

# On a Coreflective Hull of a Zero-Dimensional Fuzzy Space in C-FTS

Veena Singh

Department of Mathematics, M.L.K. (P.G.) College, Balrampur, Uttar Pradesh, India

## ABSTRACT

In this paper, we determine the coreflective hull of the fuzzy topological space  $I_D$ , where  $I_D = ([0,1], \delta_D)$  and  $\delta_D = \langle \{id, 1 - id\} \rangle$  in the category of constant-generated fuzzy topological spaces.

**Keyword:** Coreflective subcategory; Coreflective hull, Constant-generated fuzzy topological spaces, zerodimensional fuzzy topological space

# 1. INTRODUCTION

It is well-known that the category of zero-dimensional  $T_0$ -topological spaces is the epireflective hull of  $2_D$  in **TOP**, where  $2_D$  denotes the two-point discrete space and the category of discrete spaces is the coreflective hull of  $2_D$  in **TOP** (cf. [7]). It is also known that the category of zero-dimensional T<sub>0</sub>-fuzzy topogical spaces is the epireflective hull of the fuzzy topological space  $I_D$ , where  $I_D = (I, \delta_D)$  and  $\delta_D = \langle id, 1 - id \rangle \rangle$  in **FTS** (cf. [2])). We cannot expect that the coreflective hull of C-I<sub>D</sub> in C-FTS would be the category of discrete fuzzy topological spaces as C-I<sub>D</sub> is not a discrete fuzzy topological space and also in [12], it is shown that the coreflective hull of  $L_D = (L, \delta_D)$  and  $\delta_D = \langle id, 1 - id \rangle$ > in **L-TOP**, where L is any complete lattice, is not an L-valued discrete topological space. In this paper, we describe the coreflective hull of the space C-I<sub>D</sub> and show that the objects of the coreflective hull of C-I<sub>D</sub> are quite close to being discrete fuzzy topological spaces.

#### 2. Preliminaries

For fuzzy topological concepts, we refer [3] but recall a few here, for convenience. Throughout, let I denote the interval [0, 1].

Let X be a non-empty set. A fuzzy set in X is a function from X to I=[0,1]. If  $t \in I$ , then <u>t</u> denotes the constant

fuzzy set in X, which takes value t everywhere. In particular,  $\underline{0}$  and  $\underline{1}$  denote the constant fuzzy sets taking values 0 and 1 respectively.

The complement of  $\mu$  is the fuzzy set  $1 - \mu$ , defined as  $(1 - \mu)(x) = 1 - \mu(x), \forall x \in X.$ 

**Definition** (Chang [3]): A collection  $\delta$  of fuzzy sets in X with  $\underline{0}$  and  $\underline{1}$ , which is closed under finite meets and arbitrary joins is called a **fuzzy topology** on X and the pair (X,) a **fuzzy topological space**.

**Definition** (Lowen [8]): Let X be a non-empty set. A subset  $\delta$  of  $I^X$  which is closed under arbitrary joins and finite meets and which contains all constant fuzzy sets, is called a fuzzy topology on X.

The members of  $\delta$  are called open (or  $\delta$ -open) fuzzy sets in X and their complements are called closed fuzzy sets in X. The smallest (resp. the largest) fuzzy topology on X is called the indiscrete (resp. discrete) fuzzy topology on X.

**Definition**: A mapping  $f : (X, \delta) \rightarrow (X', \delta')$  between fuzzy topological spaces is called **fuzzy continuous** if

 $f \leftarrow (\mu) \in \delta, \forall \mu \in \delta' \text{ (where } f \leftarrow (\mu) = \mu \circ f\text{)}.$ 

Let  $(X, \delta)$  be a fuzzy topological space, Y a set and f:  $X \rightarrow Y$  a surjective mapping. Then

 $\delta / f = \{ \alpha \in I^{Y} : f^{\leftarrow}(\alpha) \in \delta \}.$ 

is clearly a fuzzy topology on Y, called the **quotient fuzzy topology** on Y with respect to f, while  $(Y, \delta/f)$  is then called the quotient space of  $(X, \delta)$  with respect to f. The resulting continuous mapping  $f:(X, \delta) \rightarrow (Y, \delta/f)$ is called a **quotient space**.

