Pharmaceutico-Analytical Study of Soota Taila- An Inimitable Formulation

Dr. Saba Tarannum¹, Dr. Ravi R Chavan², Dr. Usha M³

¹Final Year PG Scholar, Department of PG Studies in Rasashastra and Bhaishajya Kalpana,
²Professor, Department of PG Studies in Rasashastra and Bhaishajya Kalpana,
³Assistant Professor, Department of PG Studies in Rasashastra and Bhaishajya Kalpana,
^{1, 2, 3}Taranath Government Ayurvedic Medical College, Ballari, Karnataka, India

ABSTRACT

Ayurveda is one of the oldest systems of medicines, is momentous in audience of worldwide on virtue of its holistic approach of life.

Rasashastra and *Bhaishajya Kalpana* is specialized branch in the field of *Ayurveda* which deals with pharmaceutical and therapeutic scopes, the nature possesses an immense valuable and powerful medicine in form of metals, minerals and plants.

Soota taila is unique preparation mentioned in Rasa Ratna Sammucchaya. This formulation is prepared like that of dhruti preparation, having ingredients like Shuddha Parada, Shuddha Gandhaka, Shuddha Manashila, Shuddha Haratala, Tila taila and Kanjika aid in managing conditions like Kampavata (Parkinson's disease), Bahukampa, Shirakampa [head tremor], Janghakampa, Ekangavata (hemiplegia) and all the various types of vata vyadhi's. Physical test shows Loss on Drying at 105°C is 0.01%, Saponification value is 187.95%, Iodine value is 111.67%, Acid value is 2.02%, Peroxide value is 5.15%, Ester value is 185.93, Refractive index at 30°C is 1.451, Specific gravity is 0.9435, Weight (gm) per ml is 0.9373 gm/ml, Viscosity at 30°C is 94.6031 cP, Rancidity test (Kreis test) is Negative, Total aerobic counts is Nil, Total fungal count is Nil. FTIR analysis states: soota taila contains δlactone, Conjugated anhydride, Tertiary alcohol, Sulfone, Fluro compound, Sulfonamide, Sulfonic acid anhydrous hydride, Ester, Sulfate, Sulfonyl chloride, Fluoro compound, Phenol, 1, 4disubstituted or 1,2,3,4-tetrasubstituted and 1, 3- disubstituted, Halo compound. This shows the presence of organic compounds in the drugs. HPTLC Shows presence of various functional groups such as HPTLC technique major phytochemical present in the drug or formulation can be estimated. Considering all analytical parameters through the study conducted, one can conclude that Soota Taila may benefit in managing conditions like Kampavata (Parkinson's disease), Bahukampa, Shirakampa [head tremor], Janghakampa, Ekangavata (hemiplegia) and all the various types of vata vyadhi's as mentioned in the classics.

How to cite this paper: Dr. Saba Tarannum | Dr. Ravi R Chavan | Dr. Usha M "Pharmaceutico-Analytical Study of Soota Taila- An Inimitable Formulation" Published in International

Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-7 | Issue-5, October 2023, pp.461-480, URL:

www.ijtsrd.com/papers/ijtsrd59964.pdf

Copyright © 2023 by author (s) and International Journal of Trend in Scientific Research and Development

Journal. This is an Open Access article distributed under the

terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

KEYWORDS: Soota taila, dhriti kalpana, vatavyadhi, parkinsons disease, hemiplegia

INTRODUCTION

Health and disease are coeval with life. All societies invariably looked upon to the natural resources for maintenance of health and for attaining freedom from illness.

Ayurveda is not merely a science of diseases and drugs, where it has every aspect of life in its sphere.

The main aim of this system is maintenance of good health as well as enhancing the healthy life span.

Rasashastra and Bhaishajya kalpana known as the art of *Vedic* alchemy is a fusion between mineral and organic compounds. It is specialized branch in the

field of Ayurveda which deals with pharmaceutical and therapeutic scopes.

Soota Taila is inimitable, distinctive formulation mentioned in *Rasa Ratna Sammucchaya* 21st chapter which is named as taila but preparation method is similar to that of *Dhruti Kalpana*.

Dhruti Kalpana (liquification) is one such important formulation which gives effective results with minimal dosage, easy to consume, quick absorption both internally and externally.

Soota Taila¹ having ingredients like Shuddha Parada, Shuddha Gandhaka, Shuddha Manashila, Shuddha Haratala, Tila taila and Kanjika. Parada acts as Yogavahi, Rasayana, Balya, Vrisya. Prabhava as Kushtahara, Amruta, Sarvarogahara. Gandhaka has potent rasayana activity; it is garahara, vishahara, kushtahara and kapha vatahara. Manashila as Kashaya and Madhura rasa mitigates Vata and Kapha dosha and also possesses Lekhana property which is beneficial in srotho vivarana, Prabhava as visha nashaka. and Haratala in use of nadi dourbalya, pachana, lekhana, sothahara rakta shodhaka twachya jwaraghna, swasa and Krimighna. Kanjika is strong and acidic acts as digestive stimulant, reduces vata kapahaja diseases, improves intellect. *Tila taila*, internally is great for improving iron levels, controlling cholesterol, managing heart diseases and improving strength, on skin is beneficial because it acts as antioxidant, contains vitamin E, oil is rich in minerals [copper, calcium, zinc, iron]. All these will aid in managing conditions like Kampavata (Parkinson's disease), Bahukampa, Shirakampa Janghakampa, Ekangavata [head tremor], (hemiplegia) and all the various types of vata vyadhi's. Soota taila can be used both internally and externally. When Soota Taila gets processed judiciously, can be beneficial in curing various vata roga and can be beneficial to society.

AIMS AND OBJECTIVES AIM: "PHARMACEUTICO-ANALYTICAL STUDY OF SOOTA TAILA"

OBJECTIVES:

- Up to date review of Soota taila, Parada, Gandhaka, Manashila, Haratala and other associated drugs.
- Preparation of *soota taila* according to classical method mentioned in *Rasaratna sammucchaya* with due importance to SOP
- To carryout physico-chemical analysis of Kajjali, homogeneous mixture of soota taila and Soota taila.

