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ABSTRACT

In this paper, we determine the coreflective hull of the
fuzzy topological space Ip, where Ip = ([0,1], dp) and
op =< {id, 1 — id} > in the category of constant-
generated fuzzy topological spaces.
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1. INTRODUCTION

It is well-known that the category of zero-dimensional
To-topological spaces is the epireflective hull of 2p in
TOP, where 2p denotes the two-point discrete space
and the category of discrete spaces is the coreflective
hull of 2p in TOP (cf. [7]). It is also known that the
category of zero-dimensional Ty-fuzzy topogical spaces
is the epireflective hull of the fuzzy topological space
Ip, where Ip = (I, dp) and dp =< {id, 1 — id} > in FTS
(cf. [2])). We cannot expect that the coreflective hull of
C-Ip in C-FTS would be the category of discrete fuzzy
topological spaces as C-Ip is not a discrete fuzzy
topological space and also in [12], it is shown that the
coreflective hull of Lp = (L, dp) and dp =< {id, 1 —1d}
> in L-TOP, where L is any complete lattice, is not an
L-valued discrete topological space. In this paper, we
describe the coreflective hull of the space C-Ip and
show that the objects of the coreflective hull of C-Ip are
quite close to being discrete fuzzy topological spaces.

2. Preliminaries

For fuzzy topological concepts, we refer [3] but recall a
few here, for convenience. Throughout, let I denote the
interval [0, 1].

Let X be a non-empty set. A fuzzy set in X is a function
from X to [=[0,1]. If t € I, then t denotes the constant

fuzzy set in X, which takes value t everywhere. In
particular, 0 and 1 denote the constant fuzzy sets taking
values 0 and 1 respectively.

The complement of p is the fuzzy set 1 — p, defined as
(1-pE)=1-pux),vxeX.

Definition (Chang [3]): A collection o of fuzzy sets in
X with 0 and 1, which is closed under finite meets and
arbitrary joins is called a fuzzy topology on X and the
pair (X,) a fuzzy topological space.

Definition (Lowen [8]): Let X be a non-empty set. A
subset & of IX which is closed under arbitrary joins and
finite meets and which contains all constant fuzzy sets,
is called a fuzzy topology on X.

The members of 6 are called open (or 6 -open) fuzzy
sets in X and their complements are called closed fuzzy
sets in X. The smallest (resp. the largest) fuzzy
topology on X is called the indiscrete (resp. discrete)
fuzzy topology on X.

Definition: A mapping f : (X, 8) =(X, &) between
fuzzy topological spaces is called fuzzy continuous if

f(n) €58, Yued' (where £ (p) = pof).

Let (X, 9) be a fuzzy topological space, Y a set and f:
X — Y a surjective mapping. Then

S/f={ael:f ()€ }.

is clearly a fuzzy topology on Y, called the quotient
fuzzy topology on Y with respect to f, while (Y, &/f) is
then called the quotient space of (X, d) with respect to
f. The resulting continuous mapping f:(X, 6)— (Y, o /)
is called a quotient space.

Definition: A fuzzy topological space (X, 0) is said to
be zero-dimensional if it has a basis of d-clopen fuzzy
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sets (by clopen fuzzy set in (X, §), we mean a fuzzy set,
which is both 3-open and 6-closed).

Definition([9]): A fuzzy topological space (X, d) is said
to be Ty if for all distinct x, y € X, Ipu € J such that
u(x) #u(y).

Definition: The fuzzy topology on I, generated by
{id,1-id}, where id is the identity function, both in the
sense of Chang and in the sense of Lowen, will be
denoted by dp and C- Op respectively. The resulting
fuzzy topological spaces will be denoted respectively
by Ip =(I, ds) and C- Ip =(I, C-ds) respectively (hence it
is clear that C-Is is generated by { (t Aid) Vr, (p A id)
Vgt rp,q€ Il}). Clearly, Ip and C- I are zero-
dimensional fuzzy topological spaces.

All category-theoretic notions and results used here, but
not defined or explained, are fairly standard by now
(and can be found in [1]). However, f o r convenience,
we recall some of the categorical notions used in the
sequel (subcategories are always assumed to be full and
isomorphism-closed).

