
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 7 Issue 4, July-August 2023 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD59687 | Volume – 7 | Issue – 4 | Jul-Aug 2023 Page 504

Developing Online Application with Kivy: A Python Framework

Diksha Singla

Student, School of Engineering and Sciences, GD Goenka University, Sohna-Gurugram Rd, Sohna, Haryana, India

ABSTRACT

Kivy is an open-source Python framework for building multi-touch
applications on multiple platforms, including Android. This case
study provides an in-depth look at Kivy's capabilities and
demonstrates how to use this powerful framework to build Android
apps. We discuss the main features, architecture and advantages of
Kivy for Android app development. In addition, we provide step-by-
step instructions to create a simple Android application using Kivy
and highlight the main features and capabilities. Through this
research paper, developers and researchers will gain insight into
Kivy's ability to build cross-platform apps on Android using Python.

KEYWORDS: Kivy framework, Python, Application, Cross-platform,

Architecture, Android app, User Interface (UI)

How to cite this paper: Diksha Singla
"Developing Online Application with
Kivy: A Python Framework" Published
in International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN:
2456-6470,
Volume-7 | Issue-4,
August 2023,
pp.504-509, URL:
www.ijtsrd.com/papers/ijtsrd59687.pdf

Copyright © 2023 by author (s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an
Open Access article
distributed under the
terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

INTRODUCTION

In today's digital age, mobile applications have
become a part of our lives and enable us to do many
tasks and activities with ease. As the demand for
mobile apps continues to grow, developers are
constantly looking for ways to simplify the app
development process while maintaining
interoperability.

Kivy is an open-source Python framework that has
proven to be a great solution for building multi-touch
apps on multiple platforms, including Android. It
allows developers to use the simplicity and flexibility
of the Python programming language to create
powerful and intuitive Android applications.

The purpose of this research paper is to enter the
world of Kivy and explore the potential of Android
application development. We will discuss the key
concepts, architecture, and advantages that Kivy
provides. Additionally, we will provide detailed
instructions on how to build Android apps with Kivy,
focusing on the main features and capabilities of the
framework. There are many advantages to using Kivy
to build Android apps with Python. Known for its
readability, simplicity, and rich library, Python is an
excellent choice for developers who prefer high-level
languages.

We will delve deeper into user interface design,
dealing with user input, working with multimedia,
and integrating communication and data storage. To
show Kivy in action, we'll provide a tutorial that
shows you the step-by-step development process of a
simple Android app. This tutorial will provide insight
into how to use the various features and highlight the
power and flexibility of Kivy.

Additionally, this research paper compares Kivy to
other popular app development techniques,
highlighting its strengths and weaknesses. By
understanding how Kivy differs from other
frameworks, developers can make informed decisions
when choosing the most appropriate tool for a project.

In summary, this case study is designed to give
developers and researchers an understanding of
Kivy's ability to develop Android applications using
Python. Developers can create integrated Android
apps using Kivy's features and capabilities. With its
open nature and active community, Kivy provides a
promising framework for building efficient and
intuitive Android apps.

IJTSRD59687

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD59687 | Volume – 7 | Issue – 4 | Jul-Aug 2023 Page 505

KIVY FRAMEWORK:

� History and History of Kivy:

Kivy was first released in 2011 by the development
team led by Mathieu Virbel. It was originally created
as part of the "PyMT" (Python Multi-Touch) project
to provide a framework for building multi-touch
applications using Python. Over time, Kivy has
evolved into a standalone framework focused on
building cross-platform apps with rich user interfaces.

� Architecture and Design Principles:

Kivy follows a flexible and extensible architecture. At
its core, Kivy leverages the OpenGL ES graphics
library to render and render images, making it ideal
for creating user-friendly interactive experiences. The
framework also provides a variety of tools and design
methods, allowing developers to create complex user
models. One of Kivy's key design principles is the
separation of the user interface (UI) from the
application logic. This is done using the Kivy (KV)
language, a declarative language to describe the
structure and appearance of user interfaces. By
separating UI design from code, Kivy allows
developers to focus on application logic and
facilitates easy collaboration between designers and
developers. Kivy follows an event-driven
programming model, where user interactions and
system events trigger specific actions in the
application. Developers can define event handlers and
bind them to specific UI elements, allowing them to
respond to user inputs and take appropriate action.
This approach can create interactive and responsive
applications.

� Supported platforms and operating systems:

Kivy is designed as a cross-platform framework that
supports various platforms and operating systems.
These include:
1. Android: Kivy provides native support for

Android, allowing developers to build and deploy
apps directly to devices.