METHODOLOGY

- Raw materials were collected after authoritative identification through grahya agrahya lakshanas.
- Extraction of *Parada* from *Hingula* by subjecting it to *Urdhvapatana* method.²
- Gandhaka shodhana was carried out in Godugdha by subjecting it to Kurma Puta by Bhoodhara Yantra method³
- Samaguna Kajjali⁴ was prepared by mardana method for 210 hours.
- ➤ Manashila shodhana will be carried out by bhavana with ardraka swarasa for 7 times⁵.
- Haratala shodhana will be caried out by bhavana Sci with churnodaka for 7 times.⁶
- Preparation of Kanjika⁷ using shali and masha with 14 parts of water, until it gets half cooked and filtering product and was kept undisturbed for 21 days after all positive lakshana the kanji was collected.
 - Preparation of tila taila was carried out.
 - Homogeneous mixture of Kajjali, Manashila, Haratala along with Kanjika was carried out upto lepa consistency
 - Application of *lepa* over kora cloth and formation of *varti*
 - Ignition of varti like Dhriti and collection of taila which is named as soota taila.
 - Soota taila was sent for analytical tests.

RESULTS Pharmaceutical Results:

Table no.99: Showing results of Hingulottha Parada					
Batch	Wt of <i>Hingula</i> taken for <i>urdhwapatana</i>	Wt of Parada obtained	Yield%	Total Yield %	
Batch I	285gm	172gm	70.49%	73.6%	
Batch II	285gm	190gm	77.86%	75.0%	

Table no.100: Showing results of Hingulottha Parada Shodhana			
Wt of ashoditha Parada taken	Wt of shoditha Parada	Yield %	
362g	360g	99.44%	

Table no.101: Snowing results of Gananaka shoanana					
Wt of Gandhaka taken	Wt of Sh. Gandhaka obtained	loss	Yield		
500 gms	490 gms	10gms			
490gms	450gms	40gms	84.4%		
450gms	422gms	28gms			
Total		78gms			

Table no.101: Showing results of Gandhaka shodhana

Table no.102: showing Results of Manashila Shodhana

No of bhavana	Quantity of Manashila taken	Quantity obtained	Gain{+} Loss{-}	Yield
1	478gms	524gms	46gms	
2	524gms	529gms	5gms	
3	529gms	536gms	7gms	
4	536gms	548gms	12gms	111.08%
5	548gms	548gms	0gms	
6	548gms	520gms	-28gms	
7	520gms	531ggms	11gms	
Total			53gms	

Table no.103: showing Results of Haratala Shodhana

	0			
No of bhavana	Quantity of <i>Haratala</i> taken	Quantity obtained	Gain{+} Loss{-}	Yield
1	570gms	630gms	60gms	
2	630gms	630gms	00gms	
3	630gms So	ient 640gms	10gms	
4	640gms	645gms	05gms	117.5%
5	645gms	655gms	10gms	
6	655gms	OKL675gms	20gms	
7	675gms Internatio	onal J 670gms 💆	-5gms	
Total	a State of Trend	in Scientific 🤱 😫	2 100gms	

Table no.104: Showing results from preparation of Kajjali

W

t of Parada	Wt of Gandhaka	Wt of Kajjali obtained	Yield %
360gm 🗸	360gm	692gm 9	96.11%

Table no.105: Showing results from preparation of Kanjika

Parameters	Before 21 days	After 21 days
Quantity of Kanjika	3 liters	🧭 l liter
Yield	33.3.	3%

Table no.106: showing Kanjika with observational parameters

SI no. observations		parameters	days			
51 110.	observations	parameters	00	07	14	21
		Roopa [colour]	white	Dusky white.	Dusky white	Dusky white
		Rasa[taste]	Tasteless	Slightly bitter	Slightly bitter	Sour
	Organoleptic	Gandha [odour]	Pleasant	Unpleasant	Unpleasant	Unpleasant
		Sparsha	Thin	Slightly Thick	Slightly	Slightly thick
		[consistency]	liquid	liquid	Thick liquid	liquid
		Flame test	Absent	Absent	Flame was	Flame continued
		r laine test	Absent	Absent	turned off	to burn
	Test	Bubble test	Absent	Small+	Bigger++	No bubbles
		Float/sink test	Floating	Floating	Floating	Sunken
	Fungal growth		Absent	Absent	Absent	Absent

Table no.107: Showing Results of MTT

Quantity of Tila taila	3000 ml
Observations	All Siddhi lakshanas observed.
Yield	2800ml
Color	Reddish Brown
Yield	93.3%

Table no. 1	Table no. 108: showing results of soota taila collected over all				
	Number of Varti burnt	Quantity of soota taila collected in ml	Quantity of tila taila used		
BATCH-1	05	70+70+50= 190ml	1.2 liter's		
BATCH -2	04	80+70= 150ml	1.2 liter's		
Total quantity	09	340 ml	2.4 liter's		

Table no. 108: showing results of soota taila collected over all

Table no.109: showing results of soota taila collected.

Quantity of homogeneous mixture of ST taken	Quantity of ST obtained	Yield
400gms	340ml	85%

ANALYTICAL RESULTS

Table no.110: showing classical approach of organoleptic characters

TEST	OBSERVATION	
	MTT	ST
Varna	Aruna, Kapisha	Yellowish green/ambered.
Gandha	Characteristic odour	Odourless
Rasa	Tikta	characteristics
Kalka vartivat lakshana	+++	-
Shabdahina when put on agni	+++	-
Phenodgama		-

MODERN PARAMETERS A. PHYSICAL TESTS ORGANOLEPTIC CHARACTERS:

Color, odour, taste of the given sample was tested using sensory organs, and the same were noted.

