
International Journal of Trend in Scientific Research and Development (IJTSRD)  
Volume 7 Issue 5, September-October 2023 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470 

 

@ IJTSRD  |  Unique Paper ID – IJTSRD59863   |   Volume – 7   |   Issue – 5   |   Sep-Oct 2023 Page 309 

An Efficient Hardware Implementation 

of Canny Edge Detection Algorithm 

Keerthana P1, Mr. K. Raja2 

1PG Student, 2Assistant Professor, 
1,2Department of ECE, Gnanamani College of Technology, Namakkal, Tamil Nadu, India 

 

ABSTRACT 

Edge detection is an essential technique used in many image 
processing applications. Among the various edge detection 
techniques available, the canny edge detection algorithm has been 
widely recognized for its superior performance. However, its 
implementation in real-time systems can be computationally complex 
and expensive in terms of hardware costs, leading to increased 
latency. To address these challenges, a novel approach to canny edge 
detection has been proposed. This algorithm utilizes approximation 
methods to replace complex operations, thereby reducing 
computational complexity. In addition, pipelining techniques are 
employed to further decrease latency. The proposed canny edge 
detection algorithm has been implemented on Xilinx Virtex-5 FPGA, 
a field-programmable gate array. Compared to previous hardware 
architectures for canny edge detection, the new architecture requires 
fewer hardware resources, resulting in reduced costs. Furthermore, 
the algorithm is able to detect the edges of a 512 x 512 image in just 
1ms. In conclusion, the proposed canny edge detection algorithm 
offers an efficient and cost-effective solution for real-time image 
processing applications. By utilizing approximation methods and 
pipelining techniques, it achieves superior performance while 
minimizing hardware costs and latency. 
 

 

KEYWORDS: dge detection, canny edge detection algorithm, real-

time systems, computational complexity, hardware costs, latency, 

approximation methods, pipelining techniques, Xilinx Virtex-5 FPGA 

 

How to cite this paper: Keerthana P | 
Mr. K. Raja "An Efficient Hardware 
Implementation of Canny Edge 
Detection Algorithm" Published in 
International 
Journal of Trend in 
Scientific Research 
and Development 
(ijtsrd), ISSN: 
2456-6470, 
Volume-7 | Issue-5, 
October 2023, 
pp.309-314, URL: 
www.ijtsrd.com/papers/ijtsrd59863.pdf 
 
Copyright © 2023 by author (s) and 
International Journal of Trend in 
Scientific Research and Development 
Journal. This is an 
Open Access article 
distributed under the 
terms of the Creative Commons 
Attribution License (CC BY 4.0) 
(http://creativecommons.org/licenses/by/4.0)  

 

I. INTRODUCTION 

Edge detection is an important step in computer 
vision and imaging applications, as it helps define 
object boundaries within an image. However, 
implementing an edge detection system in hardware 
poses challenges due to noise interference, lighting 
conditions, processing speed, and accuracy 
requirements. Various edge detection techniques have 
been proposed, with Canny edge detection offering 
superior performance by addressing the limitations of 
other detectors. However, it is computationally 
complex and results in high latency for real-time 
applications. Several FPGA-based implementations 
have been explored to achieve real-time performance, 
but they often suffer from performance degradation 
and increased latency. To reduce latency, a parallel 
implementation has been proposed that processes 
pixels concurrently, but this leads to increased 
memory access. Previous hardware implementations  

 
also use constant low and high thresholds, which 
simplifies the complexity but degrades performance. 
Recent efforts have tried to reduce computational 
complexity and latency by using absolute operations 
instead of square and square root operations, resulting 
in lower accuracy. The proper computation of 
thresholds with low latency is crucial for the canny 
edge detection algorithm's performance. A robust 
threshold computation method with higher accuracy 
has been introduced, but it requires more resources 
and increases latency. 

II. SOFTWARE IMPLEMENTATION 

MATLAB is a versatile tool used extensively in 
computational mathematics. It finds application in a 
wide range of mathematical calculations, including: 

 Manipulating matrices and arrays 

 
 

IJTSRD59863 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD59863   |   Volume – 7   |   Issue – 5   |   Sep-Oct 2023 Page 310 

 Plotting and creating graphics in both 2D and 3D 
dimensions 

 Solving linear algebra problems 

 Solving algebraic equations 

 Handling non-linear functions 

 Performing statistical analyses 

 Analyzing data 

 Carrying out calculus and differential equations 

 Conducting numerical calculations 

 Performing integrations 

 Applying transforms 

III. FEATURES OF MATLAB 

It is a powerful high-level language that is primarily 
used for numerical computation, visualization, and 
application development. Additionally, it offers an 
interactive environment that facilitates iterative 
exploration, problem-solving, and design. 