FTS shall denote the category of fuzzy topological
spaces in Chang’s sense and continuous functions. C-
FTS will denote the category of fuzzy topological
spaces in Lowen’s sense and continuous functions and
C-FTSy denotes the full subcategory of C-FTS
containing all To-fuzzy topological spaces. Of course,
TOP is just the category of usual topological spaces
and continuous maps.

Definition: A morphism f: X — Y in a category C is
called constant if for each C-object Z and each pair of
C-morphisms g, h: Z — X, fo g# f° h.

It is known that the constant morphisms in TOP are
precisely the constant maps (cf. [6]). We note that in C-
FTS, like TOP, there is exactly one fuzzy topology on
a single-point set. As a consequence of this, in C- FTS
also, the constant maps are continuous. But, in contrast
to TOP and C-FTS, in FTS, there can be many fuzzy
topologies on a single-point set and hence constant
maps need not be continuous in FTS.

Definition: A4 category C is said to be constant-
generated if for each pair (X, Y) of C-objects: (i) C(X,
Y) #@ and (ii) for every distinct pair f, g : X — Y of C-
morphisms, there exists a C-object Z and a constant C-
morphism k : Z — X such that g ° k=# f° k.

TOP is well-known to be constant-generated (cf. [6]).
Like TOP, C- FTS is also constant-generated; the main
reason being the continuity of constant maps in both the
categories. We observe that for some pair (X, ¥) of
FTS-objects, we may have FTS(X, Y) =@; in particular,

if (X, 0) is an indiscrete fuzzy space and (Y, A) is a
discrete fuzzy space in FTS, then there does not exist
any continuous map from X to Y . So, FTS is not
constant- generated.

Definition: A subcategory U of a category C is said to
be coreflective in C if for each object X in C, 3 an
object Xy in U and an X-morphism ¢y : Xy — X such
that for each object A in U and each X-morphism f":
A — X, 37 a unique A- morphism [ : A — Xy such

that f"=cy °f'.

The notions of reflective and coreflective subcategories
have been studied by Herrlich and Strecker (([4], [5]
and [6]).

We begin with a preliminary examination of the
coreflective subcategories of C-FTS. We find that the
characterization of coreflective subcategories of C-FTS
is similar to that of the coreflective subcategories of
TOP ([6]).

We now state the following results from [13] which
will be used in the sequel.

Theorem:

1. A subcategory U of C-FTS is coreflective if and
only it is closed under the formation of coproducts
and quotients.

2. In C-FTS, the coreflective hull of any A€ obC-
FTS always exists.

Moreover, its objects are precisely the quotients of the
coproducts of copies of A.

We proceed to give an internal description of the
coproducts in C-FTS of copies of any fuzzy topological
space, which we shall then use for our main results. Let
(X, 0) € obC-FTS and J be some index set. Put X; = X
% {j}, j €J, and denote Uj€JXj by X;. For each pn € 9,
define p;: Xj — I'as pj(x, J) = p(x) and put &; = {p; | p €
d},J € J}. Then §; is a fuzzy topology on Xj (and ( X],
§;) is homeomorphic to (X, §)). Let 8" = {ve 1% IV|xj €
9, Vj € J}. It can be verified that (X, d) is the
coproduct of |J| copies of (X, 6) in C-FTS.

Let [X]c.rrs denote the coreflective hull in C-FTS of a
C-FTS-object X.

Proposition 2.1([13]). Let X = (X, d) be a C-FTS-
object. Then Y = (Y, A) is an object of [X]c.prs iff 3 a
family {(Y;j, Aj) | ] € J} of fuzzy subspaces of Y such
that Y = ;UeY;, each Y; is a quotient of (X, d), j € J,
and for each u € 1", u is open in Y iff each ply is open
inY;j€l.
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3. The coreflective hull of C-Ip in C-FTS

As C-Ip is not a discrete fuzzy space, one cannot expect
that the coreflective hull of C-Ip in C-FTS would be
the category of discrete fuzzy spaces. Now, we describe
the coreflective hull of the space C-Ip and show that the
objects of the coreflective hull of C-Ip, are quite close to
being discrete fuzzy spaces.

In view of Proposition 2.1, it is clear that we can
determine [C-Ip]c.rrs, if we can find all the quotients of
C-Ip. This is done through the following result.