Table no.111: Showing Organoleptic Characters of MT and ST

Physical test	MTT	ST
Colour	Yellowish brown	Blackish brown
Odour	Characteristic odour	Characteristic odour
Taste	Characteristic taste	Characteristic taste
Appearance	Viscous liquid 470	Viscous liquid

Table no.112: Organoleptic characters of Kajjali, HMST and ST

Physical test	Kajjali	HMST	ST
Colour	Jet black	Olive green	Yellowish green/amber
Odour	Odourless	Odourless	Characteristic
Taste	Astringent	Astringent	
Touch	Fine	Fine	viscous

PHYSICO-CHEMICAL PARAMETERS

Table no.113: Showing Results of Standardization parameters of SOOTA TAILA[ST]

Parameter	$\frac{Results}{ST} n = 3 \ \% w/w$
Loss on Drying at 105°C	0.01%
Saponification value	187.95%
Acid value	2.02%
Iodine value	111.67%
Peroxide value	5.15%
Ester value	185.93%
Refractive index at 30°C	1.451
Specific gravity	0.9435
Weight (gm) per ml	0.9373 gm/ml
Viscosity at 30°C	94.6031 cP
Rancidity test (Kreis test)	Negative

PARAMETERS	KAJJALI	HMST
Loss on Drying at 105°C	0.28%	0.59%
Total ash	0.19%	18.74%
Acid insoluble ash	0.01%	0.76%
Water soluble ash	0.00%	4.15%
Alcohol soluble extractives	0.00%	8.17%
Water soluble extractives	0.10%	26.05%
pH (5% aqueous solution)	5.61+0.10	5.88+0.10

Table no. 114: Showing all Physico-chemical parameters of Kajjali and HMST

TOTAL MICROBIAL COUNT:

Table no.117: showing Microbial contamination of Kajjali, HMST and ST

	KAJJALI	HMST	SOOTA TAILA
Total aerobic count	Nil	Nil	Nil
Total fungal count	Nil	Nil	Nil

Table no.118: Showing the percentage of Mercury in Kajjali and HMST

SAMPLE	PERCENTAGE
KAJJALI	61.25%
HMST	9.25%

Table no.119: Showing the Percentage of free mercury in Kajjali and HMST

	SAMPLE	Free Mercury	
6	KAJJALI	0.15%	5
7.	< HMST	0.02%	X

Table no.120: Showing the Percentage of Mercurous Mercury& Mercuric Mercury

SAMPLE	Mercurous Mercury (%)	Mercuric Mercury (%)
KAJJALI	2.15% d in Scier	tific 58.95%
HMST 🍃	0.50%search and	8.73%

Table no.121: Showing the percentage of Sulfur

2	SAMPLE	PERCENTAGE	5
λ 1	KAJJALI	28.17%	' A
Q	HMST	7.50%	9

Table no.122: Showing results of Free Sulphur and Sulphide, Sulphate form of Sulphur

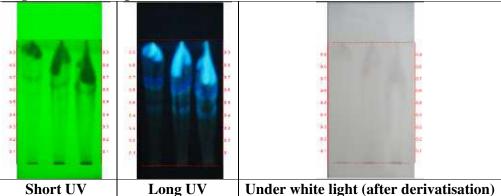

SAMPLE	Free sulphur(%)	Sulphide (%)	Sulphite (%)	Sulphate (%)
KAJJALI	0.00%	24.35%	3.82%	0.00%
HMST	0.00%	7.12%	0.38%	0.00%

Table no.123: Showing results of Estimation of arsenic

SAMPLEArsenicHMST1.12%

HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY: Table no. 124: Showing results of HPTLC report.

Figure 1. HPTLC photo documentation of chloroform extract of Soota taila

TRACK 1- Soota taila-3µl TRACK 2- Soota taila-6µl TRACK 3- Soota taila-9µl Solvent system – Toluene: Ethyl Acetate (9:1)

Table 1: Rf value of Soota tail	Table	1:	Rf	value	of	Soota	taila
---------------------------------	-------	----	----	-------	----	-------	-------

Short UV	Long UV	Under white light (after derivatisation)
-	0.45 (F. blue)	-
-	0.62 (F. blue)	-
0.67 (D. green)	0.67 (F. blue)	-

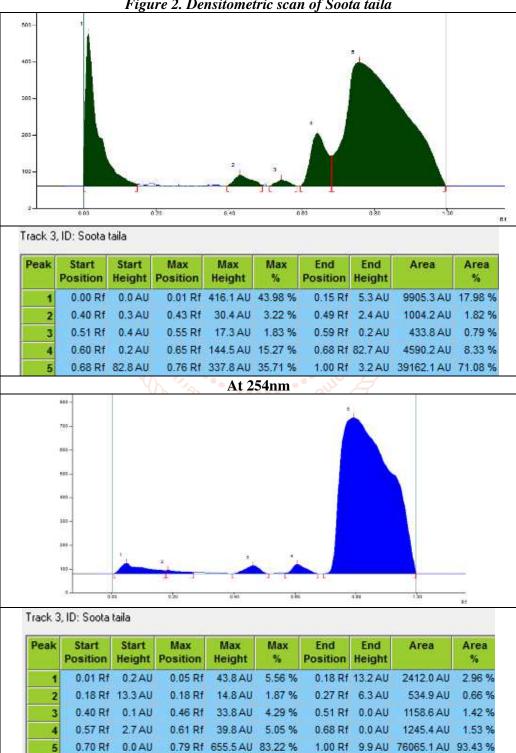


Figure 2. Densitometric scan of Soota taila

At 366nm

XRD RESULTS

Table no. 125: Showing XRD report of Kajjali compared with standard of HgS

Identified		Stand	ard	
Peak no	Angle 2 θ	d space	Angle 2 θ	d space
6	26.232	3.3945	26.36	3.37
11	30.444	2.9338	30.53	2.92
21	43.660	2.07	43.74	2.06
25	51.726	1.76583	51.77	1.76
33	86.18	1.1276	86.30	1.12
Name of standard: Metacinnabar		Crystal struc	cture: Cubic	
JCPDS No	JCPDS No: 00-075-1538		Mwt: 232	2.66g/mol.

Table no.126: Showing XRD report of Kajjali compared with standard of Sulfur

Identified		Standard		
Peak no	Angle 2 θ	d space	Angle 2 θ	d space
3	22.578	3.9349	22.60	3.93
7	27.628	3.2261	27.64	3.22
12	31.185	2.8658	31.27	2.85
26	52.81	1.7321	53.73	1.70
29	63.54	1.4631	64.89	1.43
Name of standard: Sulfur Crystal structure: Orthorhombic				
JCPDS N	o: 00-074-1465	Scientifi	Mwt: 256.0)65g/mol

Table no.128.: Showing XRD report of HMST compared with standard of HgS

Identified		Standa	ard	
Peak no	Angle 2 θ	d space	Angle 2 θ	d space
46	26.251 den	nat3.3922 ou	irnal26.36	3.37
52	30.312 f Tr	en 2.9463 iei	ntific30.53	2.92
68 💋	43.675 R	es2.0708an	d 43.74	2.06
71	51.68	ev1.7674 en	51.77	1.76
33	86.17	1.1277	86.30	1.12
Name of standard: Metacinnabar 456-647		Crystal struc	cture: Cubic	
JCPDS No:	: 00-075-1538		Mwt: 232	2.66g/mol.

