Pharmaceutico-Analytical Study of Chandrahasa Rasa -A Unique Formulation

Dr. Vachana K D¹, Dr. Laxmi B Kurle²

¹Final Year PG Scholar, ²Professor, ^{1,2}Department of PG Studies in Rasashastra and Bhaishajya Kalpana, Taranath Government Ayurvedic Medical College& Hospital, Ballari, Karnataka, India

ABSTRACT

Ayurveda is one of the oldest systems of medicine, is momentous in audience of worldwide on virtue of its holistic approach of life.

Rasaushadhis in *Ayurveda* have a wide range of therapeutic utility due to their prolonged shelf life, finer particles size, being tasteless, odourless, minimum dose, quick action, makes them more effective and unique. With proper *anupana*, herbo-mineral formulations act effectively in a variety of pathological conditions.

Jwara is considered as *Rogadhipati* i.e., most serious and king of all diseases in which the mind, sense organs and the body all are affected (*Dehendriya mana santapakara*).

Chandrahasa Rasa (CR) is an unique herbo mineral *Kharaliya Rasayana* mentioned in *Vaidya Chintamani* of 16thAD constituting 14 ingredients with 5 *bhavana dravyas* which is solely indicated in *Ashta vidha Jwara* and 13 *Sannipataja Jwara*.

Physical test shows CR is Greenish Brown in colour with pH 4.56 ± 0.10 and Mean particle size of CR is 639.8 nm. XRD study compared with 20 angle and JCPDF standards and confirms that CR is a compound of Metacinnabar in cubic crystal system, Sulphur in Orthorhombic crystal system, Arsenic di sulphide and Sodium hydroxide borate hydrate are Monoclinic crystal system. Elements present in CR as confirmed by the EDS study are C, O, Na, S, Cl, K, As, and Hg in the Weight percentage of 49.95, 26.45, 0.76,10.38,0.29,4.38,2.64 and 5.15 respectively.

INTRODUCTION

Ayurveda is not merely a science of diseases and drugs, where it has every aspect of life in its sphere. Ayurveda has used metals and minerals in abundance for a long time. These herbo-mineral combinations are given paramount importance in treatment, where metals and minerals are used in the form of *Rasaushadhis. Jwara* is considered as dreadful disease or associated symptom in many diseases. No person ever lived without getting affected from *Jwara* once in a lifetime. Hence it is considered as *Rogadhipati* i.e., most serious and King of all diseases.

Chandrahasa Rasa^[1] is a unique herbo mineral *Kharaliya Rasayana* mentioned in *Vaidya Chintamani* of 16th AD constituting 14 ingredients such as *Triguna Kajjali*, 2 *Kshara dravyas* (*Tankana*, *How to cite this paper:* Dr. Vachana K D | Dr. Laxmi B Kurle "Pharmaceutico-Analytical Study of Chandrahasa Rasa -A Unique Formulation" Published in

International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-7 | Issue-5, October 2023, pp.428-441,

pp.428-441, URL: www.ijtsrd.com/papers/ijtsrd59932.pdf

Copyright © 2023 by author (s) and International Journal of Trend in Scientific Research and Development

Journal. This is an Open Access article distributed under the

terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

KEYWORDS: Chandrahasa Rasa, Kharaliya Rasayana, Sannipataja Jwara, Triguna Kajjali, Vaidya Chintamani

Surya Kshara), 2 Visha dravyas (Vatsanabha, Jayapala), Manahshila and other herbal drugs such as Trikatu (Shunti, Maricha, Pippali), Ela, Lavanga, Jatiphala with 5 bhavana dravyas (Jambhira Swarasa, Bhringaraja Swarasa, Nirgundi Swarasa, Nagavalli swarasa and Triphala Kashaya) is solely indicated in Ashta vidha jwara and 13 Sannipataja jwara. Though there are 'n' number of formulations for fever, in present scenario it has been seen many new diseases are arising along with association of fever, some are even fatal, so it needs a special attention. Before subjecting to invitro or in vivo study, we require in detail Pharamceutico- analytical study of the formulation. So, it was thought worthwhile to undertake such study.

AIMS AND OBJECTIVES Aim:

Preparation of Chandrahasa Rasa and to carry out their Pharmaceutico-analytical study.

Objectives:

- > Preparation of *Chandrahasa Rasa* according to classical method mentioned in Vaidya chintamani with due importance to SOP.
- > To carry out Physico-chemical analysis of Chandrahasa Rasa.

