey on Data Science 
Techniques for Predicting Software Defects”, 
IEEE Conf. of Software Engineering, 2021. 

[9] Saleema Amershi; Andrew Begel; Christian 
Bird; Robert DeLine; Harald Gall; Ece Kamar; 
Nachiappan Nagappan, “Software Engineering 
for Machine Learning: A Case Study”, IEEE 
Conf. on Machine Learning, 2019. 

[10] George G. Cabral; Leandro L. Minku; Emad 
Shihab; Suhaib Mujahid, “Class Imbalance 
Evolution and Verification Latency in Just-in-
Time Software Defect Prediction”, IEEE/ACM 
41st International Conference on Software 
Engineering (ICSE), 2019. 

[11] Kwabena Ebo Bennin; Jacky Keung; Passakorn 
Phannachitta; Akito Monden; Solomon 
Mensah, “MAHAKIL: Diversity Based 
Oversampling Approach to Alleviate the Class 
Imbalance Issue in Software Defect 
Prediction”, IEEE Transactions on Software 
Engineering, 2018. 

[12] Yuxiang Gao, Yi Zhu, Yu Zhao, “Dealing with 
imbalanced data for interpretable defect 
prediction”, IEEE Conf on Data Analysis, 
2017. 

[13] Kwabena Ebo Bennin; Jacky Keung; Akito 
Monden; Yasutaka Kamei; Naoyasu Ubayashi, 
“Investigating the Effects of Balanced Training 
and Testing Datasets on Effort-Aware Fault 
Prediction Models”,  IEEE 40th Annual 
Computer Software and Applications 
Conference (COMPSAC), 2016. 

[14] Faruk Arar, Kürşat Ayan, “Software defect 
prediction using cost-sensitive neural network”, 
Applied Soft Computing, Volume 33, August 
2015. 

[15] Deepika Badampudi, Claes Wohlin, Kai 
Petersen, “Experiences from using snowballing 
and database searches in systematic literature 
studies”,  19th International Conference on 
Evaluation and Assessment in Software 
Engineering, 2015. 

[16] Kyunghyun Cho, Bart van Merrienboer, Caglar 
Gulcehre, Dzmitry Bahdanau, Fethi Bougares, 
Holger Schwenk, Yoshua Bengio, “Learning 
Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”, 
Computation and Language, 2014. 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD60159   |   Volume – 7   |   Issue – 6   |   Nov-Dec 2023 Page 273 

[17] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. 
Kegelmeyer, “SMOTE: Synthetic Minority 
Over-sampling Technique”, Artificial 
Intelligence, 2011 

[18] Gul Calikli; Ayse Tosun; Ayse Bener; Melih 
Celik, “The effect of granularity level on 
software defect prediction”, 24th International 
Symposium on Computer and Information 
Sciences, 2009. 

[19] Cagatay Catal, Banu Diri, “A systematic review 
of software fault prediction studies”, Expert 
Systems with Applications, Volume 36, Issue 4, 
May 2009. 

[20] Alessandro Birolini, “Reliability and 
Availability of Repairable Systems”, Reliability 
Engineering, 2004. 

 