Table no.129: Showing XRD report of HMST compared with standard of Sulfur

Identified		Stand	ard	
Peak no	Angle 2 θ	d space	Angle 2 θ	d space
3	22.578	3.9349	22.60	3.93
7	27.628	3.2261	27.64	3.22
12	31.185	2.8658	31.27	2.85
26	52.81	1.7321	53.73	1.70
29	63.54	1.4631	64.89	1.43
Name of star	Name of standard: Sulfur Crystal structure: Orthorhombie		thorhombic	
JCPDS N	o: 00-074-1465	-	Mwt: 256.0)65g/mol

Table no.130: Showing XRD report of HMST compared with standard of Arsenic

	Identified	•	Standard
Peak no	Angle 2 θ	d space	Angle 2 θ
43	23.97	3.709	24.90
48	27.98	3.186	28.03
55	31.99	2.795	32.17
70	51.164	1.7839	51.28
78	67.13	1.393	67.30
Name of standa	rd- arsenic As	crystal structu	ıre- rhombohedral
JCPDS No: 00-	019-0084	Mwt:74.9216	

	Identified		Stand	ard
Peak no	Angle 2 θ	d space	Angle 2 θ	D space
55	31.99	2.79	32.20	2.77
63	37.446	2.390	37.35	2.40
73	54.28	1.68	53.86	1.70
77	63.35	1.46	64.15	1.45
78	67.13	1.39	67.37	1.38
	ndard: Lime C : 00-037-1497	aO	•	cture: Cubic 56.07g/mol

Table no. 131: Showing XRD report of HMST compared with standard of Cao(lime)

Table no 1	132: Showing	reults of FTIR	Peaks of Kajjali
------------	--------------	----------------	------------------

Sample peaks Cm ⁻¹	Bond	Functional groups
3436.16	O-H[strong] stretching	Alcohol
5450.10	N-H [Medium] stretching	Primary amine
	O-H [Strong] stretching	Carboxylic acid
2921.68	O-H [weak] stretching	Alcohol
2921.08	N-H [strong] stretching	Amine salt.
	C-H [medium] stretching	Alkane
	O-H[strong] stretching	Carboxylic acid
2851.60	O-H [weak] stretching	Alcohol
2031.00	N-H [strong] stretching	Amine salt.
8	C-H [medium] stretching	Alkane
H.	C=C [medium] stretching	Alkene vinylidene
H o	C=C [medium] stretching	Conjugated alkene
1631.79	N-H [medium] stretching	Amine
1031.79	C=C [medium] stretching	Cyclic alkene
lunof	C=C [strong] stretching	Alkene
23	S=O [strong] stretching	sulfone
a c	C-H [medium] stretching	Alkane methyl group
1412.03	O-H[medium] stretching	Alcohol
	S=O [strong] stretching	Sulfate
781.00	C-H [strong] stretching	1,2,3 trisubstituted
/01.00	C-H [strong] stretching	1,3 disubstituted

Table no.133: Showing FTIR Peaks of HMST

Sample peaks Cm ⁻¹	Bond	Functional groups		
3434.50	O-H [Strong] stretching	Alcohol intermolecular bonded		
5454.50	N-H [medium] stretching	Primary amine		
	O-H [Strong] stretching	Carboxylic acid		
2071 44	O-H [weak] stretching	Alcohol		
2971.44	N-H [strong] stretching	Amine salt.		
	C-H [medium] stretching	Alkane		
	O-H [Strong] stretching	Carboxylic acid		
2923.26	O-H [weak] stretching	Alcohol		
2925.20	N-H [strong] stretching	Amine salt.		
	C-H [medium] stretching	Alkane		
	C=C [medium] stretching	Cyclic alkene		
1631.99	N-H [medium] stretching	Amine		
1051.99	C=C [medium] stretching	Conjugated alkene		
	C=C [medium] stretching	Alkene disubstituted		
	C-H [medium] stretching	Alkane methyl group		
	C-H [medium] stretching	Aldehyde		
1383.92	C-H [medium] stretching	Alkane gem dimthly		
	O-H [medium] stretching	Alcohol		
	S=O [strong] stretching	Sulfate		

	S=O [strong] stretching	Sulfonyl chloride
	C-F [strong] stretching	Fluoro compound
	O-H [medium] stretching	phenol
952.43	C=C [strong] stretching	Alkene
	C-H [strong] stretching	1, 4- disubstituted or
	C-H [strong] stretching	1,2,3,4-tetrasubstituted.
800.72	C-H [strong] stretching	1, 3- disubstituted
	C=C [medium] stretching	1, 2, 4- trisubstituted alkene
	C-Cl [strong] stretching	Halo compound.

Table no 134: Showing FTIR Peaks of SOOTA TAILA			
Sample peaks Cm ⁻¹	Bond	Functional groups	
	O-H [Strong] stretching	Carboxylic acid	
2922.72	O-H [weak] stretching	Alcohol	
2922.12	N-H [strong] stretching	Amine salt.	
	C-H [medium] stretching	Alkane	
	O-H [Strong] stretching	Carboxylic acid	
2853.26	O-H [weak] stretching	Alcohol	
2655.20	N-H [strong] stretching	Amine salt.	
	C-H [medium] stretching	Alkane	
1743.39	C=O [strong] stretching	Conjugated anhydride.	
1745.59	C=O [strong] stretching	δ-lactone	
1464.55	C-H [medium] stretching	Alkane methyl group	
	C-H [medium] bending	Alkane methyl group	
1377.56	O-H [medium] bending	Alcohol	
	C-F [strong] stretching	Fluro compound	
E	C-N [medium] stretching	Amine	
E	C-O [strong] stretching cit	Tertiary alcohol	
1160.07	S=O[strong] stretching a	Sulfone	
1100.07	C-F[strong] stretching me	Fluro compound	
Y	S=O[strong] stretching	Sulfonamide	
	S=O[strong] stretching	Sulfonic acid anhydrous hydride	
	C-F[strong] stretching	Fluro compound	
	C-N [medium] stretching	Amine	
1097.65	C-O [strong] stretching	Ester	
	C-O [strong] stretching	Aliphatic ether	
	C-O [strong] stretching	Secondary alcohol	
966.98	C=C [strong] bending	Alkene disubstituted	
	C=C [strong] bending	Alkene disubstituted	
	C-Cl [strong] stretching	Halo compound	
722.29	C-H[strong] bending	Monosubstituted benzene derivative	
	C-H[strong] bending	1, 2, 3- trisubstituted	
	C-H[strong] bending	1,3- disubstituted.	