MATERIALS AND METHODS

- ▶ Raw materials were collected after authoritative identification through grahya-agrahya lakshanas from Bharat Trading Company, Mumbai and Kalva acchaiah, Ballari.
- > Preparation of *Chandrahasa Rasa* were done in Dept of PG Studies in RS&BK, Taranath Government Ayurvedic Medical college, Ballari
- Physico- Chemical analysis were done at Quality Control Laboratories, ALN Rao Ayurvedic Medical College, Koppa and Micro and Nano Characterization Facility (MNCF), Centre for Nano Science & Engineering (CeNSE) Indian Institute of Science, Bengaluru-560012, Karnataka, India

- > Hingulottha Parada was collected form Hingula through *urdwapatana method*^[2].
- > Hingula Shodhana was carried out by bhavana with *ardraka swarasa* as media for 7 times^[3].
- ► Gandhaka Shodhana was carried out in kurmaputa by Bhudhara yantra method with *godugdha* as media^[4].
- \blacktriangleright Nirmana of Triguna Kajjali^[5] was prepared by mardana for 124 hours.
- ▶ Vatsanabha Shodhana was carried out by sthapana in Gomutra under atapa for 3 days^[6].
- > Tankana Shodhana was carried out by Bharjana in loha paatra^[7].
- > Manahshila Shodhana was carried out by Bhavana with Ardraka swarasa for 7 times^[8].
- Suryakshara Shodhana was carried out by Bhavana with Ela toya for 3 times ^[9].
- Jayapala Shodhana was carried out by Swedana \geq with *Godugdha* in *dolayantra* for 3 hours.^[10]
- Homogenous mixture of all the ingredients with ≻ Triguna Kajjali was done and bhavana with Jambhira swarasa, Bhringaraja Swarasa, Nirgundi Swarasa, Nagavalli Swarasa and Triphala Kashaya was done and 3 samples -

Preparation of Chandrahasa Rasa

Triguna Kajjali, BCR (Before Bhavana of Raw materials were collected after authoritative Chandrahasa Rasa) and CR (Chandrahasa Rasa) identification through grahya-agrahya lakshanas. was sent for analytical test.

RESULTS

1. Pharmaceutical Results:

Table no. 1: Showing results from *Hingulotha Parada*

Batch	Wt of <i>Hingula</i> taken for <i>urdhwapatana</i>	Wt of Parada obtained	Yield %
Batch I	250gm	160gm	77.00
Batch II	250gm	173gm	77.80

Table no. 2: Showing results from Hingulottha Parada Shodhana

Wt of Ashoditha Parada taken	Wt of Shoditha Parada	Yield %
333g	315g	94.59

Table no. 3: Showing results from Gandhaka Shodhana

Wt of Gandhaka taken	Wt of Shoditha Gandhaka obtained	Loss	Yield %
500 g	476 g	24gm	
476g	428g	48gm	81
428g	405g	23gm	

Table no. 4: Showing results from Vatsanabha Shodhana

Wt of <i>Ashodita</i> Vatsanabha taken	Wt of <i>Shodhita Vatsanabha</i> obtained after drying & peeling	Loss	Yield %
100gm	52gm	48gm	52

No of bhavana	Quantity of <i>Hingula</i> taken	Quantity obtained	Gain/Loss	Yield %
1	315g	317g	2g Gain	
2	317g	340g	23g Gain	
3	340g	317g	23g Loss	
4	317g	326g	9g Gain	110.47
5	326g	334g	8g Gain	
6	334g	332g	2g Loss	
7	332g	348g	16g Gain	

Table no. 5: Showing results from *Hingula Shodhana*

Table no. 6: Showing results from Suryakshara Shodhana

Wt of Suryakshara taken	Wt of Shodhita Suryakshara obtained	Gain/Loss	Yield %
518 g	537 g	19gm Gain	
537g	557g	20gm Gain	104.6
557g	542g	15gm Loss	

Table no. 7: Showing results from Jayapala Shodhana

Wt of Jayapala taken	Wt of Shodhita Jayapala obtained	Loss	Yield %
100 g	50 g	50gm	
50g	47.5g	2.5gm	45
47.5g	45g	2.5gm	

Table no. 8: Showing results from Manahshila Shodhana

No of bhavana	Quantity of Manahshila taken	Quantity obtained	Gain/Loss	Yield %
1	495g	522g	27g Gain	
2		548g	26g Gain	
3	548g	565g	17g Gain	
4	2 \$565g International	Journa585g	20g Gain	114.14
5	🖌 🖻 585g of Trend in S	cientific557g 🚆 🏹	28g Loss	
6	557g Research	and 594g 🔍 🏹	37g Gain	
7	594g Developr	nent 565g 💆 🏳	29g Loss	

Table no. 9: Showing results from Tankana Shodhana

Wt of Ashodita Tankana taken	Wt of Shodita Tankana obtained	Loss	Yield %
254gm	151gm	103gm	59.44

Table no. 10: Showing results from preparation of Triguna Kajjali				
Wt of Parada	Wt of Gandhaka	Wt of Kajjali obtained	Yield %	
125gm	375gm	406gm	81.2	

Table no. 11: Showing results from Churnikarana of Chandrahasa Rasa Drugs

Name of Drug	Initial weight	Weight after Churnikarana	Loss	% of Yeild
Shoditha Vatsanabha	52gm	40gm	12gm	76.92
Maricha	70gm	54gm	16gm	77.14
Pippali	70gm	53 gm	17 gm	75.71
Shunti	70gm	56.5 gm	13.5 gm	80.71
Lavanga	30gm	20 gm	10 gm	66.66
Ela	60gm	32 gm	28 gm	53.33
Jatiphala	30gm	22 gm	8 gm	73.33
Shoditha Jayapala	45gm	37 gm	8 gm	82.22