2. iOS: Kivy also supports iOS, allowing developers
to create apps for iPhones and iPad. However,
iOS support requires additional setup and tools
due to Apple restrictions.

3. Windows: Kivy is compatible with the Windows
operating system and allows developers to create
applications for desktops and tablets running
Windows.

4. macOS: Kivy supports macOS, allowing
developers to create apps for Apple desktops and
laptops.

5. Linux: Kivy has strong support for Linux
distributions, making it possible to build
applications for many Linux-based platforms.

Kivy provides support for multiple platforms and
operations, allowing developers to target a wider
audience and ensure their apps run smoothly on
different devices. Overall, Kivy's architecture, design,
and cross-platform support make it a versatile
framework for building applications with rich clients.
Its modular design, separation of user interface and
logic, and support for multiple platforms and
functions have made it popular with developers who
want to build visual and interactive applications using
Python.

SETTING UP THE DEVELOPMENT

ENVIRONMENT:

Setting up the development environment for Kivy
involves installing the framework and configuring the
necessary tools and dependencies. Here are the steps
to install and configure Kivy:

Install Python: Kivy requires Python to be installed
on your system. You can download the latest version
of Python from the official Python website
(https://www.python.org) and follow the installation
instructions for your operating system.

Install Kivy: Once Python is installed, you can install
Kivy using pip, the package manager for Python.
Open a command prompt or terminal and run the
following command:

This command will download and install the latest
version of Kivy along with its dependencies.

Verify the installation: After the installation is
complete, you can verify if Kivy is installed correctly.
Run the following command:

If Kivy is installed properly, you should see the Kivy
logo and version information displayed in the
terminal or command prompt.

Set up a text editor or IDE: Choose a text editor or
integrated development environment (IDE) to write
your Kivy code. Popular options include Visual
Studio Code, PyCharm, Sublime Text, and Atom.
Configure the editor or IDE according to your
preferences.

Additional tools and dependencies: Depending on
your specific needs and the features you plan to
incorporate into your Kivy app, you may need to
install additional tools and dependencies. Here are
some commonly used tools:

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD59687 | Volume – 7 | Issue – 4 | Jul-Aug 2023 Page 506

� Buildozer: Buildozer is a tool that helps package
your Kivy app into a standalone APK for
Android. You can install it by running the
following command:

� Pygame: If you plan to use sound or music in
your Kivy app, you may need to install Pygame.
Run the following command to install it:

� Cython: If you encounter any performance issues
or need to optimize your Kivy app, you can install
Cython. Run the following command to install it:

� Additional libraries: Depending on your app
requirements, you may need to install additional
Python libraries. You can use pip to install these
libraries as needed.

Once you have completed these steps, your
development environment is set up and ready to start
building Kivy applications. You can create a new
Python file, import the necessary Kivy modules, and
begin writing your app code using the Kivy
framework and its features.

Kivy App Structure:

The structure of a Kivy app consists of multiple
components that work together to create the user
interface and define the application's behaviour. Here
is an overview of the app structure in Kivy:

� Main Entry Point (main.py):

The main.py file serves as the entry point of the Kivy
application. It typically contains the code that
initializes the app and starts the main loop. This file is
responsible for creating the app instance and running
it.

� App Class:

In Kivy, the core of the application is defined by an
App class that inherits from the kivy.app.App class.
This class represents the application and provides the
main functionality. It typically contains methods such
as build() (to define the root widget of the app) and
event handlers for various app-level events.

� User Interface (UI):

The user interface of a Kivy app is defined using a
combination of Python code and .kv files. The UI
consists of widgets, layouts, and other graphical
elements that define the visual representation and
interaction of the app. Widgets can be organized

hierarchically using layouts to create complex UI
structures.

� Event Handling:

Kivy uses an event-driven architecture, where events
trigger specific actions in the application. Event
handlers can be defined to respond to user
interactions, such as button clicks or touch events.
These event handlers are typically defined within the
App class or within individual widgets.

The Role of the main.py File:

The main.py file plays a crucial role in a Kivy
application. It serves as the entry point for the
application, where the app instance is created and the
main loop is started. The main.py file typically
includes the following tasks:

� Importing Dependencies:

The main.py file begins with importing the necessary
Kivy modules and any additional Python libraries
required by the app.

� App Initialization:

An instance of the App class is created by subclassing
it in the main.py file. This subclass typically includes
the build() method, which returns the root widget of
the application. The build method defines the initial
user interface structure of the app.

� Running the App:

After the app instance is created, the main.py file
calls the run() method on the app instance. This
method starts the Kivy event loop, which listens for
user input and updates the UI accordingly. The app
will continue to run until the user closes the
application window or the main loop is explicitly
stopped.