10 / 01 ETID D. 1 LEOOTA TAILA 11

Table no 135: Showing Particle Size of Kajjali, HMST and ST.

Sample	Mean diameter(nm)
Kajjali	822.0nm
HMST	1375.1nm
Soota Taila	1927.4 nm

Table no 136: Showing SEM EDS Result of Kajjali

Sl no	Element	Weight %	Atomic %
1.	C K	18.97	58.54
2.	O K	3.70	8.58
3.	S K	19.13	22.12
4.	Hg M	58.19	10.75

Sl no	Element	Weight %	Atomic %
1.	C K	15.10	43.91
2.	O K	4.90	10.69
3.	S K	23.86	26.00
4.	As L	27.20	12.68
5.	Rb L	0.44	0.18
6.	Nb L	7.85	2.95
7.	Hg M	20.66	3.60

Table no 137: Showing SEM EDS Result of HMST

DISCUSSION

- → *Hingula* contains *Parada* which is chemically bonded with Gandhaka which is an innate codrug for parada bandha, Citric acid helps for the disintegration of HgS. Organic acid may be responsible to weaken the bond and hence facilitates dissociation of mercury. Reason for applying lepa might be to facilitate uniform heat and reaction by which maximum amount of dissociation of parada takes place. Sandhibandhana of 7 layers was done with mud smeared cloth to avoid the escaping of parada during heating.
- Shuddha Gandhaka was brittle and shiny, may be due to the change in crystalline structure while passing through the stage of melting. The impurities like mud or any other material gets separated on the cloth as these impurities do not melt or change at this temperature.
- Manashila Shodhana was carried out by lavigation with Ardraka swarasa. In this procedure crude Manashila was converted into minute particle thus to increase its bioavailability.
- Churnodaka is chemically 'calcium hydroxide' when reacts with 'arsenic trisulphide' may form an intermediate product know as arsenate and further it may become calcium arsenate. This compound will be safe and useful form of arsenic. Calcium is natural antagonistic of arsenic
- Murchana samskara attributes special properties to ghrita/taila by removing its Ama Lakshana which inhibit lipid peroxidation and incorporated antioxidant property for augmentation of medicinal properties of the medicated sneha. It took 20 hours to get siddhi lakshana's of Tila taila murchana for 3 liters of tila taila.
- Samaguna Kajjali was prepared with 210 hours, Maximum duration of Mardana may cause more bonding of sulfur and mercury and reduce the free mercury.
- Samaguna Kajjali was mixed with shodhita Manashila and shodhita Haratala to it liquid media was added to form homogeneous mixture

the further the lepa was applied over kora cloth and varti was formed which was kept aside for one day for drying.

- Dried varti was immersed into murchita tila taila and kept for one day next day the varti was ignited to collect soota taila. Which was later send for analytical parameters.
- HPTLC is the sophisticated analytical parameter for the evaluation of the herbal drugs. HPTLC can also serve as Fingerprinting technique for identification and quantification of the herbal and Herbo-mineral formulations. It helps to find out the adulteration in the formulation and is used as a standard for the herbal compounds. In present study HPTLC of ST was done. The 5 peaks in densitometric scan of ST at 254nm and 366nm are due to the influence of phytochemical constituents present in the compound.
 - Rancidity is negative in ST. The samples have shown no rancidity, which shows the presence of tocopherols as natural antioxidant.
- It is the angle of refraction of light travelled through the media. The values of ST are 1.451 which reveals that some active substances of ingredients used in the process were incorporated into *Sneha kalpana*.
- Viscosity of *sneha dravya* is due to incorporation of bio constituents into sneha from the drugs used for preparation. Viscosity of ST is 94.6031Cp
- The saponification value of ST is 187.95%. Long-chain fatty acids found in fat have low saponification value and vice versa. Short chain fatty acids are readily absorbed than long-chain fatty acids. Hence, ST is easily absorbed and digested in the body.
- Iodine value of ST is 111.67%. This indicates that there is decrease in the degree of unsaturation but within normal limits. an increase in iodine value detects a fair increase in number of unsaturated fatty acid bonds which can be better absorbed when compared to saturated fatty acids.

- The acid value of the ST is 2.02% Reduced acid value indicates less percentage of free fatty.
- The ester value of ST is 185.93. As the esters are increased, rancidity chance is decreased. Ester value of ST indicating the fewer chances of rancidity and thus possesses increased shelf life.
- Peroxide value and acid value are most useful primary indicators as to the quality of an oil in terms of refinement and freshness since both will give an early indication of the level of reactive fatty acids and breakdown products. Peroxide values of ST 5.15%.
- Specific gravity of ST is 0.9435. Specific gravity indicates addition of some bio constituents from the drugs used during sneha kalpana. It may be due to solid extractives that come from the herbals.
- Weight per ml of ST is 0.9373 gm/ml. With this result one can presume that better dissolution of bio constituents in the compounds.
- In the present study *Kajjal*i, HMST and ST 0.28%, 0.59% and 0.01% respectively loss on drying at 105°C. Hence it can be stated that all have very less amount of moisture content and very rare chance of bacterial and fungal growth.
- The XRD peaks of *Kajjali* and HMST the sample which were compared with standard Angle 2 θ JCPDF values confirmed that the presence of Cinnabar (HgS) in Cubic crystal system, Sulfur in Orthorhombic crystal system. Arsenic in rhombohedral crystal system. Lime in Cubic crystal system
- Elements found through SEM EDX in *Kajjali* are Hg, S, O and C in the percentage of 58.19%, 19.13%, 3.70 % and 18.97% respectively. This shows that mercury is in greater proportion and the elements may be in the form of oxides.
- Elements found through SEM EDX in HMST are C, O, S, As, Rb Nb, Hg in percentage of 32.41%, 7.64%, 17.26%, 23.30%, 0.45%, 6.66% and 12.28% respectively. The additional elements are in trace level i.e., below permissible limits. Hence the drug can be considered as safe.
- The FTIR obtained peaks of the Kajjali, HMST and soota taila were compared with the standard peaks. It showed the presence of different functional groups like Alcohol, Phenols, Alkanes, Alkenes, Aromatics, Bromide, Iodide, Chloride, Ethers, Carboxylic acids, Esters, Anhydrides, Amines, Phenyl Ring Substitution Overtones, Primary and secondary amines and

amides, Sulfonamide, Sulfonic acid anhydrous hydride, Ester, Aliphatic ether, Halo compound. This shows the presence of organic compounds in the drug.