Table no. 12: Showing results from Bhavana of ingredients of Chandrahasa Rasa

Bhavana Dravya	Quantity of Homogenous mixture of ingredients taken	Quantity obtained	Gain/Loss	Yield %
Nimbu Swarasa	310g	401g	91g Gain	
Bhringaraja Swarasa	401g	365g	36g Loss	
Nirgundi Swarasa	365g	390g	25g Gain	123.22
Nagavalli swarasa	390g	395g	5g Loss	
Triphala Kashaya	395g	382g	13g Loss	

2. Analytical Results

Table no. 13: Showing Results of Organoleptic characters of Triguna Kajjali, BCR and CR

Physical test	Triguna Kajjali	BCR	CR
Colour	Black	Greyish Brown	Greenish Brown
Odour	Odourless	Characteristic	Characteristic
Taste	Tasteless	Pungent, Bitter	Bitter, Astringent
Touch	Fine	Fine	Fine

Table no. 14: Showing Results of Physical tests of Triguna Kajjali, BCR and CR

Parameter	Triguna Kajjali	BCR	CR
pH(10 % Aqueous Solution)	6.25±0.10	8.65±0.10	4.65±0.10
Total Ash value	0.04%	24.43%	23.40%
Acid insoluble ash	Nil	3.32%	2.42%
Water soluble ash	Nil	4.13%	4.29%
Loss on drying at 105 ⁰ C	0.67%	1.32%	3.91%
Alcohol Soluble Extractive	0.33%	14.63%	21.43%
Water Soluble Extractive	0.01%	26.05%	35.32%

Table no. 15: Showing Total Microbial Count of Triguna Kajjali, BCR and CR

Parameters	Triguna Kajjali	BCR	CR
Total aerobic count	Nil	Nil	Nil
Total fungal count	Scie Nil	Nil	Nil

Table no. 16: Showing the Results of Chemical tests of Triguna Kajjali, BCR and CR

Elements	Triguna Kajjali	BCR	CR
Total Mercury	60.50%	26.15%	19.34%
Mercurous Mercury	rnati1.90% ourn	0.30%	0.29%
Mercuric Mercury	58.25% ontif	25.85%	19.05%
Free Mercury	0.35%	0.00%	0.00%
Total Sulphur	25.25%	22.18%	21.82%
Sulpide 😕 🖕	22.50%	21.15%	21.24%
Sulphite Sulphite	SSN: 2.65%470	1.03%	0.52%
Sulphate Sulphate	0.10%	0.10%	0.06%
Free sulphur	0.02%	0.00%	0.00%
Arsenic		2.08%	1.55%
Boron	Comments	2.04%	1.85%

Table no. 17: Showing XRD results of Triguna Kajjali

Sample	Compound Name	Chemical Formula	Crystal Structure
Tricere a Valiali	Metacinnabar	HgS	Cubic
Triguna Kajjali	Sulfur	S	Orthorhombic

Table no. 18: Showing XRD results of BCR

Sample	Compound Name	Chemical Formula	Crystal Structure		
	Metacinnabar	HgS	Cubic		
BCR	Sulphur	S	Orthorhombic		
DUK	Arsenic disulphide	As_2S_2	Monoclinic		
	Sodium hydroxide borate hydrate / Tincolconite	Na ₂ B ₄ O ₇ 5H ₂ O	Monoclinic		

Table no. 19: Showing XRD results of CR

Sample	Compound Name	Chemical Formula	Crystal Structure
	Metacinnabar	HgS	Cubic
CR	Sulphur	S	Orthorhombic
CA	Arsenic disulphide	As_2S_2	Monoclinic
	Sodium hydroxide borate hydrate / Tincolconite	Na ₂ B ₄ O ₇ 5H ₂ O	Monoclinic

Table no. 20: Showing SEM EDS result of *Triguna Kajjali* of two spectrum focused at two distinct areas from Low (10µm) to High (30µm) magnification

	Triguna Kajjali					
Spectrum -	Spectrum – 1 (Magnification - 30 μm) Spectrum – 2 (Magnification - 10 μm				tion - 10 µm)	
Element	Weight %	Atomic %	Element	Weight %	Atomic %	
С	23.67	57.16	С	5.18	25.75	
S	41.85	37.86	0	1.50	5.61	
Hg	34.48	4.99	S	26.13	48.65	
			Hg	67.19	20.00	

Table no. 21: Showing SEM EDS result of BCR of two spectrum focused at two distinct areas from Low (10µm) to High (30µm) magnification

	BCR				
Spectrum -	Spectrum – 1 (Magnification - 30 μm)			- 2 (Magnifica	tion - 10 µm)
Element	Weight %	Atomic %	Element	Weight %	Atomic %
С	52.00	63.41	В	8.99	12.88
0	34.95	31.99	С	30.62	39.49
Na	2.04	1.30	Ν	2.63	2.91
Mg	0.46	0.28	0	37.44	36.25
Р	0.47	0.22	Na	3.31	2.23
S	1.76	0.89	K	14.35	5.69
Cl	1.21	0.50 Sci	entAs	2.65	0.55
K	2.24 🖉	0.84	B	8.99	12.88
Ca	0.61	0.22			
As	0.96	0.19	RD •		
Hg	3.30	0.24 atio	al lournal	3	