MATLAB provides an extensive library of 
mathematical functions covering areas such as linear 
algebra, statistics, Fourier analysis, filtering, 
optimization, numerical integration, and solving 
ordinary differential equations. This library allows 
users to effortlessly perform complex mathematical 
operations. 

The language also includes built-in graphics 
capabilities, enabling users to easily visualize data 
and create custom plots. Furthermore, MATLAB's 
programming interface offers development tools that 
enhance code quality, maintainability, and 
performance optimization. 

For those looking to build applications with custom 
graphical interfaces, MATLAB provides convenient 
tools that simplify the process. 

Moreover, MATLAB allows for seamless integration 
of MATLAB-based algorithms with external 
applications and programming languages, including 
C, Java, .NET, and Microsoft Excel. This feature 
allows users to leverage the power of MATLAB 
alongside their preferred software. 

IV. MATLAB PRODUCT DESCRIPTION 

MATLAB is a powerful platform that combines a 
high-level programming language with an interactive 
environment, making it ideal for numerical 
computation, visualization, and programming tasks. 
With MATLAB, you can easily analyze data, develop 
algorithms, and create models and applications. Its 
extensive library of built-in math functions and tools 
allows you to explore various approaches and find  
 

solutions more quickly compared to traditional 
programming languages or spreadsheets. MATLAB 
has a wide range of applications, including signal 
processing, image and video processing, control 
systems, test and measurement, computational 
finance, and computational biology. It is widely used 
by millions of engineers and scientists in both 
industry and academia as the go-to language for 
technical computing tasks. 

 
Figure I. Matlab Window 

V. MATLAB INTRODUCTION 

Matlab, short for Matrix Laboratory, is a 
programming language and numerical computing 
environment developed by MathWorks. It is designed 
for matrix manipulations, data plotting, algorithm 
implementation, and creation of user interfaces. 
Matlab can also interface with other programming 
languages such as C, C++, Java, and FORTRAN. 
While it is primarily used for numerical computation, 
it also has a symbolic computing toolbox called 
MuPAD for symbolic computations. 

In addition, Matlab offers a package called Simulink, 
which provides graphical simulation and model-based 
design capabilities for dynamic and embedded 
systems. As of 2004, Matlab had over a million users 
in industry and academia, and it is widely used in 
fields such as engineering, science, and economics. 

The first chapter of Matlab and numerical computing 
introduces the language by showcasing several 
programs that explore elementary mathematical 
problems. If you have prior programming experience, 
studying these programs will help you understand 
how Matlab functions. For a more comprehensive 
introduction, you can access the Help tab in the 
Matlab command window, which provides 
documentation and resources. The MathWorks 
website also offers tutorials, videos, and a PDF 
manual called "Getting Started with MATLAB" for 
beginners. 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD59863   |   Volume – 7   |   Issue – 5   |   Sep-Oct 2023 Page 311 

 
Figure II. MATLAB Multiparadigm 

VI. THE MATLAB ENVIRONMENT 

The MATLAB environment is set up like a typical 
word processor, with menus, buttons, and a writing 
area. The main writing area is called the command 
window, where you can input commands for 
MATLAB to execute. You can start a program by 
typing its name in the command window. The 
command window can also be used as a scientific 
calculator or a graphing tool. However, for longer 
programs, it is more convenient to write the program 
code in a separate window and then execute it in the 
command window. In the command window, you will 
see a prompt (>>) where you can type your 
commands. After typing a command, press Enter to 
execute it. If you need to interrupt a running 
command, you can do so by typing Ctrl + C. 

MATLAB, short for "matrix laboratory," was created 
in the late 1970s by Cleve Moler, who was the 
chairman of the computer science department at the 
University of New Mexico at the time. Its 
development was motivated by Moler's desire to 
provide his students with access to LINPACK and 
EISPACK, without requiring them to learn Fortran. 
As a result, MATLAB gained popularity in 
universities and found a strong following among 
applied mathematicians. 