- Particle size (by Zeta Pals method) is crucial parameter it influences surface are and porosity hence as an impact on bioavailability, effectiveness and shelf life of drug. As product is lipid carried, increased particle size for application gives larger surface area with more absorption
- Where as in *Kajjali* and HMST, the particle size has an important influence on dissolution rate. Smaller the drug particle size larger the surface area, leads to faster dissolution. Particle size reduction will result in precise drug delivery and thereby increasing the bioavailability of the drug.
- pH is a negative logarithm of the hydrogen. pH of Kajjali and HMST is 5.61⁺ 0.10 and 5.88⁺ 0.10 respectively. As per readings the products are acidic. According to pH acidic are absorbed at faster rate from the stomach

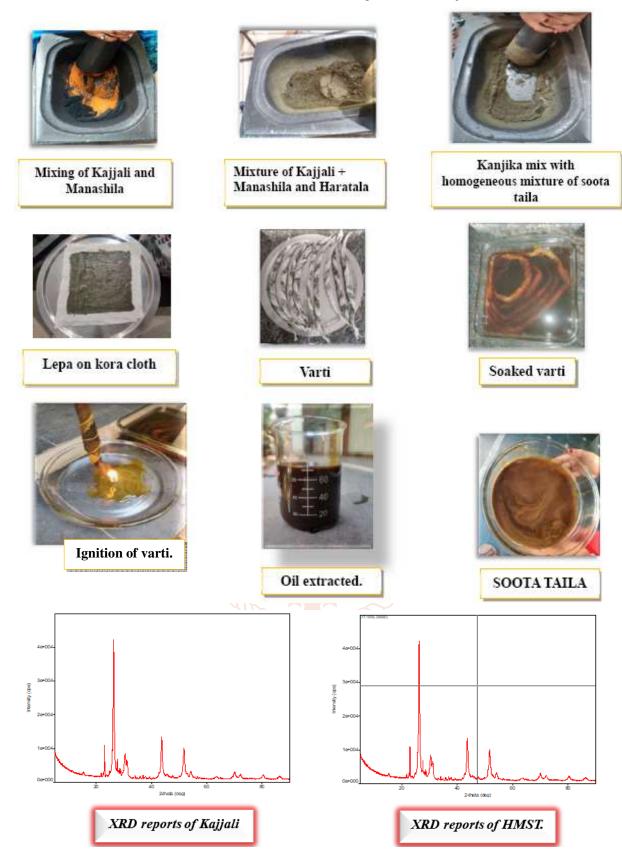
Low value of acid insoluble ash signifies dissolution of drug in acid media the acid insoluble ash of *Kajjali* and HMST are **0.01%** and **0.76%** respectively. Indicating drug is processed well and safety for consumption as maximum solubility.

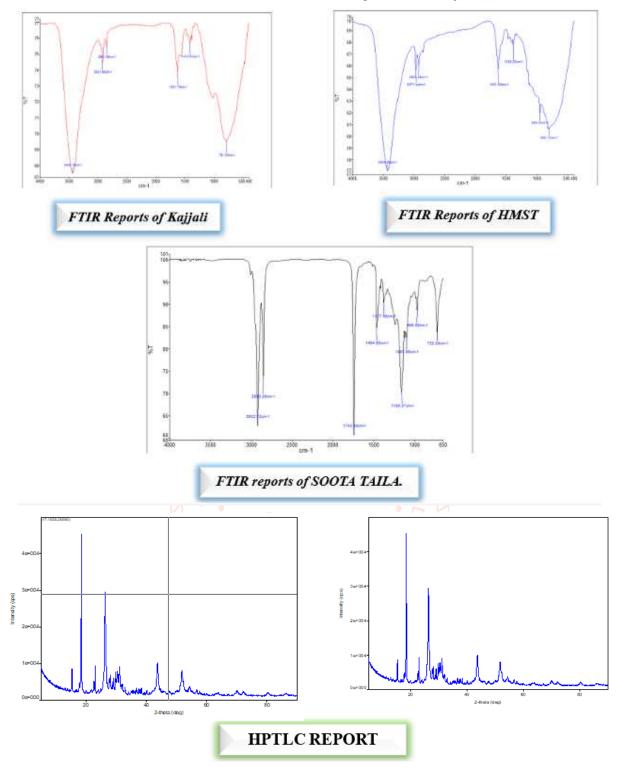
- It indicates selective media of drug administration. Water soluble ash value of Kajjali and HMST are 0.00% and 4.15% respectively. Indicating kajjali isn't soluble in water whereas HMST has 4.15% of solubility in water.
- Water soluble and Alcohol Soluble extractives indicate the mode of administration of the drug. Alcohol soluble extractives of Kajjali and HMST are 0.00% and 8.17% whereas water soluble extractives are 0.10% and 26.05% respectively.
- Kajjali, HMST and ST were tested for Total Bacterial count and Total Fungal count. Total Bacterial count and Total Fungal count is Nil for all 3 samples; Shows no bacterial and fungal growth. This may be due to least moisture content in the sample and proper storage of the drug in an air tight container.
- The percentage of total mercury in *Kajjali* and HMST is 61.25% and 9.25% respectively. Free mercury is 0.15% and 0.02% of Kajjali and HMST respectively shows proper formation of Kajjali and HMST which was confirmed by *Nishchandratva* and proves safety of the Product respectively.