Table no. 22: Showing SEM EDS result of CR of two spectrum focused at two distinct areas from Low (10µm) to High (30µm) magnification

	CR				
Spectrum – 1 (Magnification - 30 µm)		Spectrum – 2 (Magnification - 10 µm)			
Element	Weight %	Atomic %	Element	Weight %	Atomic %
С	49.95	65.49	В	9.42	14.77
0	26.45 🍾	26.04	C	20.54	28.97
Na	0.76	0.52	0	39.58	41.92
S	10.38	5.10	Na	3.79	2.80
Cl	0.29	0.13	K	26.66	11.55
K	4.38	1.77			
As	2.64	0.56			
Hg	5.15	0.40			

Table no. 23: Showing Particle Size of Triguna Kajjali, BCR and CR

Sample	Mean diameter(nm)
Triguna Kajjali	2974.6
BCR	501.6
CR	639.8

Table no 24: Showing FTIR Peaks of Triguna Kajjali

Sample peaks Cm ⁻¹	Bond	Functional groups
3670.81, 3335.93	O-H (free)	Alcohol
3335.93	N-H	Primary amine, Aliphatic Primary amine, Secondary amine
2922.10, 2852.09	O-H (weak) stretch	Alcohol
	O-H	Carboxylic Acid
2922.10, 2852.09	N-H	Amine Salt
	C-H	Alkane
1730.54, 1637.03	C-H	Aromatic compound

1730.54	C=O (strong)	Conjugated anhydride, Aldehyde
1637.03	C=C (medium)	Alkene, Conjugated alkene
1308.62	N-O	Nitro Compound
1308.62, 1144.69, 1016.39	C-F	Fluro Compound
1144.69	S=O	Sulfone
1144.09	C-0	Tertiary alcohol, aliphatic ether
818.82, 760.60, 688.43	C=C	Alkene
	C-Cl	Halo Compound
818.82	C-H	1,2,4- trisubstituted
	C-H	1,4 disubstituted or 1,2,3,4 - tetrasubstituted
760.60	C=H	1,3 - disubstituted
688.43	C-Br	Halo compound.
068.45	C-H	1,2,3- trisubstituted

Table no. 25: Showing FTIR Peaks of BCR

Sample peaks Cm ⁻¹	Bond	Functional groups
	O-H (strong) intermolecular bonded	Alcohol
3343.19	N-H (medium)	Aliphatic primary amine, Secondary amine
	C-H (medium)	Alkane
2918.68, 2851.78	N-H (strong)	Amine salt
	O-H (strong)	Carboxylic acid
	O-H (weak)	Alcohol
		Aromatic compound
1736.65	C-H(weak), bending	Conjugated anhydride, Esters, δ- Lactone,
	C=O (strong), stretching SRD	Aldehyde
	N-H (medium), bending	Amine
1638.06	C=C (strong), stretching	Alkene (Monosubstituted)
	C=C (medium) stretching	Alkene (disubstituted), Conjugated alkene
1430.61	C-H(medium)bending	Alkane (methyl group)
1+50.01	O-H(medium) bending	Carboxylic acid
1340.12	N-O(strong) Stretching, 2456-6470	Nitro compound
	O-H(medium)bending	Alcohol
1340.12,1272.19,1252.83,	C-F(strong)Stretching	Fluro compound
1128.76,1076.08		
1272.19,1252.83	C-O(strong)Stretching	Aromatic ester, Alkyl aryl ether
1272.19	C-N(strong) Stretching	Aromatic amine
1128.76	C-O(strong) Stretching	Tertiary alcohol, Aliphatic ether
	S=O(strong)Stretching	Sulfone
1128.76,1076.08	C-N(medium)stretching	Amine
1076.08	C-O(strong)stretch	Primary alcohol
994.52	C=C(strong), bending	Alkene (mono substituted)
	C=C (medium) bending	Alkene(trisubstituted)
	C-H(strong) bending	1,4-disubstituted or 1,2,3,4-tetra
822.07		substituted,
		1,2,4 – trisubstituted
	C-Cl(strong)stretching	Halo compound
771.00		1,2,3- trisubstituted,
	C-H(strong) bending	1,2- disubstituted
		1,3- disubstituted
706.37	C-H (strong)bending	Mono substituted benzene derivative,
		1,3- disubstituted
1076.08	C-O(strong)stretch	Primary alcohol