Proposition 3.1. A fuzzy topological space (X, ) is a
quotient of C-Ip iff

IX| <|I] and 6 =< a, 1 — a >, where for some partition
{X1, Xo, X5} of X,

alx, : X1 — [s, t] is bijective, o], = s and o]y, = 1.

Proof: Let (X, ) be a quotient of C-Ip. Then there
exists some quotient map q : (I,C-dp) — (X, d) in C-
FTS. As q is surjective, [X| <|IJ.

We observe that each subbasic open fuzzy set in I is
closed and so each open fuzzy set in I is closed also. If
n €9, thenq™ (u) € C-dp and so 1 — (p ° q) € C-6p. But
l—(ueq=(—-p)eqandsoq(l1—-p € C-dp,
whereby (1 — p) € o. Thus each p € 6 is closed also.
Let u € 8. We note that:

1. Ifq (W)=t thenp=tteL

2. Ifq"(n) =1id, then q is a bijection (as |X| <|I|) and p
= q_l.
3. If " (u) =1 —id, then q is a bijection and p = 1 —
-1

4, Ifq~(n)=(tAid) Vs, for somes, t € (0, 1), then p
° qfs,q = 1d|fs,5, Whereby q|fs,q 1s injective and pq(s)
is injective such that p(q([s, t])) = [s, t] and plgqo,s))
=8, lgeip = t.

Consider the case when q is bijective. Then q ' € § (as
q is a quotient map and id € C-8p). Put a =q . Then o
is bijective. By the above argument, ] — o € 3. We
show that 6 =< {a, 1 — a} >. As for every subbasic
open fuzzy set p in C-Ip, 3 some v €< {a, | — a} >
such that q“(v) = p and as q“ is arbitrary join- and
arbitrary meet- preserving, for each u €C-6p, Iv €< {a,
1 — a} > such that " (v) = n. Hence 6 =< {a, 1 —a} >,
where a is a bijection on X.

Consider now the case when q is not bijective. Then q
cannot be injective.

We have the following cases:

(A) For some pair s, t € (0, 1), qls,q 1s injective (then
qlpi-s,1—q 18 also injective, as q is a quotient map and
every open fuzzy set in C-Ip is closed also).

In this case, by (iv), 3p € d such that p e q=(t Aid) V
s, implying that p ° qlq = id|isg and so plygsg) is
injective, u(q([s, t) = [s, tl, mlggosy = 85 Mo = &
whereby 3 a partition {X;, X, X3} of X such that p|x; :
X; — [s, t] is a bijection, plxo=s and plx3=t. As 1 —
oq=1—-(@Aid) Vs, ie, (1 —p)°q=(1 —tv (1 —id)) v
(1 —s) € C-0p, 1 —n € 6. We show that & =<p, 1 —pu >.
Let B € 6. Then Beq = ((vAid) Vu) A ((1 —v) vV (1 —id)) A
(1 —u). Now we consider the following cases:

If s < 1/2 < t, then Blyqui2p : q([u, 1/2]) — [u, 1/2] is a
bijection for u >s, Blyqowy =u and Bl =1-v, vt
Blariz,i—v = q[1/2, 1 = v] — [1 — v, 1/2], whereby B €<
p, 1 —p>.

If t < 1/2, then Blyquyy : 9([u, v] — [u, v], Bljo,ny = u and
Blacv.1p = ¥, whereby €< p, 1 —p>.

If 1/2 <, then B|q([17u,17\,]): q([1 —u, 1 — vl = [1-v,1
— ul, Blos-w = 1 = u and Blgqr-vay = I — v, whereby p
€<, 1 —p >. Similarly the case can be considered if B
cq=(¥Aid vy Vv((1-yVI-id) A ~u).

Hence 6 =< {u, 1 — p} >, where for some partition {X;,
X3, X3} of X and for some pair s, t € (0, 1), p|x; : X; —
[s, t] is a bijection, p|x, =s and p|x3 =t.

(B) For any pair s, t € I, g5, 1s not injective.

In this case, Z € 6 such that Beq = ((tAid) Vs) A ((1-t)
V (1-1d))A (1-t), unless s =t. Hence, 6 = {t | t € I}.

So if (X, 0) is a quotient of C-Ip, then dis <a, 1 —a >,
where for some partition {X;, X5, X3} of X, alx;: X; —
[s, t] is bijective, a|x, =s and alx3 =t.

