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ABSTRACT 

In this paper, we determine the coreflective hull of the 
fuzzy topological space ID, where ID = ([0,1], δ
δD =< {id, 1 − id} > in the category of constant
generated fuzzy topological spaces. 
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1. INTRODUCTION 

It is well-known that the category of zero
T0-topological spaces is the epireflective hull of 2
TOP, where 2D denotes the two-point discrete space 
and the category of discrete spaces is the coreflective 
hull of 2D in TOP (cf. [7]). It is also known that the 
category of zero-dimensional T0-fuzzy topogical spaces 
is the epireflective hull of the fuzzy topological 
ID, where ID = (I, δD) and δD =< {id, 1 
(cf. [2])). We cannot expect that the coreflective hull of 
C-ID in C-FTS would be the category of discrete fuzzy 
topological spaces as C-ID is not a discrete fuzzy 
topological space and also in [12], it is shown that the 
coreflective hull of LD = (L, δD) and δD

> in L-TOP, where L is any complete lattice, is not an 
L-valued discrete topological space. In this paper, we 
describe the coreflective hull of the space C
show that the objects of the coreflective hull of C
quite close to being discrete fuzzy topological

2. Preliminaries 

For fuzzy topological concepts, we refer [3] but recall a 
few here, for convenience. Throughout, let I denote the 
interval [0, 1]. 

Let X be a non-empty set. A fuzzy set in X is a function 
from X to I=[0,1]. If t ∈ I, then t denotes the constant 
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= ([0,1], δD) and 

− id} > in the category of constant-

subcategory; Coreflective hull, 
generated fuzzy topological spaces, zero-

known that the category of zero-dimensional 
topological spaces is the epireflective hull of 2D in 

point discrete space 
and the category of discrete spaces is the coreflective 

(cf. [7]). It is also known that the 
fuzzy topogical spaces 

is the epireflective hull of the fuzzy topological space 
=< {id, 1 − id} > in FTS 

(cf. [2])). We cannot expect that the coreflective hull of 
would be the category of discrete fuzzy 

is not a discrete fuzzy 
topological space and also in [12], it is shown that the 

D =< {id, 1 − id} 
any complete lattice, is not an 

valued discrete topological space. In this paper, we 
e the coreflective hull of the space C-ID and 

show that the objects of the coreflective hull of C-ID are 
topological spaces. 

For fuzzy topological concepts, we refer [3] but recall a 
ce. Throughout, let I denote the 

empty set. A fuzzy set in X is a function 
denotes the constant 

fuzzy set in X, which takes value
particular, 0 and 1 denote the constant f
values 0 and 1 respectively.

 The complement of µ is the fuzzy set 1 
(1 − µ)(x) = 1 − µ(x), ∀x 

Definition (Chang [3]): A collection δ of fuzzy sets in 
X with 0 and 1, which is closed under
arbitrary joins is called a 
pair (X,) a fuzzy topological space

Definition (Lowen [8]): Let X be a non
subset δ of IX which is closed under arbitrary joins and 
finite meets and which contains all constant fuzzy
is called a fuzzy topology on X.

 The members of δ are called open (or δ 
sets in X and their complements are called closed fuzzy 
sets in X. The smallest (resp. the largest) fuzzy 
topology on X is called the indiscrete (resp. discrete) 
fuzzy topology on X.  

Definition: A mapping f : (X, δ)
fuzzy topological spaces is called 

f ←(µ) ∈δ, ∀μ∈δ' (where f 

 Let (X, δ) be a fuzzy topological space, Y a set and
X → Y a surjective mapping. Then

𝛿 /f = {α ∈ IY: f ←(α) ∈ δ }.

is clearly a fuzzy topology on Y, called the 
fuzzy topology on Y with respect to f, while (Y, δ/f) is 
then called the quotient space of (X, δ) with respect to 
f. The resulting continuous mapping f:(X, δ)
is called a quotient space

Definition: A fuzzy topological space (X, δ) is said to 
be zero-dimensional if it has a basis of δ
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fuzzy set in X, which takes value t everywhere. In 
denote the constant fuzzy sets taking 

values 0 and 1 respectively. 

The complement of µ is the fuzzy set 1 − µ, defined as 
x ∈ X.  

(Chang [3]): A collection δ of fuzzy sets in 
, which is closed under finite meets and 

arbitrary joins is called a fuzzy topology on X and the 
fuzzy topological space. 