	Fable no. 26: Showing FTI	R Peaks of CR
Sample peaks Cm ⁻¹	Bond	Functional groups
	O-H (strong)stretching	Alcohol, Carboxylic acid
3284.78	N-H (medium) stretching	Aliphatic primary amine
	C-H (strong) stretching	Alkyne
	O-H (strong) stretching	Carboxylic acid
2917.49, 2851.16	O-H (weak) stretching	Alcohol
2917.49, 2001.10	N-H (strong) stretching	Amine salt
	C-H (medium) stretching	Alkane
1729.02	C-H (weak) bending	Aromatic compound
	C=O (strong) stretching	Conjugated anhydride, Aldehyde, α , β -
		unsaturated ester
	N-H (medium)bending	Amine
1632.82	C=C (medium) stretching	Cyclic alkene, Conjugated alkene,
		alkene (disubstituted)
1515.74	N-O (strong)stretching	Nitro compound
1379.98, 1252.65,1016.74	C-F (strong) stretching	Fluro compound
1379.98	C-H (medium)bending	Alkane (methyl group)
	O-H (medium) bending	Alcohol, Phenol
1252.65	C-O (strong) stretching	Aromatic ester, Alkyl aryl ether
	C-Cl (strong) stretching	Halo compound
824.39	C=C (medium) bending	Alkene (trisubstituted)
027.37	C-H (strong) bending	1,2,4 – trisubstituted, 1,4-disubstituted
		or 1,2,3,4-tetra substituted
768.02	JO JUJORD	1,2- disubstituted
	C-H (strong)bending	1,2,3-trisubstituted
[·····2	of Trend in Scie	Mono substituted benzene derivative
	0 • Decearch an	1,3- disubstituted

Table no. 26: Showing FTIR Peaks of CR

Table no. 27: Showing TLC results with Rf values

Table no. 27. Showing The results with Ki values					
Rf Values	Kajjali	BCR	CR		
0.02	S. S.	Dark Green	• 5 <i>B</i>		
0.03		Fluorescent Green	Bright Fluorescent Green		
0.12		Fluorescent Green			
0.17			Blue		
0.23		VIIII	Blue		
0.26		Fluorescent Green	Blue		
0.32		Fluorescent Green	Fluorescent Green		
0.35			Fluorescent Green		
0.41		Fluorescent Blue	Fluorescent Blue		
0.44		Fluorescent Green	Fluorescent Green		
0.53			Fluorescent Green		
0.64		Fluorescent Blue	Fluorescent Blue		
0.67		Fluorescent Green	Fluorescent Green		
0.79		Bright Fluorescent Blue	Bright Fluorescent Blue		
0.83		Fluorescent Blue			

DISCUSSION

- Hingulottha Parada Mechanical trituration along with acidic media converts Hingula into finer particles and helps in sublimation, Citric acid helps in disintegration of HgS, Organic acid is responsible to weaken the bond and hence facilitates dissociation of mercury.
- > Hingula when triturated with Ardraka swarasa, the active constituents like Gingerdiols,
- > gingerols, shogaols etc, may unite to form different co-ordinate complexes of ligands.

- Gandhaka Shodhana The organic sulphur present in the protein of milk might have a role in increasing bioavailability of inorganic sulphur. Since raw milk is the commonly recommended antidote for poisoning, it might help in neutralizing the sulphur poisoning.
- > *Tankana* when *bharjana* done in big iron pan, turns to bloomed, puffed form of *tankana*, this is may be due to the activated dehydration, evaporation of water molecules and may increase the concentration of Boron. Normally Borax is deca hydrate Na₂B₄O₇.10H₂O but if heated above 60° C, it gives pentahydrate Na₂B₄O₇.5H₂O.
- By Sthapana of Vatsanabha in Gomutra, the total alkaloid content decreases, but the contents of less toxic substances such as aconine, hypoaconine, and benzyl hypoaconine increases possibly due to conversion of the toxic aconitine into aconine or hydrolysis of the alkaloids to their respective amino alcohols after shodhana process.
- Manahshila Shodhana when triturated with Ardraka Swarasa, the sulphur-based amino acids present in ginger juice such as cysteine and methionine act as phytochelatins, which are heavy metal-binding peptides and are suggested to detoxify heavy metals by chelation.
- By Nirmalikarana with Water, Potassium nitrate gets dissociates into K+ and NO3 ions and by Bhavana with Ela, K+ and Na+ ions gets excreted due to diuretic activity and Hexane extract acts as metal chealting and as reducing agent.
- Godugdha was used as a detoxifying agent for Jayapala Shodhana. When the Croton seeds were steamed in milk, the calcium present in milk chelated with crotonic acid and Tigilic acid, active constituents of Jayapala. Thus, the active constituents of Croton will not be freely available in Plasma.
- Chandrahasa Rasa was prepared step by step, firstly 80gms of Triguna kajjali was taken, to it 20 gms of Shuddha Hingula was added and triturated for about 1hr.
- Same way other ingredients i.e 40gms of Shuddha Tankana, 20gms of Shuddha Vatsanabha, 20gms of Shuddha Manahshila, 40gms of Shuddha Suryakshara, 160gms of Trikatu churna, 20gms of Lavanga churna, 30gms of Ela churna, 20gms of Jatiphala churna and Shuddha Jayapala churna each was added and triturated for 1hr each respectively, until homogenous mixture was prepared.
- To the mixture of Chandrahasa Rasa of 415ml of Nimbu Swarasa, 400ml of Bhringraja swarasa, 400ml of Nirgundi swarasa, 420ml of Nagavalli swarasa and 410ml of Triphala Kashaya was added until the mixture is completely immersed in the liquid and Bhavana was carried out for 4 ghati (1ghati- 24min) and upto subhavita laxanas observed.
- Organoleptic Characters: Triguna Kajjali: The Colour of Kajjali was Black, fine powder and amorphous on touch, Tasteless and odourless.