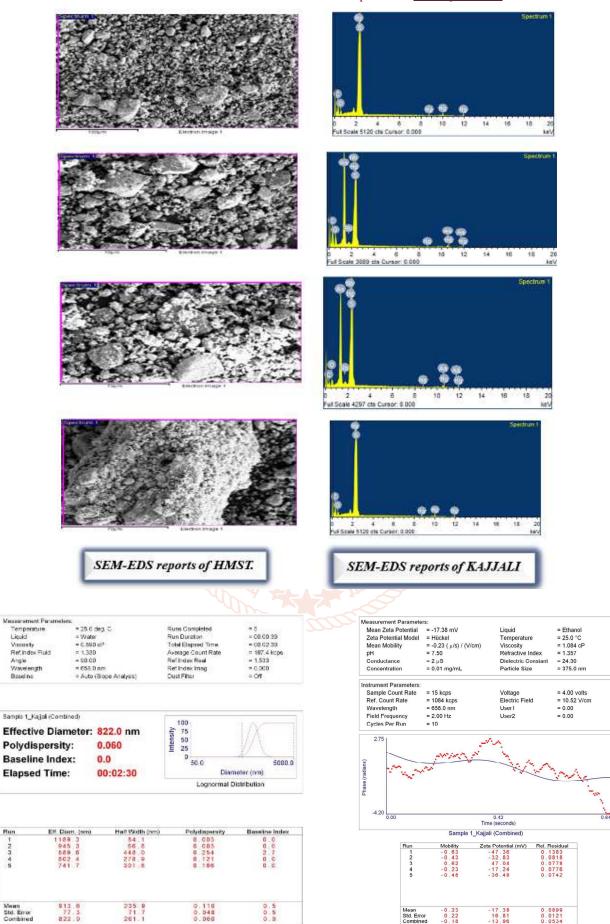
- Mercurous mercury and mercuric mercury in Kajjali are 2.15% and 58.95% respectively.
- The percentage of sulfur in Kajjali and HMST are 28.17% and 7.50% respectively. sulphide form in Kajjali and HMST are 24.35% and 7.12% respectively. Sulphite form in Kajjali and HMST are 3.82% and 0.38% respectively. Sulphate form in Kajjali and HMST are 0.00% and 0.00% respectively. Free sulfur in Kajjali and HMST are 0.00% and 0.00% respectively. This indicate the drug is more sulphide than sulphite
- Arsenic value in HMST is 1.12%, in less quantity it can be used for treatment of specific cancers.

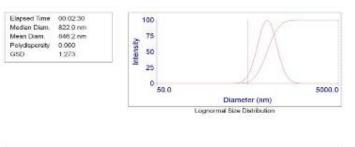
CONCLUSION

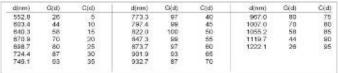
- Soota Taila is one such inimitable formulation mentioned in Rasa Ratna Sammucchaya 21st chapter, having ingredients like Shuddha Parada, Shuddha Gandhaka, Shuddha Manashila, Shuddha Haratala, Tila taila and Kanjika as ingredients.
- Soota taila was Yellowish green/Amber in colour and had characteristic odour. Its physical tests showed Loss on Drying at 105°C is 0.01%, Saponification value is 187.95%, Iodine value is

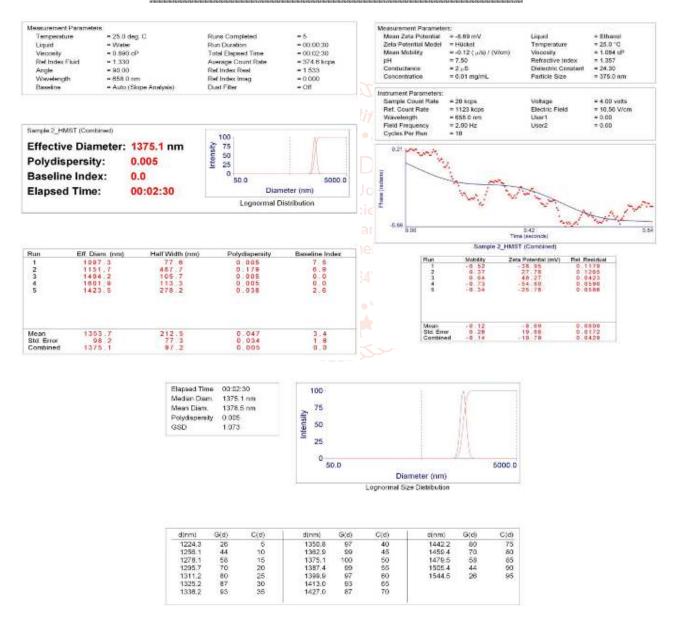

FIGURES:

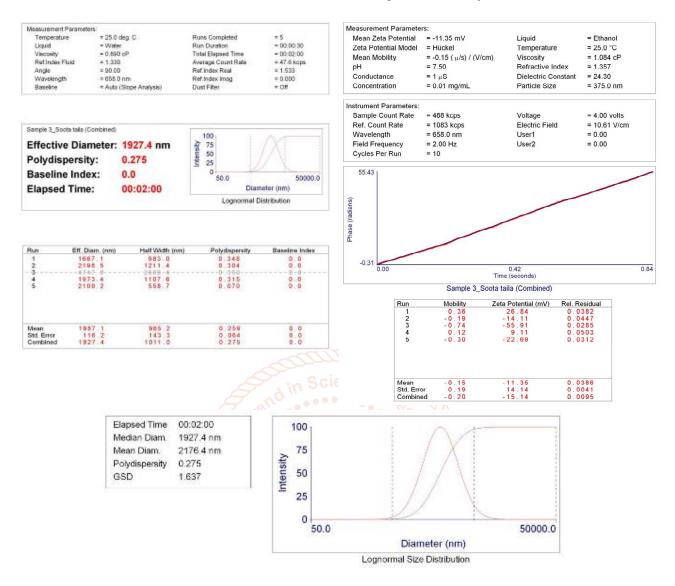

111.67%, Acid value is 2.02%, Peroxide value is 5.15%, Ester value is 185.93, Refractive index at 30°C is 1.451, Specific gravity is 0.9435, Weight (gm) per ml is 0.9373 gm/ml, Viscosity at 30°C is 94.6031 cP, Rancidity test (Kreis's test) is Negative, Total aerobic counts is Nil, Total fungal count is Nil.


- FTIR analysis of ST shows that it contains organic functional group like Carboxylic acid, Alcohol, Amine salt, Alkane, Conjugated anhydride, δ-lactone, Tertiary alcohol, Sulfone, Fluro compound, Sulfonamide, Sulfonic acid anhydrous hydride, Amine, Ester, Aliphatic ether, Halo compound, Monosubstituted benzene derivative, 1, 2, 3- trisubstituted and 1,3disubstituted.
- Zeta pals suggest ST: mean diameter- 1927.4nm, mean zeta potential of soota taila is -11.35mV
- Soota Taila is administered both internally and externally as per classics
 - Further detailed study is required to bring out many more characteristics of this unique formulation.