(Lowen [8]): Let X be a non-empty set. A 
closed under arbitrary joins and 

finite meets and which contains all constant fuzzy sets, 
is called a fuzzy topology on X. 

The members of δ are called open (or δ -open) fuzzy 
sets in X and their complements are called closed fuzzy 
sets in X. The smallest (resp. the largest) fuzzy 

is called the indiscrete (resp. discrete) 

: A mapping f : (X, δ) →(X′, δ′) between 
fuzzy topological spaces is called fuzzy continuous if  

(where f ←(µ) = µ∘f). 

Let (X, δ) be a fuzzy topological space, Y a set and f: 
→ Y a surjective mapping. Then 

δ }. 

is clearly a fuzzy topology on Y, called the quotient 
on Y with respect to f, while (Y, δ/f) is 

then called the quotient space of (X, δ) with respect to 
f. The resulting continuous mapping f:(X, δ)→ (Y, δ /f) 

quotient space. 

A fuzzy topological space (X, δ) is said to 
if it has a basis of δ-clopen fuzzy 
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sets (by clopen fuzzy set in (X, δ), we mean a fuzzy set, 
which is both δ-open and δ-closed). 

Definition([9]): A fuzzy topological space (X, δ) is said 
to be T0 if for all distinct x, y ∈ X, ∃µ ∈ δ such that 
µ(x) ≠µ(y). 

Definition: The fuzzy topology on I, generated by 
{id,1-id}, where id is the identity function, both in the 
sense of Chang and in the sense of Lowen, will be 
denoted by δD and C- δD respectively. The resulting 
fuzzy topological spaces will be denoted respectively 
by ID =(I, δS) and C- ID =(I, C-δS) respectively (hence it 
is clear that C-IS is generated by { (t ∧ id) ∨ r , (p ∧ id) 
∨ q: t, r, p, q ∈ I}). Clearly, ID and C- ID are zero-
dimensional fuzzy topological spaces. 

All category-theoretic notions and results used here, but 
not defined or explained, are fairly standard by now 
(and can be found in [1]). However, f o r convenience, 
we recall some of the categorical notions used in the 
sequel (subcategories are always assumed to be full and 
isomorphism-closed). 

FTS shall denote the category of fuzzy topological 
spaces in Chang’s sense and continuous functions. C-
FTS will denote the category of fuzzy topological 
spaces in Lowen’s sense and continuous functions and 
C-FTS0 denotes the full subcategory of C-FTS 
containing all T0-fuzzy topological spaces. Of course, 
TOP is just the category of usual topological spaces 
and continuous maps. 

Definition: A morphism f : X → Y in a category C is 
called constant if for each C-object Z and each pair of 
C-morphisms g, h : Z → X, f ◦ g≠ f ◦ h. 

It is known that the constant morphisms in TOP are 
precisely the constant maps (cf. [6]). We note that in C-
FTS, like TOP, there is exactly one fuzzy topology on 
a single-point set. As a consequence of this, in C- FTS 
also, the constant maps are continuous. But, in contrast 
to TOP and C-FTS, in FTS, there can be many fuzzy 
topologies on a single-point set and hence constant 
maps need not be continuous in FTS. 

Definition: A category C is said to be constant-
generated if for each pair (X, Y) of C-objects: (i) C(X, 
Y) ≠∅ and (ii) for every distinct pair f, g : X → Y of C-
morphisms, there exists a C-object Z and a constant C-
morphism k : Z → X such that g ◦ k≠ f ◦ k. 

TOP is well-known to be constant-generated (cf. [6]). 
Like TOP, C- FTS is also constant-generated; the main 
reason being the continuity of constant maps in both the 
categories. We observe that for some pair (X, Y) of 
FTS-objects, we may have FTS(X, Y) =∅; in particular, 

if (X, δ) is an indiscrete fuzzy space and (Y, ∆) is a 
discrete fuzzy space in FTS, then there does not exist 
any continuous map from X to Y . So, FTS is not 
constant- generated. 

Definition: A subcategory U of a category C is said to 
be coreflective in C if for each object X in C, ∃ an 
object XU in U and an X-morphism 𝑐௑ : XU → X such 
that for each object A in U and each X-morphism f  : 
A → X, ∃ a unique A- morphism f’ : A → XU such 
that f  =𝑐௑ ◦𝑓′. 

The notions of reflective and coreflective subcategories 
have been studied by Herrlich and Strecker (([4], [5] 
and [6]).  