Organizing the User Interface with .kv Files:

Kivy provides a special file format called Kivy
Language (KV) for organizing and defining the user
interface. KV files have a .kv extension and allow for
declarative UI design, separating the UI structure and
appearance from the Python code.

KV files provide a concise and expressive syntax for
defining widgets, layouts, and other UI elements.
They can be loaded automatically by Kivy based on
naming conventions or explicitly loaded using the
Builder class.

The use of KV files allows for a clean separation of
UI design and logic, making it easier to collaborate
between designers and developers. KV files can be
used to define the structure of the UI, set properties of
widgets, define event handlers, and apply styles and
themes.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD59687 | Volume – 7 | Issue – 4 | Jul-Aug 2023 Page 507

To organize the user interface with .kv files, you
typically create a separate .kv file for each screen or
section of your app. Within the .kv files, you define
the UI structure using widgets and layouts, set
properties and attributes and define event handlers
using the Kivy language syntax.

In the main.py file, you can load the appropriate KV
file using the Builder.load_file() method or let Kivy
automatically load the corresponding KV file based
on naming conventions. The loaded KV file will
define the user interface structure for that particular
screen or section of your app.

CODE: Student Information Input with Kivy Grid

Layout

This code imports necessary modules from the Kivy
library and defines a basic Kivy app with a
GridLayout containing a Label, TextInput, and
Button. The app prompts the user to enter their name
and includes a button to submit the input.

The code defines a simple Kivy app called
SpartanApp. The build() method is overridden to
create the app's user interface, which consists of a
single Label widget displaying the text "This is
Spartaaaaaa!!!!!". When the app is run, an instance of
SpartanApp is created, and the run() method is called
to start the app's main loop, displaying the label on
the screen. This code demonstrates the basic structure
of a Kivy app, where the build() method is used to
define the app's UI components.

The code defines a Kivy app with a custom widget
called SpartanGrid. The SpartanGrid class inherits
from the GridLayout class provided by Kivy. In its
constructor (__init__), the grid layout is set to have 2
columns, and several UI components are added to the
grid using the add_widget() method. These
components include labels, text input fields, and a
button.

When the button is pressed, the click_me() method is
called. This method retrieves the text entered in the
text input fields and prints them to the console.

The SpartanApp class is the main app class that
inherits from the App class. In its build() method, an
instance of SpartanGrid is created and returned as the
root widget of the app.

When the app is run, an instance of SpartanApp is
created, and the run() method is called, which starts
the app's main loop. The app displays the grid layout
with labels, text input fields, and a button. When the
button is clicked, the entered student name, marks,
and gender are printed to the console.

This code demonstrates a more complex UI structure
using a custom grid layout and showcases how to
retrieve and use user input in a Kivy app.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD59687 | Volume – 7 | Issue – 4 | Jul-Aug 2023 Page 508

COMPARISON WITH OTHER

FRAMEWORKS:

When comparing Kivy with other Android app
development frameworks, it's important to consider
factors such as ease of use, performance, community
support, and platform compatibility. Here are some
popular frameworks that are commonly compared to
Kivy, along with their strengths and weaknesses:

� Kivy vs. Flutter:

1. Strengths of Kivy: Kivy offers the advantage of
using Python, which is known for its simplicity
and readability. It provides cross-platform
support, enabling developers to build apps for
multiple platforms using a single codebase. Kivy
also has a mature and active community, offering
extensive documentation and resources.

2. Weaknesses of Kivy: Compared to Flutter, Kivy
may have a steeper learning curve for beginners.
Flutter has gained significant popularity in the
Android development community, and it has a
larger ecosystem with a wide range of libraries
and plugins. Additionally, Kivy's performance
may not match the native performance of Flutter,
especially for complex UI animations and
transitions.

� Kivy vs. React Native:

1. Strengths of Kivy: Kivy's main strength lies in
its ability to use Python, which has a large and
established developer community. It offers a more
familiar programming language for Python
developers. Kivy also provides a more
comprehensive set of UI components and built-in
widgets compared to React Native.

2. Weaknesses of Kivy: React Native has gained
substantial popularity in the mobile app
development landscape due to its performance,
native-like look and feel, and extensive
community support. React Native also benefits
from the vast ecosystem of JavaScript libraries
and modules, making it easier to integrate with
existing web technologies. Kivy, on the other
hand, may face challenges when it comes to
performance optimization and accessing native
device features.