**Definition:** A fuzzy topological space  $(X, \delta)$  is said to be **zero-dimensional** if it has a basis of  $\delta$ -clopen fuzzy

sets (by clopen fuzzy set in  $(X, \delta)$ , we mean a fuzzy set, which is both  $\delta$ -open and  $\delta$ -closed).

**Definition**([9]): A fuzzy topological space  $(X, \delta)$  is said to be T<sub>0</sub> if for all distinct x,  $y \in X$ ,  $\exists \mu \in \delta$  such that  $\mu(x) \neq \mu(y)$ .

**Definition:** The fuzzy topology on I, generated by {id,1-id}, where id is the identity function, both in the sense of Chang and in the sense of Lowen, will be denoted by  $\delta_D$  and C-  $\delta_D$  respectively. The resulting fuzzy topological spaces will be denoted respectively by  $I_D = (I, \delta_S)$  and C-  $I_D = (I, C-\delta_S)$  respectively (hence it is clear that C-I<sub>S</sub> is generated by { ( $\underline{t} \land id$ )  $\lor \underline{r}$ , ( $\underline{p} \land id$ )  $\lor \underline{q}$ : t, r, p,  $q \in I$ }). Clearly,  $I_D$  and C-  $I_D$  are zero-dimensional fuzzy topological spaces.

All category-theoretic notions and results used here, but not defined or explained, are fairly standard by now (and can be found in [1]). However, f o r convenience, we recall some of the categorical notions used in the sequel (subcategories are always assumed to be full and isomorphism-closed).

**FTS** shall denote the category of fuzzy topological spaces in Chang's sense and continuous functions. **C-FTS** will denote the category of fuzzy topological spaces in Lowen's sense and continuous functions and **C-FTS**<sub>0</sub> denotes the full subcategory of **C-FTS** containing all T<sub>0</sub>-fuzzy topological spaces. Of course, **TOP** is just the category of usual topological spaces and continuous maps.

**Definition:** A morphism  $f : X \to Y$  in a category **C** is called constant if for each **C**-object Z and each pair of **C**-morphisms  $g, h : Z \to X, f \circ g \neq f \circ h$ .

It is known that the constant morphisms in **TOP** are precisely the constant maps (cf. [6]). We note that in **C-FTS**, like **TOP**, there is exactly one fuzzy topology on a single-point set. As a consequence of this, in **C- FTS** also, the constant maps are continuous. But, in contrast to **TOP** and **C-FTS**, in **FTS**, there can be many fuzzy topologies on a single-point set and hence constant maps need not be continuous in **FTS**.

**Definition:** A category **C** is said to be constantgenerated if for each pair (X, Y) of **C**-objects: (i) **C** $(X, Y) \neq \emptyset$  and (ii) for every distinct pair f,  $g : X \to Y$  of **C**morphisms, there exists a **C**-object Z and a constant **C**morphism  $k : Z \to X$  such that  $g \circ k \neq f \circ k$ .

**TOP** is well-known to be constant-generated (cf. [6]). Like **TOP**, **C- FTS** is also constant-generated; the main reason being the continuity of constant maps in both the categories. We observe that for some pair (X, Y) of **FTS**-objects, we may have **FTS** $(X, Y) = \emptyset$ ; in particular, if  $(X, \delta)$  is an indiscrete fuzzy space and  $(Y, \Delta)$  is a discrete fuzzy space in **FTS**, then there does not exist any continuous map from X to Y. So, **FTS** is not constant-generated.

**Definition:** A subcategory U of a category C is said to be coreflective in C if for each object X in C,  $\exists$  an object X<sub>U</sub> in U and an X-morphism  $c_X : X_U \to X$  such that for each object A in U and each X-morphism f : $A \to X$ ,  $\exists$  a unique A- morphism  $f' : A \to X_U$  such that  $f = c_X \circ f'$ .