We begin with a preliminary examination of the 
coreflective subcategories of C-FTS. We find that the 
characterization of coreflective subcategories of C-FTS 
is similar to that of the coreflective subcategories of 
TOP ([6]). 

We now state the following results from [13] which 
will be used in the sequel. 

 Theorem: 

1. A subcategory U of C-FTS is coreflective if and 
only it is closed under the formation of coproducts 
and quotients. 

2.  In C-FTS, the coreflective hull of any A∈ obC-
FTS always exists. 

Moreover, its objects are precisely the quotients of the 
coproducts of copies of A.  

We proceed to give an internal description of the 
coproducts in C-FTS of copies of any fuzzy topological 
space, which we shall then use for our main results. Let 
(X, δ) ∈ obC-FTS and J be some index set. Put Xj = X 
× {j}, j ∈J, and denote ⋃j∈JXj by Xj. For each µ ∈ δ, 
define µj: Xj → I as µj(x, j) = µ(x) and put δj = {µj | µ ∈ 
δ}, j ∈ J}. Then δj is a fuzzy topology on Xj (and ( Xj, 
δj) is homeomorphic to (X, δ)). Let δ+ = {ν∈ Iଡ଼ౠ  |ν|Xj ∈ 
δj, ∀j ∈ J}. It can be verified that (Xj, δ) is the 
coproduct of |J| copies of (X, δ) in C-FTS. 

Let [X]C-FTS denote the coreflective hull in C-FTS of a 
C-FTS-object X. 

Proposition 2.1([13]). Let X = (X, δ) be a C-FTS-
object. Then Y = (Y, ∆) is an object of [X]C-FTS iff ∃ a 
family {(Yj, ∆j) | j ∈ J} of fuzzy subspaces of Y such 
that Y = j∪∈JYj, each Yj is a quotient of (X, δ), j ∈ J, 
and for each µ ∈ IY, µ is open in Y iff each µ|Y is open 
in Yj, j ∈ J. 
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3. The coreflective hull of C-ID in C-FTS 

As C-ID is not a discrete fuzzy space, one cannot expect 
that the coreflective hull of C-ID in C-FTS would be 
the category of discrete fuzzy spaces. Now, we describe 
the coreflective hull of the space C-ID and show that the 
objects of the coreflective hull of C-ID are quite close to 
being discrete fuzzy spaces. 

In view of Proposition 2.1, it is clear that we can 
determine [C-ID]C-FTS, if we can find all the quotients of 
C-ID. This is done through the following result. 

Proposition 3.1. A fuzzy topological space (X, δ) is a 
quotient of C-ID iff 

|X| ≤ |I| and δ =< α, 1 − α >, where for some partition 
{X1, X2, X3} of X, 

α|௑భ  : X1 → [s, t] is bijective, α|௑మ  = s and α|௑య  = t. 

Proof: Let (X, δ) be a quotient of C-ID. Then there 
exists some quotient map q : (I,C-δD) → (X, δ) in C-
FTS. As q is surjective, |X| ≤ |I|. 

We observe that each subbasic open fuzzy set in I is 
closed and so each open fuzzy set in I is closed also. If 
µ ∈ δ, then q←(µ) ∈ C-δD and so 1 − (µ ◦ q) ∈ C-δD. But 
1 − (µ ◦ q) = (1 − µ) ◦ q and so q←(1 − µ) ∈ C-δD, 
whereby (1 − µ) ∈ δ. Thus each µ ∈ δ is closed also. 
Let µ ∈ δ. We note that: 

1. If q←(µ) = t, then µ = t, t ∈ I. 

2. If q←(µ) = id, then q is a bijection (as |X| ≤ |I|) and µ 
= q−1. 

3. If q←(µ) = 1 − id, then q is a bijection and µ = 1 − 
q−1. 

4. If q←(µ) = (t ∧ id) ∨ s, for some s, t ∈ (0, 1), then µ 
◦ q|[s,t] = id|[s,t], whereby q|[s,t] is injective and µ|q([s,t]) 
is injective such that µ(q([s, t])) = [s, t] and µ|q([0,s)) 
= s, µ|q((t,1]) = t. 