BCR: The colour of BCR was Greyish brown, fine powder and amorphous on touch, Pungent, Bitter on taste with characteristic odour

CR: The colour of CR was Greenish brown, fine powder and amorphous on touch, Bitter, Astringent on taste with characteristic odour

- The pH value of *Triguna Kajjali*, BCR and CR were 6.25±0.10, 8.56±0.10 and 4.65±0.10 respectively. The pH of CR is around 4.65 which implies that drugs are better absorbed from stomach.
- Triguna Kajjali, BCR and CR were evaluated for ash value and it was found to be 0.04%, 24.43% and 23.40% respectively which indicates the presence of inorganic materials.
- Acid insoluble ash of the *Triguna Kajjali*, BCR and CR were Nil, 3.32% and 2.42% respectively. It signifies that lesser amount of silica material, dirt or sand in the sample.
- ➤ The water-soluble ash of *Triguna Kajjali*, BCR and CR were Nil, 4.13% and 4.29% respectively. It indicates that water soluble contents of the drug.
- In the present study *Triguna Kajjali*, BCR and CR are having 0.67%, 1.32% and 3.91% respectively loss on drying at 105°C. Hence it can be stated that all have very less amount of moisture content and very rare chance of bacterial and fungal growth.

- Alcohol soluble extractives of *Triguna Kajjali*, BCR and CR are 0.33%, 14.63% and 21.43% whereas, water soluble extractives are 0.01%, 26.05% and 35.32%. So, water can be preferably used as mode of administration of CR.
- > Total Bacterial count and Total Fungal count are Nil; Shows no growth.
- Free mercury of *Triguna Kajjali* is 0.35%, shows proper formation of *Kajjali* and was also confirmed by *Nishchandratva*. Other 2 samples were nil, proving safety of the Product.
- Triguna Kajjali was in Cubic System with elemental formula HgS and Orthorhombic crystal system with elemental formula S.
- BCR was in Cubic System with elemental formula HgS, Orthorhombic crystal system with elemental formula S, Monoclinic crystal system with elemental formula As₂S₂ and Na₂B₄O₇ 5H₂O
- CR was in Cubic System with elemental formula HgS, Orthorhombic crystal system with elemental formula S, Monoclinic crystal system with elemental formula As₂S₂ and Na₂B₄O₇ 5H₂O
- In SEMEDS, Elements found in *Triguna Kajjali* are Hg, S, C, O in the percentage of 67.19% 26.13%, 5.18% and 1.50% respectively.
- Elements found in BCR are C, O, Na, Mg, P, S, Cl, K, Ca, As, and Hg in the percentage of 52.00%, 34.95%, 2.04%. 0.46%, 0.47%, 2.76%, 1.21%, 2.24%, 0.61%, 0.96% and 3.30% respectively.
- Elements present in CR has confirmed by the EDS study are C, O, Na, S, Cl, K, As, and Hg in the Weight percentage of 49.95, 26.45, 0.76,10.38,0.29,4.38,2.64 and 5.15 respectively. Variation in the percentage of the element might have also occurred due to heterogeneous mixing of the sample.
- FTIR analysis of CR shows it contains organic functional group like Amine salt, Alkyne, Carboxylic Acid, Alcohol, Alkane, Aromatic compound, Aldehyde, Esters, Amine, Alkene, Nitro-Fluro-Halo compound, Phenol, Aromatic ester, Alkene.
- By Zeta- Pals method, Mean particle size of *Triguna Kajjali* is -2974.6 nm, BCR is 501.6 nm and CR is 639.8 nm, lesser the particle size greater the bio availability of the drug.
- ➢ In present study TLC of the drug mixture is compared with the final product. The Rf values at 254nm, 11 peaks were identified in BCR sample and 12 peaks were identified in final product CR, which indicates that the drugs which were absent before bhavana are present in final product. As *Triguna Kajjali* is mineral products so no peaks were identified.

CONCLUSION

- Chandrahasa Rasa is one such unique herbo mineral formulation mentioned in Vaidya Chintamani of 16thAD constituting 14 ingredients with 5 bhavana dravyas which is solely indicated in Ashta vidha Jwara and 13 Sannipataja Jwara by aama dosha nivarana.
- Shodhana of ingredients is an essential step before usage, which will modify the raw drugs into safe, bioactive, therapeutic form.
- > Physical test shows CR is Greenish brown in colour with pH 4.65 ± 0.10 .
- XRD study compared with 2θ angle and JCPDF standards and confirms that CR is a compound of Metacinnabar in cubic crystal system, Sulphur in Orthorhombic crystal system, Arsenic di sulphide and Sodium hydroxide borate hydrate are Monoclinic crystal system.
- Elements present in CR has confirmed by the EDS study are C, O, Na, S, Cl, K, As, and Hg in the Weight percentage of 49.95, 26.45, 0.76,10.38,0.29,4.38,2.64 and 5.15 respectively.
- FTIR analysis of CR shows it contains organic functional group like Amine salt, Alkyne, Carboxylic Acid, Alcohol, Alkane, Aromatic compound, Aldehyde, Esters, Amine, Alkene, Nitro-Fluro-Halo compound, Phenol, Aromatic ester, Alkene.
- By Zeta- Pals method, Mean particle size of CR is 639.8 nm, lesser the particle size greater the bio availability of the drug.
- > Further detailed study is required to bring out many more characteristics of this unique formulation.