The notions of reflective and coreflective subcategories have been studied by Herrlich and Strecker (([4], [5] and [6]).

We begin with a preliminary examination of the coreflective subcategories of C-FTS. We find that the characterization of coreflective subcategories of C-FTS is similar to that of the coreflective subcategories of TOP ([6]).

We now state the following results from [13] which will be used in the sequel.

Theorem:

- 1. A subcategory U of C-FTS is coreflective if and only it is closed under the formation of coproducts and quotients.
- In C-FTS, the coreflective hull of any A∈ obC-FTS always exists.

Moreover, its objects are precisely the quotients of the coproducts of copies of A.

We proceed to give an internal description of the coproducts in **C-FTS** of copies of any fuzzy topological space, which we shall then use for our main results. Let  $(X, \delta) \in ob$ **C-FTS** and J be some index set. Put  $X_j = X \times \{j\}, j \in J$ , and denote  $\bigcup j \in JXj$  by  $X_j$ . For each  $\mu \in \delta$ , define  $\mu_j: X_j \to I$  as  $\mu_j(x, j) = \mu(x)$  and put  $\delta_j = \{\mu_j \mid \mu \in \delta\}, j \in J\}$ . Then  $\delta_j$  is a fuzzy topology on Xj (and (Xj,  $\delta_j$ ) is homeomorphic to  $(X, \delta)$ ). Let  $\delta^+ = \{v \in I^{X_j} \mid v \mid x_j \in \delta_j, \forall j \in J\}$ . It can be verified that  $(X_j, \delta)$  is the coproduct of |J| copies of  $(X, \delta)$  in **C-FTS**.

Let [X]<sub>C-FTS</sub> denote the coreflective hull in C-FTS of a C-FTS-object X.

**Proposition 2.1([13]).** Let  $X = (X, \delta)$  be a C-FTSobject. Then  $Y = (Y, \Delta)$  is an object of  $[X]_{C-FTS}$  iff  $\exists$  a family  $\{(Y_j, \Delta_j) \mid j \in J\}$  of fuzzy subspaces of Y such that  $Y = {}_{j} \cup_{\in J} Y_j$ , each  $Y_j$  is a quotient of  $(X, \delta), j \in J$ , and for each  $\mu \in I^Y$ ,  $\mu$  is open in Y iff each  $\mu|_Y$  is open in  $Y_j, j \in J$ . International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

## 3. The coreflective hull of $C-I_D$ in C-FTS

As C-I<sub>D</sub> is not a discrete fuzzy space, one cannot expect that the coreflective hull of C-I<sub>D</sub> in **C-FTS** would be the category of discrete fuzzy spaces. Now, we describe the coreflective hull of the space C-I<sub>D</sub> and show that the objects of the coreflective hull of C-I<sub>D</sub> are quite close to being discrete fuzzy spaces.

In view of Proposition 2.1, it is clear that we can determine  $[C-I_D]_{C-FTS}$ , if we can find all the quotients of C-I<sub>D</sub>. This is done through the following result.

**Proposition 3.1.** A fuzzy topological space  $(X, \delta)$  is a quotient of C-I<sub>D</sub> iff

 $|X| \le |I|$  and  $\delta = < \alpha, 1 - \alpha >$ , where for some partition  $\{X_1, X_2, X_3\}$  of X,

 $\alpha|_{X_1}$ : X<sub>1</sub>  $\rightarrow$  [s, t] is bijective,  $\alpha|_{X_2} = \underline{s}$  and  $\alpha|_{X_3} = \underline{t}$ .

**Proof:** Let  $(X, \delta)$  be a quotient of C-I<sub>D</sub>. Then there exists some quotient map  $q : (I,C-\delta_D) \to (X, \delta)$  in C-**FTS**. As q is surjective,  $|X| \le |I|$ .