Consider the case when q is bijective. Then q−1 ∈ δ (as 
q is a quotient map and id ∈ C-δD). Put α = q−1. Then α 
is bijective. By the above argument, 1 − α ∈ δ. We 
show that δ =< {α, 1 − α} >. As for every subbasic 
open fuzzy set µ in C-ID, ∃ some ν ∈< {α, 1 − α} > 
such that q←(ν) = µ and as q← is arbitrary join- and 
arbitrary meet- preserving, for each µ ∈C-δD, ∃ν ∈< {α, 
1 − α} > such that q←(ν) = µ. Hence δ =< {α, 1 − α} >, 
where α is a bijection on X. 

Consider now the case when q is not bijective. Then q 
cannot be injective. 

We have the following cases: 

(A) For some pair s, t ∈ (0, 1), q|[s,t] is injective (then 
q|[1−s,1−t] is also injective, as q is a quotient map and 
every open fuzzy set in C-ID is closed also). 

In this case, by (iv), ∃µ ∈ δ such that µ ◦ q = (t ∧ id) ∨ 
s, implying that µ ◦ q|[s,t] = id|[s,t] and so µ|q([s,t]) is 
injective, µ(q([s, t])) = [s, t], µ|q([0,s)) = s, µ|q((t,1]) = t, 
whereby ∃ a partition {X1, X2, X3} of X such that µ|X1 : 
X1 → [s, t] is a bijection, µ|X2 = s and µ|X3 = t. As 1 − µ 
◦ q = 1 − (t∧ id) ∨ s, i.e., (1 −µ) ◦q = (1 −t∨ (1 −id)) ∨ 
(1 −s) ∈ C-δD, 1 −µ ∈ δ. We show that δ =< µ, 1 −µ >. 
Let β ∈ δ. Then β◦q = ((v∧id) ∨u) ∧ ((1 −v) ∨ (1 −id)) ∧ 
(1 −u). Now we consider the following cases: 

If s < 1/2 ≤ t, then β|q([u,1/2]) : q([u, 1/2]) → [u, 1/2] is a 
bijection for u ≥ s, β|q([0,u)) = u and β|(1−v,1] = 1 − v, v ≤ t 
β|q[1/2,1−v] : q[1/2, 1 − v] → [1 − v, 1/2], whereby β ∈< 
µ, 1 − µ >. 

If t < 1/2, then β|q([u,v]) : q([u, v] → [u, v], β|[0,u) = u and 
β|q((v,1]) = v, whereby β ∈< µ, 1 − µ >. 

If 1/2 < s, then β|q([1−u,1−v]): q([1 − u, 1 − v] → [1 − v, 1 
− u], β|[0,1−u) = 1 − u and β|q((1−v,1]) = 1 − v, whereby β 
∈< µ, 1 − µ >. Similarly the case can be considered if β 
◦ q = ((v ∧ id) ∨ u) ∨ ((1 − v) ∨ (1 − id)) ∧ (1 − u). 

Hence δ =< {µ, 1 − µ} >, where for some partition {X1, 
X2, X3} of X and for some pair s, t ∈ (0, 1), µ|X1 : X1 → 
[s, t] is a bijection, µ|X2 = s and µ|X3 = t. 

 

(B) For any pair s, t ∈ I, q|[s,t] is not injective. 

In this case, ∄ β ∈ δ such that β◦q = ((t∧id) ∨s) ∧ ((1−t) 
∨ (1−id))∧ (1−t), unless s = t. Hence, δ = {t | t ∈ I}. 

So if (X, δ) is a quotient of C-ID, then δ is < α, 1 − α >, 
where for some partition {X1, X2, X3} of X, α|X1 : X1 → 
[s, t] is bijective, α|X2 = s and α|X3 = t. 

Conversely, let (X, δ) ∈ obC-FTS such that |X| ≤ |I| and 
δ =< α, 1 −α >, where for some partition {X1, X2, X3} 
of X, α|௑భ

: X1 → [s, t] is bijective, α|௑మ   = s and α|௑య  = t. 
Then clearly for some partition {X4, X5, X6} of X, (1 − 
α) |௑ర  : X4 → [1 − t, 1 − s] is bijective, (1 − α) |௑ఱ  = 1 − t 
and (1 − α) |௑ల  = 1 − s. 