Hingula mardana

Urdhwa Patana Yantra

Hingulottha Parada

Shodhita Vatsanabha

Hingulottha Parada mardana with Haridra churna

Shodhita Hingula

Hingulottha Parada

mardana with

Haridra churna

Nirmalikrita Suryakshara

Shodhita Tankana

Shodhita

Gandhaka

Shodhita Suryakshara

Triguna Kajjali

Shodhita Jayapala

Churnikruta Jatiphala

CR bhavana with Nimbuka Swarasa

Shodhita Manahshila

Churnikruta Ela

CR bhavana with Bhringaraja Swarasa

Churnikruta Lavanga

Trikatu

Churnikruta

CR bhavana with Nirgundi Swarasa

Physico-Chemical Analysis Reports

(block

.....

Estal and

C. Einstein Australia

nony manta Meesery

Aniceptesi Makara

w Manuals

Najjali Ma Siri Ma 2014

1.0011-

435%

844.140

36.27%s 28.87%s

a arri

16.80%

Patrony Hummingshile Shel Aroust Hasmoch Hast Laboratory is not fields to have no fight unline or dispersionation from the conver-

6.84

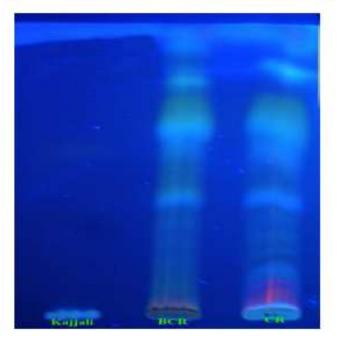
15.345

1.24%

4.871

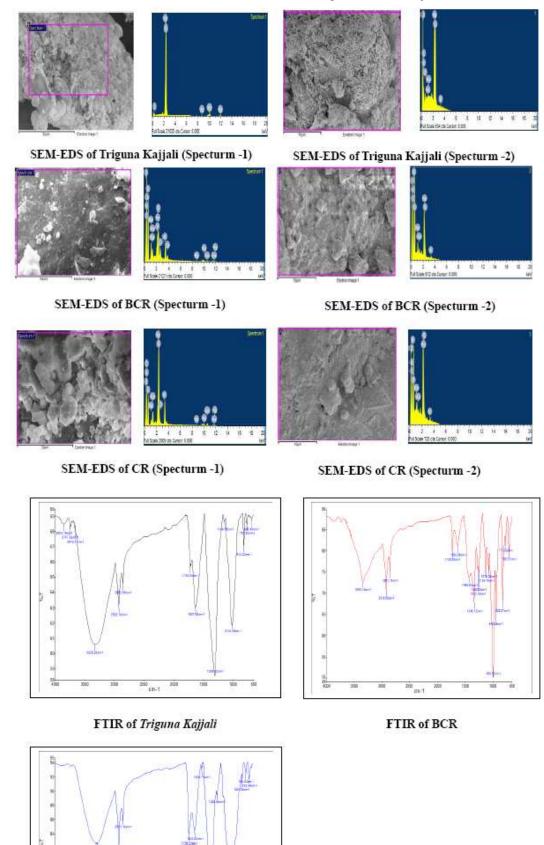
CR bhavana with Nagavalli Swarasa

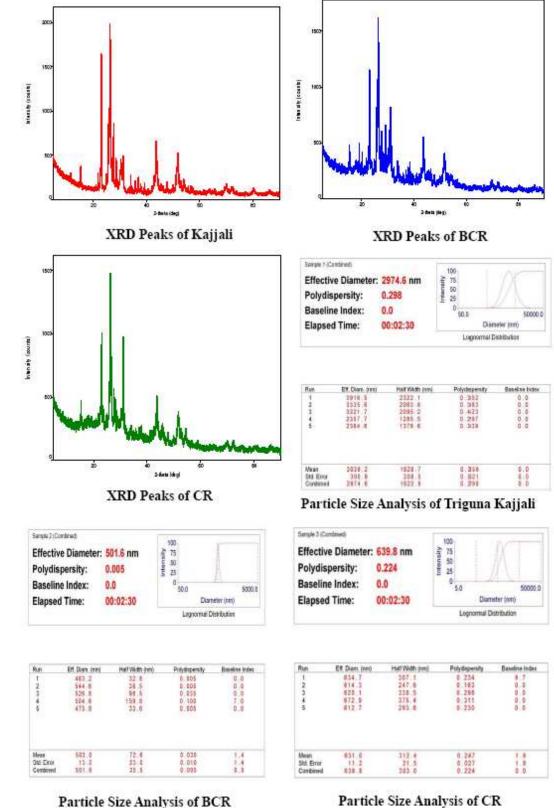
CR bhavana with Triphala Kashaya



Final Product -Chandrahasa Rasa

al.	RAGEMEANDER	J. AVERNEADC MEL	ATORIES SCALCOLLEGE
	PUBLY DUTIES IN	CONTRACTOR FOR	AT AN A. STREET
Treighter	25.28%	33,19%	21.42%
halphide	12,92%	22.1916	21.34%
6-elphiae	2.65%	1.0376	90.52
Talphote .	18.0076	8.1016	0.00%
Prev Salphar	0.67%	8133014	\$8-00%L
Annesia		3,00%	1.59%
Burnin	100	2.04%	1.1176
th. This Layer I	Terminal age up by		
Balliness Tyresson, Talk	man Didge Assistan 7.8		
Spain were and closed	s seen namer rookie by	P4	
Under Long UV			
RT Vakata	Program 1	HICH	CB:
9.42	100	Daily proces	
0.81		Placement grant	Bright Datasets and group
8.17		Harrywood group	the second se
6.17	Colorest Colorest	the second se	These .
4.0			Effect
0.36		Characterized present	10.00
8.42		Phasemanni grout.	Photos and grant
16.18		-10.0	Fluencessi group
16.49		Planeter block	Chairman Mana
0.44		Physical and press	Franciscon group.
0.65	the second se	1.00	Finances group
0.44		Placement blue	Placerospani biare -
887	and a	Plannunsi geres	Fisheriaum green
法物		Bright E. Silar	FD. Flansmann blam
10.01		PERSONAL PROPERTY PROPERTY.	


as- Hannaruble Shri Areasy Rasses that to beer any legit action at dispute bar



TLC findings of 3 Samples