In 1983, engineer Jack Little encountered MATLAB 
during a visit by Moler to Stanford University. 
Recognizing its potential for commercial use, Little 
joined forces with Moler and Steve Bangert. They 
rewrote MATLAB in the C programming language 
and founded The MathWorks in 1984 to further 
develop the software. This new version, known as 
JACKPAC, utilized different libraries for matrix 
manipulation, specifically LAPACK. 

 

A. Variables 

In MATLAB, the assignment operator, =, is used to 
define variables. This programming language is 
considered weakly typed due to its implicit type 
conversion. Additionally, it is dynamically typed, 
which means that variables can be assigned without 
having to declare their type, except when they are 
treated as symbolic objects. Furthermore, the type of 
a variable can change over time. Values can be 
derived from constants, computations involving other 
variables, or from the output of a function. 

B. Vectors/matrices 

MATLAB is capable of creating and manipulating 
arrays of various dimensions, including vectors and 
matrices. A vector in MATLAB is a one-dimensional 
matrix with dimensions of 1×N or N×1. Similarly, a 
matrix in MATLAB is a two-dimensional array with 
dimensions of m×n, where both m and n are greater 
than or equal to one. 

VII. EDGE DETECTION 

In MATLAB, arrays can be created and manipulated 
with various dimensions, including vectors and 
matrices. A vector is a one-dimensional matrix with 
dimensions of 1×N or N×1, while a matrix is a two-
dimensional array with dimensions of m×n, where 
both m and n are greater than or equal to one. 

Edges in image processing are characterized by their 
length, slope angle, and coordinate of the slope 
midpoint. They can be caused by various factors such 
as surface normal discontinuity, depth discontinuity, 
surface color discontinuity, and illumination 
discontinuity. There are two types of edges: ramp 
edges, where intensity values change slowly, and step 
edges or ideal edges, where intensity values change 
abruptly. 

Edge detection can be achieved through several 
approaches, but they can be grouped into two 
categories: gradient-based (approximation of 
derivative) and Laplacian-based (zero-crossing 
detectors) approaches. Gradient-based edge detection 
operators determine the level of variance between 
neighboring pixels by forming a mask over the center 
pixel whose properties need to be altered. A pixel is 
classified as an edge if an estimated area of the matrix 
overcomes the specified threshold value. Examples of 
gradient-based edge detectors include Prewitt, 
Roberts, and Sobel operators. Laplacian operators are 
second-order derivative operators. 

The Canny edge detection method is considered the 
optimal edge detection method. 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD59863   |   Volume – 7   |   Issue – 5   |   Sep-Oct 2023 Page 312 

 

VIII. EDGE DETECTOR METHODS a. Sobel 

Operator 

The Sobel operator, as described by Maini et al. [4], 
is a gradient-based method used for edge detection on 
a grey-leveled and optionally smoothed image. It 
utilizes a pair of 3x3 convolution kernels that are 
perpendicular to each other, with one filtering the 
image in the vertical direction (Gx) and the other in 
the horizontal direction (Gy). The kernels measure the 
gradient in their respective directions, which are then 
combined to produce the absolute magnitude and 
orientation of the gradient. 

Figure 3: A pair of convolution kernels used by 

Sobel edge detector. One kernel is the other 

rotated by 90°. (https://homepages. 

inf.ed.ac.uk/rbf/HIPR2/sobel.htm) 

 
Figure 4: The two separate gradient output from 

the pair of convolution kernels, which will be 

further combined to produce the absolute 

magnitude and the orientation. 

(https://youtu.be/uihBwtPIBxM) 

IX. CANNY EDGE DETECTION 

ALGORITHM 

The Canny edge detector is a widely used algorithm 
for detecting edges in images. It was developed based 
on a set of criteria proposed by Canny, which include 
low error rate, good localization, and single edge 
point response. The first step of the algorithm 
involves smoothing the image using a Gaussian filter, 
followed by computing the image gradient using 
multiple first derivative operators in different 
directions. 

 
Figure III. Flow Chart of Edge Detection X. 

OUTPUT 

unction edges = detectEdges(image, sigma, 
lowThreshold, highThreshold) 

% This method implements the Canny edge detection 
algorithm. 