Let q : (I,C-δD) → (X, δ) be a map such that q|[s,t] and 
q|[1−t,1−s] are injective, q([s, t]) = X1 and q([0, s)) = X2, 
q((t, 1]) = X3 and q([1−s, 1−t]) = X4, q((1−t, 1]) = X5, 
q([0, 1−s)) = X6. As q← is arbitrary join- and arbitrary 
meet- preserving, it is sufficient to show that for any 
subbasic open fuzzy set µ in X, q←(µ) ∈ C-δD. Then for 
µ = α, q←(µ)|[s,t] = id|[s,t] and q←(µ)|[0,s) = s, q←(µ)|(t,1] = t 
and so q←(µ) = (t ∧ id) ∨ s. For µ = t, t ∈ I, q←(µ) = t, t 
∈ I. For µ = 1 − α, q←(µ)|[1−s,1−t] = 1 − id|[1−s,1−t] and 
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q←(µ)|(1−t,1] = 1 − t, q←(µ)|[0,1−s) = 1 − s and so q←(µ) = 
((1 − s) ∧ (1 − id)) ∨ (1 − t). For µ = t, t ∈ I, q←(µ) = t, t 
∈ I. Hence q←(µ) ∈ C-δD for each µ ∈ δ. 

Next, let q←(µ) ∈ C-δD, for some µ ∈ IX. We wish to 
show that µ ∈ δ. As q←(µ) ∈ C-δD, µ ◦ q = ((v ∧ id) ∨ u) 
∧ ((1 − v) ∨ (1 − id)) ∧ (1 − u). Now we consider the 
following cases: 

If s < 1/2 ≤ t, then µ|q([u,1/2]) : q([u, 1/2]) → [u, 1/2] is a 
bijection for u ≥ s, µ|q([0,u)) = u and µ|(1−v,1] = 1 − v, v ≤ t 
µ|q[1/2,1−v] : q[1/2, 1 − v] → [1 − v, 1/2], whereby µ ∈ δ. 

If t < 1/2, then µ|q([u,v]) : q([u, v] → [u, v], µ|[0,u) = u and 
µ|q((v,1]) = v, whereby µ ∈ δ. 

If 1/2 < s, then µ|q([1−u,1−v]) : q([1−u, 1−v] → [1−v, 1−u], 
µ|[0,1−u) = 1−u and µ|q((1−v,1]) = 1 − v, whereby µ ∈ δ. 
Similarly the case can be considered if µ ◦ q = ((v ∧ id) 
∨ u) ∨ ((1 − v) ∨ (1 − id)) ∧ (1 − u). 

We have thus shown that µ ∈ δ ⇔ q←(µ) ∈ C-δD, which 
in turn shows that (X, δ) is a quotient of (I, C-δD). 

We now characterize [ C-ID]C-FTS, the coreflective hull 
in C-FTS of C-ID. 

Theorem 3.1. A fuzzy topological space (X, δ) is an 
object of [C-ID]C-FTS 

If and only if it satisfies the following two conditions: 

A. X = ⋃ 𝑋௝௝∈௃  for some index set J such that for each j 
∈ J, |Xj| ≤ |I| and the subspace fuzzy topology δj on 
Xj is δ =< α, 1 − α >, where for some partition {X1, 
X2, X3} of Xj, α|௑భ

: X1 → [s, t] is bijective, α|௑మ  = s 
and α|௑య  = t. 

B. for each µ ∈ IX, µ ∈ δ iff µ|X ∈ δj, for each j ∈ J. 

Proof: The proof directly follows from Propositions 2.1 
and 3.1. 

Remark 3.1. In view of the proof of Proposition 3.1 
and Theorem 3.1, if (X, δ) ∈ ob[C-ID]C-FTS, then every 
open fuzzy set in X is closed also. 

Theorem 3.2. A topological space (X, T) is an object 
of the coreflective hull of 2D in TOP if and only if it 
can be written as the disjoint union of single-point 
spaces, i.e., iff it is a discrete space. 

Proof: If we replace I by 2 = {0, 1}, then Theorem 3.1 
takes the following form. 

A topological space (X, T) ∈ ob[2D]TOP if and only if 
(X, T) satisfies the following properties: 

1. X =⋃ 𝑋௝௝∈௃ , for some index set J such that for each j 
∈ J, |Xj| ≤ 2 and the subspace (Xj, Tj) is either a 
single-point space or a discrete space, 

2. for each U ⊆ X, U ∈ T if and only if U ∩ Xj ∈ Tj, 
for each j ∈ J. 

Since any discrete space can be uniquely written as a 
coproduct of its single- point subspaces, (X, T) ∈ 
ob[2D]TOP iff it can be written as the disjoint union of 
single-point spaces, i.e., if and only if it is a discrete 
space. 
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