QUALITY CONTROL LABORATORIES AND PUT EXTERNE. ROBERT DOTTING TO CHERMANIA STATES Number OCAULTINES Bude: 88" August 2823 epose: Anthrow for Registe, DCB and C.B.... A. Organalophi Chatacturele Rapili Rissi Chierkas SICE Choyald be Characteristics Characteristic Testates Program, Autors BREAK, AND THE ande binneder minut planeau 8. Physics when the start of party Ragati na na Depeny et 2011 d.87%. 10.11 10110 3.12% 3.12% 4.12% 4.12% 5.12% 4.12% 5.12% 9.84% 25.40 Austriansvertra och Nat Weier seleden och Nat Anvekal antelle somarätten (d. 1974) 1.47% 12414 Water soluble constraints 0.00% p01(10% opprove solution) 0.25 ± 0.10 19.275 112-20-00 4451010

FTIR of CR

REFERENCES

Acharya Sri Vallabha. Vaidya Chintamani [1] translated with hindi commentary by Dr. Ram Nivas Sharma, Dr. Surendra Sharma. Delhi: Chaukhambha Sanskrit Pratishthan; 2013. Tritiya Vilasa, 44-45 pp.

Particle Size Analysis of CR

- Sharma Shri Sadananda. Rasa Tarangini. Edited [2] by Shastri Pandit Kashinath,11th Edition, Varanasi: Motilal Banarasidas Publication; 2004. 5th Taranga, Verses 38-42, 82pp.
- [3] Acharya Shri Vagbhata. Rasa Ratna Samuchchaya. Translated with "Rasaprabha" hindi commentary by Dr. Indra Dev Tripathi.

Edited by Dr. Kapideva Giri, Varanasi: Chaukambha Sanskrit Sansthan; 2009, Verse 152-153, 41pp.

- [4] Shri Madhava Upadhyay. Ayurveda Prakash. Edited by Vaidya Vachaspati Shri Gulraj Sharma Mishra. Varanasi: Chaukambha Sanskrit Sansthan; 1999. 2nd Adhyaya, Verse 19, 260-261pp.
- [5] Sharma Shri Sadananda. Rasa Tarangini. Edited by Shastri Pandit Kashinath,11th Edition, Varanasi: Motilal Banarasidas Publication; 2004. 6th Taranga, Verse 107, 124pp.
- [6] Sharma Shri Sadananda. Rasa Tarangini. Edited by Shastri Pandit Kashinath. 11th Edition, Varanasi: Motilal Banarasidas Publication; 2004. 24th Taranga, Verse 19-22, 652pp.

- Sharma Shri Sadananda. Rasa Tarangini. Edited by Shastri Pandit Kashinath, 11th Edition, Varanasi: Motilal Banarasidas Publication; 2004. 13th Taranga, Verse 77-78, 318pp.
- [8] Sharma Shri Sadananda. Rasa Tarangini. Edited by Shastri Pandit Kashinath, 11th Edition, Varanasi: Motilal Banarasidas Publication; 2004. 11th Taranga, Verse 114, 262pp.
- [9] Sharma Shri Sadananda. Rasa Tarangini. Edited by Shastri Pandit Kashinath, 11th Edition, Varanasi: Motilal Banarasidas Publication; 2004. 14th Taranga, Verse 35, 332pp.
- [10] Sharma Shri Sadananda. Rasa Tarangini. Edited by Shastri Pandit Kashinath, 11th Edition Varanasi: Motilal Banarasidas Publication; 2004. 24th Taranga, Verse 310-312, 704pp.