% Inputs: 
% - image: the input image 

% - sigma: the standard deviation for the Gaussian 
filter 

% - lowThreshold: the lower threshold value for 
hysteresis 

% - highThreshold: the higher threshold value for 
hysteresis 

% Output: 
% - edges: the binary image of detected edges 

% Convert the image to grayscale  

if size(image, 3) == 3  

image = rgb2gray(image);  

end  

% Apply Gaussian filter  

filteredImage = imgaussfilt(image, sigma);  

% Compute image gradient using first  

derivative operators  

gx = imfilter(filteredImage, [-1 0 1]);  

gy = imfilter(filteredImage, [-1; 0; 1]);  

% Compute gradient magnitude and orientation  

gradientMagnitude = sqrt(gx.^2 + gy.^2); 

gradientOrientation = atan2d(gy, gx); 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD59863   |   Volume – 7   |   Issue – 5   |   Sep-Oct 2023 Page 313 

% Perform non-maximum suppression to get rid of 
spurious responses  

suppressedMagnitude = 
nonMaxSuppression(gradientMagnitude, 
gradientOrientation); 

% Perform hysteresis thresholding to get final edges 
edges =  

hysteresisThresholding(suppressedMagnitude, 
lowThreshold, highThreshold); 

end 

 
Figure IV. Candy Edge Detection 

 
Figure V. Direction Adjust 

 

 
Figure VI. Output 

 

X. CONCLUSION 

In conclusion, our work focuses on implementing an 
image processing algorithm using Xilinx FPGA and 
Xilinx System Generator. The proposed block 
diagram emphasizes achieving high performance, low 
cost, and short development time. We prefer a reliable 
edge detection algorithm that produces efficient 
output even for noisy images. FPGA offers 
parallelism and in-built high-speed multipliers, which 
significantly reduce processing time. Although most 
hardware implementation techniques use a high-level 
language for coding, Xilinx System Generator 
simplifies the development process by allowing users 
to model the system. This tool eliminates the need for 
emulating floating-point algorithms in HDL code and 
allows for testing and verification through functional 
simulations, post-simulation processes, and 
generating bitstream files. 

 
Figure VII. Proposed system 

XI. REFERENCE 

[1] L. G. Roberts. ―Machine perception of 3D 
solids,‖ Optical and ElectroOptical Information 
Processing. MIT Press, 1965. 

[2] R. C. Gonzalez, R. E. Wood. ―Digital image 
processing,‖ Second Edition. Prentice Hall, 
2002. 

[3] N.  Kanopouls, N.  Vasanthavada, R.L.Baker, 
―Design of an image edge detection filter 
using the sobel operator‖, IEEE journal of 
Solid-State Circuits, Apr.1988, pp.358-367. 

[4] E. R. Davies. ―Constraints on the design of 
template masks for edge detection,‖ Pattern 
Recognition Lett., vol. 4, pp. 111-120, 
Apr,1986. 

[5] J. F. Canny, ―A computation approach to edge 
detection,‖ IEEE Trans. Pattern Analysis and 
Machine Intelligence, vol. 8, no. 6, pp. 769-
798, November 1986. 

[6] Y. Luo and R. Duraiswami, ―Canny edge 
detection on nvidia cuda,‖ Computer Vision and 
Pattern Recognition Workshop, vol. 0, pp. 1–8, 
2008. 

 



International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470 

@ IJTSRD  |  Unique Paper ID – IJTSRD59863   |   Volume – 7   |   Issue – 5   |   Sep-Oct 2023 Page 314 

[7] V. Rao and M. Venkatesan, ―An efficient 
reconfigurable architecture and implementation 
of edge detection algorithm using Handle-C, ‖ 
IEEE Conference on Information Technology: 
Coding and Computing (ITCC), vol. 2, pp. 843 
– 847, Apr. 2004. 

[8] H. Neoh, A. Hazanchuck, ―Adaptive edge 
detection for real-time video processing using 
FPGAs, ‖ Application notes, Altera 
Corporation, 2005. 

[9] Gentsos, C.  Sotiropoulou, S. Nikolaidis, N. 
Vassiliadis, ―Real-Time canny edge detection 
parallel implementation for FPGAs, ‖ IEEE 
International Conference on Electronics, 
Circuits and Systems (ICECS), pp. 499-502, 
Dec. 2010. 

[10] W. He and K. Yuan, ―An improved canny 
edge detector and its realization on FPGA, ‖ 
IEEE Proceedings of the 7th World Congress 
on Intelligent Control and Automation 
(WCICA), pp. 6561 –6564, June 2008. 

 