We observe that each subbasic open fuzzy set in I is closed and so each open fuzzy set in I is closed also. If  $\mu \in \delta$ , then  $q^{\leftarrow}(\mu) \in C-\delta_D$  and so  $1 - (\mu \circ q) \in C-\delta_D$ . But  $1 - (\mu \circ q) = (1 - \mu) \circ q$  and so  $q^{\leftarrow}(1 - \mu) \in C-\delta_D$ , whereby  $(1 - \mu) \in \delta$ . Thus each  $\mu \in \delta$  is closed also. Let  $\mu \in \delta$ . We note that:

- 1. If  $q^{\leftarrow}(\mu) = \underline{t}$ , then  $\mu = \underline{t}$ ,  $t \in I$ .
- 2. If  $q^{\leftarrow}(\mu) = id$ , then q is a bijection (as  $|X| \le |I|$ ) and  $\mu = q^{-1}$ .
- 3. If  $q^{\leftarrow}(\mu) = 1 id$ , then q is a bijection and  $\mu = 1 q^{-1}$ .
- 4. If  $q^{\leftarrow}(\mu) = (\underline{t} \land id) \lor \underline{s}$ , for some s,  $t \in (0, 1)$ , then  $\mu \circ q|_{[s,t]} = id|_{[s,t]}$ , whereby  $q|_{[s,t]}$  is injective and  $\mu|_{q([s,t])}$  is injective such that  $\mu(q([s, t])) = [s, t]$  and  $\mu|_{q([0,s))} = \underline{s}, \mu|_{q((t,1])} = \underline{t}$ .

Consider the case when q is bijective. Then  $q^{-1} \in \delta$  (as q is a quotient map and id  $\in C-\delta_D$ ). Put  $\alpha = q^{-1}$ . Then  $\alpha$  is bijective. By the above argument,  $1 - \alpha \in \delta$ . We show that  $\delta =< \{\alpha, 1 - \alpha\} >$ . As for every subbasic open fuzzy set  $\mu$  in C-I<sub>D</sub>,  $\exists$  some  $\nu \in< \{\alpha, 1 - \alpha\} >$  such that  $q^{\leftarrow}(\nu) = \mu$  and as  $q^{\leftarrow}$  is arbitrary join- and arbitrary meet- preserving, for each  $\mu \in C-\delta_D$ ,  $\exists \nu \in< \{\alpha, 1 - \alpha\} >$ , where  $\alpha$  is a bijection on X.

Consider now the case when q is not bijective. Then q cannot be injective.

We have the following cases:

(A) For some pair s,  $t \in (0, 1)$ ,  $q|_{[s,t]}$  is injective (then  $q|_{[1-s,1-t]}$  is also injective, as q is a quotient map and every open fuzzy set in C-I<sub>D</sub> is closed also).

In this case, by (iv),  $\exists \mu \in \delta$  such that  $\mu \circ q = (\underline{t} \land id) \lor \underline{s}$ , implying that  $\mu \circ q|_{[s,t]} = id|_{[s,t]}$  and so  $\mu|_{q([s,t])}$  is injective,  $\mu(q([s, t])) = [s, t], \mu|_{q([0,s))} = \underline{s}, \mu|_{q((t,1])} = \underline{t}$ , whereby  $\exists$  a partition  $\{X_1, X_2, X_3\}$  of X such that  $\mu|_{X_1} : X_1 \rightarrow [s, t]$  is a bijection,  $\mu|_{X_2} = \underline{s}$  and  $\mu|_{X_3} = \underline{t}$ . As  $1 - \mu \circ q = 1 - (\underline{t} \land id) \lor \underline{s}$ , i.e.,  $(1 - \mu) \circ q = (1 - \underline{t} \lor (1 - id)) \lor (1 - \underline{s}) \in C - \delta_D$ ,  $1 - \mu \in \delta$ . We show that  $\delta = < \mu$ ,  $1 - \mu >$ . Let  $\beta \in \delta$ . Then  $\beta \circ q = ((\underline{v} \land id) \lor \underline{u}) \land ((1 - \underline{v}) \lor (1 - id)) \land (1 - \underline{u})$ . Now we consider the following cases:

If  $s < 1/2 \le t$ , then  $\beta|_{q([u,1/2])} : q([u, 1/2]) \rightarrow [u, 1/2]$  is a bijection for  $u \ge s$ ,  $\beta|_{q([0,u))} = \underline{u}$  and  $\beta|_{(1-v,1]} = 1 - \underline{v}, v \le t$  $\beta|_{q[1/2,1-v]} : q[1/2, 1 - v] \rightarrow [1 - v, 1/2]$ , whereby  $\beta \in < \mu, 1 - \mu >$ .

If t < 1/2, then  $\beta|_{q([u,v])} : q([u, v] \rightarrow [u, v], \beta|_{[0,u)} = \underline{u}$  and  $\beta|_{q((v,1])} = \underline{v}$ , whereby  $\beta \in < \mu, 1 - \mu >$ .

If 1/2 < s, then  $\beta|_{q([1-u,1-v])}$ :  $q([1-u, 1-v] \rightarrow [1-v, 1-u], \beta|_{[0,1-u)} = 1-\underline{u}$  and  $\beta|_{q((1-v,1))} = 1-\underline{v}$ , whereby  $\beta \in < \mu, 1-\mu >$ . Similarly the case can be considered if  $\beta \circ q = ((\underline{v} \land id) \lor \underline{u}) \lor ((1-\underline{v}) \lor (1-id)) \land (1-\underline{u}).$ 

Hence  $\delta = \langle \{\mu, 1 - \mu\} \rangle$ , where for some partition  $\{X_1, X_2, X_3\}$  of X and for some pair s,  $t \in (0, 1), \mu|_{X_1} : X_1 \rightarrow [s, t]$  is a bijection,  $\mu|_{X_2} = \underline{s}$  and  $\mu|_{X_3} = \underline{t}$ .

(B) For any pair s,  $t \in I$ ,  $q|_{[s,t]}$  is not injective.

In this case,  $\nexists \beta \in \delta$  such that  $\beta \circ q = ((\underline{t} \land id) \lor \underline{s}) \land ((1-\underline{t}) \lor (1-\underline{i}d)) \land (1-\underline{t})$ , unless s = t. Hence,  $\delta = \{\underline{t} \mid t \in I\}$ .

So if  $(X, \delta)$  is a quotient of C-I<sub>D</sub>, then  $\delta$  is  $< \alpha, 1 - \alpha >$ , where for some partition  $\{X_1, X_2, X_3\}$  of  $X, \alpha|_{X_1} : X_1 \rightarrow$ [s, t] is bijective,  $\alpha|_{X_2} = \underline{s}$  and  $\alpha|_{X_3} = \underline{t}$ .

Conversely, let  $(X, \delta) \in obC$ -FTS such that  $|X| \le |I|$  and  $\delta =< \alpha, 1 - \alpha >$ , where for some partition  $\{X_1, X_2, X_3\}$  of X,  $\alpha|_{X_1} \colon X_1 \to [s, t]$  is bijective,  $\alpha|_{X_2} = \underline{s}$  and  $\alpha|_{X_3} = \underline{t}$ . Then clearly for some partition  $\{X_4, X_5, X_6\}$  of X,  $(1 - \alpha)|_{X_4} \colon X_4 \to [1 - t, 1 - s]$  is bijective,  $(1 - \alpha)|_{X_5} = 1 - \underline{t}$  and  $(1 - \alpha)|_{X_6} = 1 - \underline{s}$ .