Conversely, let (X, 8) € obC-FTS such that |X| <|I| and
0 =<0, 1 —a >, where for some partition {X;, X5, X3}
of X, a|x,: X1 — [s, t] is bijective, a|x, =s and a|y, =t.
Then clearly for some partition {X4, Xs, X¢} of X, (1 —
o) |x, : Xq4 = [1 —t, 1 —s]is bijective, (1 —a) [y, =1t
and (1 —a) |y, =1-s.

Let q : (I,C-6p) — (X, 8) be a map such that q|q and
qlpi-11-s) are injective, q([s, t]) = X; and q([0, s)) = X»,
q((t, 1]) = X5 and q([1-s, 1-t]) = X4, q((1-t, 1]) = X,
q([0, 1-s)) = X¢. As q° is arbitrary join- and arbitrary
meet- preserving, it is sufficient to show that for any
subbasic open fuzzy set u in X, g~ (n) € C-6p. Then for
p=0,q (Wlsy = idlsg and 97 (Wos =5, " (Wl =t
andsoq (W =(@Aid)Vs.Forp=t,telLqg (n)=tt
€ L. For p = 1 — o, q(_(u)‘[l—s,l—t] =1- id|[1_5,1_t] and
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9 Wl =1-5 9" (Wloas=1—sand so q"(n) =
(I=s)A(1—id) V(1 —t).Forp=tte€l q (pn)=tt
€ I. Hence q (p) € C-3p for each u € 3.

Next, let ¢~ (1) € C-8p, for some p € I*. We wish to
show that u € . As q" (1) € C-6p, u° q=((v Aid) V u)
A((1—v)Vv (1 —1id)) A (1 —u). Now we consider the
following cases:

If s <1/2 < t, then plgqu2p : q([u, 1/2]) — [u, 1/2] is a
bijection for u >'s, plgouw) =u and plg-vi=1-v, v=t
Wiz 2 q[1/2, 1 = v] — [1 — v, 1/2], whereby p € 6.

If t <1/2, then plgquyy : q([u, v] — [u, v], pljo,n) =u and
K1) = ¥, whereby p € 8.

If 1/2 <s, then plqqi—u,1—y : q([1—u, 1=v] — [1=v, 1—u],
“l[O,l—u) = l—g and M’q((l—v,l]) =1- V, whereby n E d.
Similarly the case can be considered if p ° q = ((v A id)
vy V(@ -y vd-id) Al -w).

We have thus shown that p € 6 & g~ (n) € C-3p, which
in turn shows that (X, ) is a quotient of (I, C-0p).

We now characterize [ C-Ip]c.rrs, the coreflective hull
in C-FTS of C-Ip.

Theorem 3.1. A fuzzy topological space (X, 9) is an
object of [C‘ID]C-FTS

If and only if it satisfies the following two conditions:

A. X=Uje; X; for some index set J such that for each |
€ J, |Xj| < |I| and the subspace fuzzy topology 6; on
Xj1s 8 =<a, 1 — o>, where for some partition {Xj,
X2, X3} of X, ax,: X1 — [s, t] is bijective, a|x, = s
and aly, =t.

B. foreach p € I¥, u € 8 iff plx € 9;, for each j € J.

Proof: The proof directly follows from Propositions 2.1
and 3.1.

Remark 3.1. In view of the proof of Proposition 3.1
and Theorem 3.1, if (X, 6) € ob[C-Ip]c-Frs, then every
open fuzzy set in X is closed also.

Theorem 3.2. A topological space (X, T) is an object
of the coreflective hull of 2p in TOP if and only if it
can be written as the disjoint union of single-point
spaces, i.¢., iff it is a discrete space.

Proof: If we replace [ by 2 = {0, 1}, then Theorem 3.1
takes the following form.

A topological space (X, T) € ob[2p]rop if and only if
(X, T) satisfies the following properties:

1. X'=Uj¢; X;, for some index set J such that for each |
€ J, [Xj| <2 and the subspace (X, T;) is either a
single-point space or a discrete space,

2. foreachUE€ X,U€ Tifand onlyif U N X; € T,
for each j € J.

Since any discrete space can be uniquely written as a
coproduct of its single- point subspaces, (X, T) €
ob[2p]rop iff it can be written as the disjoint union of
single-point spaces, i.e., if and only if it is a discrete
space.
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