SHOWING REPORTS OF ZETA PALS OF KAJJALI

ZETA PALS OF HOMOGENEOUS MIXTURE OF SOOTA TAILA.

d(nm)	G(d)	C(d)	d(nm)	G(d)	C(d)	d(nm)	G(d)	C(d)
856.6	26	5	1701.4	97	40	2687.1	80	75
1024.5	44	10	1811.3	99	45	2919.1	70	80
1156.5	58	15	1927.4	100	50	3212.1	58	85
1272.6	70	20	2050.9	99	55	3626.2	44	90
1382.5	80	25	2183.4	97	60	4335.8	26	95
1488.6	87	30	2330.2	93	65			
1594.2	93	35	2495.5	87	70			

ZETA PALS OF SOOTA TAILA.

QUALITY CONTROL LABORATORIES ALN RAO MEMORIAL AVURVEDIC MEDICAL COLLEGE AND PG CENTRE ROPPA, DISTRICT: CHEMAGALLE, KARNATAKA, 57/126

Reference Number: OC/ST/23/2023

Purpose: Analysis for Kajjali, Homogenous mixture of Soota Taila (HMST) and Soota Taila.....

Result: I. Soota Taila

A. Organoleptic Characters

Colour	Yellowish green/Amber
Odour	Characteristic aromatic
Texture:	Viscous oil

B. Physico-chemical Parameters

Losa on Drying at 185°C	0.01%
Saponification value	187,95%
Iodine value	111.67%
Acid value	2.02%
Percoude value	5.15%
Enter value	185.93
Refractive index at 30PC	1.451
Specific gravity	0.9435
Weight (gm) per ml	0.9373 gns/m
Viscosity at 30°C	94,6031 cP
Rancidity test (Kreis test)	Negotive
Total aerobic cousts	Nil
Total fangel count	Nil

Patcon: Honourable Shri Aroor Ramesh Rao Laboratory is not liable to bear any legal action or dispute based on this report

PHYSICO-CHEMICAL ANALYSIS OF SOOTA TAILA.

QUALITY CONTROL LABORATORIES ALN RAO MEMORIAL AYURVEDIC MEDICAL COLLEGE AND PG CENTRE KOPPA, DISTRICT: CHIKMAGALUR, KARNATAKA, 577120

II. Kajjali and Homogenous mixture of Sosta taila (HMST)

A. Organoleptic Characters

Kajjali	HMST
Black	Green
Odorless	Characteristic
Tasteloss	Tasteless
Fine powder	Fine powder
	Black Odorkovs Tastelovs

B. Physico-chemical parameters

	Kajjali	HMST
Loss on Drying at 105°C	0.28%	0.59%
Total ash	0.19%	18.74%
Acid insoluble ash	0.01%	0.70%
Water soluble ash	0.00%	4.15%
Alophal soluble extractives	0.00%	8.17%
Water soluble estructives	0.10%	26.05%
pH (5% aqueous solution)	$5.61{\pm}0.10$	$5.88{\pm}0.10$

C. Elemental Analysis

	Kajjali	HMST
Mercury	61.25%	9.25%
Mercurous	2.15%	0.30%
Mercuric	58.95%	8.73%
free Mercury	0.15%	0.02%
Salphur	28.17%	7,50%
Sulphide	24.35%	7.12%

QUALITY CONTROL LABORATORIES ALN RAO MEMORIAL AVURVEDIC MEDICAL COLLEGE AND PG CENTRE KOPPA, DISTRICT: CHIKMAGALUR, KARNATAKA, 577126

Sulphine		3.82%	0.38%
Sulphate		0.00%	0.00%
Free Sulphur		0.00%	0.00
Anenic	£1		1.12%

Date: 10th August 2023

	Kajjali	HMST
Total aerohic count	Nil	Nil
Total fungal count	Nil	Nil

Quality Central Laberateries ALN Ran Aemortal Ayarvedic Medical College NDPPA-577126

Patron: Honourable Shri Aroor Ramesh Rao Laboratory is not liable to bear any legal action or dispute based on this report

Patron: Honourable Shri Aroor Ramesh Rao Laboratory is not liable to bear any legal action or dispute based on this report

PHYSICO-CHEMICAL ANALYSIS OF KAJJALI AND HMST

REFERENCES

- [1] Acharya Vagbhatta virachit, Rasa Ratna Sammucchaya with Hindi commentary by Acharya Siddhinandan misrha, Varanasi chaukambha Orientalia, 21 adhyaya, verses 152-156, 511pp.
- [2] Sharma shri Sadananda virachit, Rasa Tarangini with Hindi commentary edited by shastri pandit kashinath, 11th edition, Varanasi: Motilal banarasidas publication; 1979. 5th Taranga, verses 38-42, 82pp
- [3] Shri Madhava Upadhyaya, Ayurveda Prakash with Arthavidyotini and Arthaprakashini Sanskrit and Hindi commentary by Shri Gulraj Sharma Mishra, Varanasi: Chaukambha Bharati Academy; 1999. 2 adhyaya, Gandhakadi uparasayanam Adhyaya verse 19, 260pp.
- [4] Sharma shri Siddhinandan virachit, Rasa Tarangini with Hindi commentary edited by shastri Pandith Kashinath, 11th edition, Varanasi: Motilal Banarsidas

publications;1979. 6th Taranga, verses 108-109, 124pp.

- [5] Sharma shri Siddhinandan virachit, Rasa Tarangini with Hindi commentary edited by shastri Pandith Kashinath, 11th edition, Varanasi: Motilal Banarsidas publications;1979. 11th Taranga, verses 114, 262pp.
- [6] Sharma shri Siddhinandan virachit, Rasa Tarangini with Hindi commentary edited by shastri Pandith Kashinath, 11th edition, Varanasi: Motilal Banarsidas publications;1979. 11th Taranga verse 25, 248pp.
- [7] Acharya Sharangadhara, Sharangadhara with Adhamalla's Deepika and Kashiram's Gudhartha Dipika Hindi commentary, edited by Pandith Parashuram Shastri, Vidhyasagar, Varanasi, Chaukambha Orientalia 6th edition 2005. Madhyama khanda 10 adhyaya, verse 12.
 11. 235pp