Let  $q : (I,C-\delta_D) \rightarrow (X, \delta)$  be a map such that  $q|_{[s,t]}$  and  $q|_{[1-t,1-s]}$  are injective,  $q([s, t]) = X_1$  and  $q([0, s)) = X_2$ ,  $q((t, 1]) = X_3$  and  $q([1-s, 1-t]) = X_4$ ,  $q((1-t, 1]) = X_5$ ,  $q([0, 1-s)) = X_6$ . As  $q^{\leftarrow}$  is arbitrary join- and arbitrary meet- preserving, it is sufficient to show that for any subbasic open fuzzy set  $\mu$  in  $X, q^{\leftarrow}(\mu) \in C-\delta_D$ . Then for  $\mu = \alpha, q^{\leftarrow}(\mu)|_{[s,t]} = id|_{[s,t]}$  and  $q^{\leftarrow}(\mu)|_{[0,s]} = \underline{s}, q^{\leftarrow}(\mu)|_{(t,1]} = \underline{t}$  and so  $q^{\leftarrow}(\mu) = (\underline{t} \land id) \lor \underline{s}$ . For  $\mu = \underline{t}, t \in I, q^{\leftarrow}(\mu) = \underline{t}, t \in I$ . For  $\mu = 1 - \alpha, q^{\leftarrow}(\mu)|_{[1-s,1-t]} = 1 - id|_{[1-s,1-t]}$  and

 $\begin{array}{l} q^{\leftarrow}(\mu)|_{(1-t,1]} = 1 - \underline{t}, \ q^{\leftarrow}(\mu)|_{[0,1-s)} = 1 - \underline{s} \ \text{and so} \ q^{\leftarrow}(\mu) = \\ ((1 - \underline{s}) \land (1 - id)) \lor (1 - \underline{t}). \ \text{For} \ \mu = \underline{t}, \ t \in I, \ q^{\leftarrow}(\mu) = \underline{t}, \ t \\ \in I. \ \text{Hence} \ q^{\leftarrow}(\mu) \in C\text{-}\delta_D \ \text{for each} \ \mu \in \delta. \end{array}$ 

Next, let  $q^{\leftarrow}(\mu) \in C-\delta_D$ , for some  $\mu \in I^X$ . We wish to show that  $\mu \in \delta$ . As  $q^{\leftarrow}(\mu) \in C-\delta_D$ ,  $\mu \circ q = ((\underline{v} \land id) \lor \underline{u}) \land ((1 - \underline{v}) \lor (1 - id)) \land (1 - \underline{u})$ . Now we consider the following cases:

If  $s < 1/2 \le t$ , then  $\mu|_{q([u,1/2])} : q([u, 1/2]) \to [u, 1/2]$  is a bijection for  $u \ge s$ ,  $\mu|_{q([0,u])} = \underline{u}$  and  $\mu|_{(1-v,1]} = 1 - \underline{v}, v \le t$  $\mu|_{q[1/2,1-v]} : q[1/2, 1-v] \to [1-v, 1/2]$ , whereby  $\mu \in \delta$ .

If t < 1/2, then  $\mu|_{q([u,v])} : q([u, v] \rightarrow [u, v], \mu|_{[0,u)} = \underline{u}$  and  $\mu|_{q((v,1])} = \underline{v}$ , whereby  $\mu \in \delta$ .

If 1/2 < s, then  $\mu|_{q([1-u,1-v])} : q([1-u, 1-v] \rightarrow [1-v, 1-u]),$   $\mu|_{[0,1-u)} = 1-\underline{u}$  and  $\mu|_{q((1-v,1])} = 1 - \underline{v}$ , whereby  $\mu \in \delta$ . Similarly the case can be considered if  $\mu \circ q = ((\underline{v} \land id) \lor \underline{u}) \lor ((1-\underline{v}) \lor (1-id)) \land (1-\underline{u}).$ 

We have thus shown that  $\mu \in \delta \Leftrightarrow q^{\leftarrow}(\mu) \in C-\delta_D$ , which in turn shows that  $(X, \delta)$  is a quotient of  $(I, C-\delta_D)$ .

We now characterize [  $C-I_D$ ]<sub>C-FTS</sub>, the coreflective hull in C-FTS of C-I<sub>D</sub>.