� Kivy vs. Native Android Development:

1. Strengths of Kivy: Kivy's primary advantage
over native Android development is its cross-
platform compatibility. It allows developers to
write code once and deploy it on multiple
platforms, saving time and effort. Kivy also
provides a simplified UI development process
with its declarative KV language.

2. Weaknesses of Kivy: Native Android
development offers the highest level of
performance and access to all native Android
APIs and features. Native apps can take full
advantage of platform-specific optimizations and
provide a seamless user experience. Kivy, while
offering cross-platform capabilities, may face
limitations when it comes to accessing certain
platform-specific features or optimizing
performance to the same extent as a native app.

Kivy stands out for its cross-platform support, ease of
use for Python developers, and active community. It
provides a viable option for building Android apps
with Python. However, compared to frameworks like
Flutter and React Native, Kivy may have a steeper
learning curve and could face limitations in terms of
performance and native-like UI. The choice of
framework ultimately depends on the specific
requirements of the project, the development team's
skills, and the desired balance between development
speed and native performance.

CONCLUSION:

Summary of Key Findings:

In this research paper, we explored Kivy, an open-
source Python framework for building Android apps.
We discussed its background, architecture, and design
principles. Kivy's strengths lie in its ability to create
visually appealing and interactive user interfaces, its
cross-platform compatibility, and its extensive
community support. The framework provides a wide
range of features for UI design, user input handling,
multimedia integration, and networking. We also
compared Kivy with other popular frameworks,
highlighting its advantages and weaknesses.

Future Directions and Potential Enhancements:

As Kivy continues to evolve, there are several
potential directions for future enhancements:
� Performance Optimization: Further

improvements in Kivy's performance can make it
even more competitive with native app
development. Optimizations in rendering,
animations, and transitions can help provide
smoother user experiences.

� Enhanced Native Integration: Strengthening the
integration with native Android APIs and features
can expand the capabilities of Kivy apps. This
could involve providing easier access to platform-
specific functionalities or simplifying the process
of integrating with native libraries.

� Tooling and Development Workflow:
Improvements in development tools, debugging
capabilities, and IDE integrations can enhance the

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD59687 | Volume – 7 | Issue – 4 | Jul-Aug 2023 Page 509

development workflow and make it more efficient
for developers working with Kivy.

� Community Expansion: Continued growth and
engagement within the Kivy community can
foster the creation of more resources, tutorials,
and examples, further supporting developers and
encouraging the adoption of Kivy.

Encouragement for Further Exploration and

Experimentation:
Kivy offers a unique approach to Android app
development with its Python-based framework. It
provides developers with a flexible and powerful
toolset to create visually stunning and cross-platform
applications. We encourage developers to further
explore and experiment with Kivy, leveraging its
features and community support to build innovative
and engaging Android apps.

By diving into the extensive documentation,
exploring code examples, and actively participating in
the Kivy community, developers can gain a deeper
understanding of the framework and unlock its full
potential. Additionally, developers can contribute to
the framework by reporting bugs, contributing code,
or sharing their experiences, thereby contributing to
the growth and improvement of Kivy.

In conclusion, Kivy opens up exciting possibilities for
Android app development using Python. It empowers
developers to create beautiful and interactive user
interfaces while maintaining cross-platform
compatibility. By embracing Kivy and embracing its
vibrant community, developers can embark on a

rewarding journey of building engaging Android apps
with Python.

REFERENCES:

[1] Hansen, T., Hourcade, JP., Virbel, M., Patali,
S., Serra, Tiago., PyMT: a post-WIMP multi-
touch user interface toolkit. ACM International
Conference on Interactive Tabletops and
Surfaces, Banf, Canada, 2009.

[2] Kaltenbrunner, M., Bovermann, T., Bencina,
R., Constanza, E. TUIO – A Protocol for Table
Based Tangible User Interfaces. Proc. 6th
International Workshop on Gesture in Human-
Computer Interaction and Simulation, Vannes,
France.

[3] Lobunets, O., Prinz, W. Exploring cross-
surface applications development using up-to-
date Web technologies. Submitted to
Interactive Table tops and Surfaces 2011,
Kobe, Japan, 2011.

[4] Rigo, A., Pedroni, S. PyPy's approach to virtual
machine construction. Companion to the 21st
ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and
applications, Portland, Oregon, USA, 2006.

[5] Tissoires, B., Conversy, S., Graphic Rendering
Considered as a Compilation Chain, ENAC,
Toulouse, France, 2008.

[6] Tissoires, B., Conversy, S., Hayaku: Desigining
and Optimizing Finely Tuned and Portable
Interactive Graphics with a Graphical
Compiler.