**Theorem 3.1.** A fuzzy topological space  $(X, \delta)$  is an object of  $[C-I_D]_{C-FTS}$ 

If and only if it satisfies the following two conditions:

- A.  $X = \bigcup_{j \in J} X_j$  for some index set J such that for each j  $\in J$ ,  $|X_j| \le |I|$  and the subspace fuzzy topology  $\delta_j$  on  $X_j$  is  $\delta =< \alpha$ ,  $1 - \alpha >$ , where for some partition  $\{X_1, X_2, X_3\}$  of  $X_j$ ,  $\alpha|_{X_1}: X_1 \rightarrow [s, t]$  is bijective,  $\alpha|_{X_2} = \underline{s}$ and  $\alpha|_{X_3} = \underline{t}$ .
- B. for each  $\mu \in I^X$ ,  $\mu \in \delta$  iff  $\mu|_X \in \delta_j$ , for each  $j \in J$ .

**Proof:** The proof directly follows from Propositions 2.1 and 3.1.

**Remark 3.1.** In view of the proof of Proposition 3.1 and Theorem 3.1, if  $(X, \delta) \in ob[C-I_D]_{C-FTS}$ , then every open fuzzy set in X is closed also.

**Theorem 3.2.** A topological space (X, T) is an object of the coreflective hull of  $2_D$  in **TOP** if and only if it can be written as the disjoint union of single-point spaces, i.e., iff it is a discrete space.

**Proof:** If we replace I by  $2 = \{0, 1\}$ , then Theorem 3.1 takes the following form.

A topological space  $(X, T) \in ob[2_D]_{TOP}$  if and only if (X, T) satisfies the following properties:

 X = ∪<sub>j∈J</sub> X<sub>j</sub>, for some index set J such that for each j ∈ J, |X<sub>j</sub>| ≤ 2 and the subspace (X<sub>j</sub>, T<sub>j</sub>) is either a single-point space or a discrete space, 2. for each  $U \subseteq X$ ,  $U \in T$  if and only if  $U \cap X_j \in T_j$ , for each  $j \in J$ .

Since any discrete space can be uniquely written as a coproduct of its single- point subspaces,  $(X, T) \in ob[2_D]_{TOP}$  iff it can be written as the disjoint union of single-point spaces, i.e., if and only if it is a discrete space.

REFERENCES

- [1] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and Concrete Cate gories, Wiley, 1990.
- [2] A. Chaubey, A. K. Srivastava, On an epireflective hull in fuzzy topology, J. of Fuzzy Math. 2 (1994), 43–46
- [3] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. **24** (1968), 182–189.
- [4] H. Herrlich, On the concept of reflections in general topology, Contribu- tions to extension theory of topological structures, Berlin, 1969.
- [5] H. Herrlich and G. E. Strecker, Coreflective subcategories, Trans. Amer. Math. Soc., 157 (1971) 205–226.
- [6] H. Herrlich and G. E. Strecker, Coreflective subcategories in general topology, Fund. Math., **73**(1972), 199–218
- [7] R. E. Hoffmann, Reflective hulls of finite topological spaces, Arch. Math.,**33** (1979), 259–262.
- [8] J. F. Kennison, Reflective functors in general topology and elsewhere, Trans. Amer. Math. Soc. 118(1965), 303–315.
- [9] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. **56** (1976) 621–633.
- [10] A. K. Srivastava, Fuzzy Sierpinski space, J. Math. Anal. Appl. 103 (1984), 103–105.
  - [11] V. Singh, On a coreflective hull in L-TOP, Fuzzy Sets and Systems, 159 (2008), 2611--2615.
  - [12] V. Singh and A. K. Srivastava, The Coreflective Hull of  $L_D$  in L-TOP, J. of Fuzzy Mathematics, 19(2011): 665--674.
  - [13] V.Singh and A.K.Srivastava, On coreflective Hulls in [0,1]-TOP and s[0,1]-TOP, Quaestiones Mathematicae, 36(2013), 167--179.