

@ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Tackling Real

M. Nishidhar Babu
Dept. Mech. Engg., RVR & JCCE,

Gunrtur, Andra Pradesh,India

A. Ramesh
Dept. Mech. Engg., VIT, Vellure, Tamil Nadu, India

ABSTRACT

Genetic algorithms play a significant role, as search
techniques for handling complex spaces, in many
fields such as artificial intelligence, engineering,
robotic, etc. Genetic algorithms are based on the
underlying genetic process in biological organisms
and on the natural evolution principles of populations.
These algorithms process a population of
chromosomes, which represent search space solutions,
with three operations: selection, crossover and
mutation.

Under its initial formulation, the search space
solutions are coded using the binary alphabet.
However, the good properties related with these
algorithms do not stem from the use of this alphabet;
other coding types have been considered for the
representation issue, such as real coding, which would
seem particularly natural when tackling optimization
problems of parameters with variables in continuous
domains. In this paper we review the features of real
coded genetic algorithms. Different models of genetic
operators and some mechanisms available for
studying the behavior of this type of genetic
algorithms are revised and compared.

Keywords: Genetic algorithms, real coded genetic
algorithm

INTRODUCTION

Genetic algorithms (GAs) are general purpose search
algorithms which use principles inspired by natural
genetic populations to evolve solutions to problems.

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

Tackling Real-Coded Genetic Algorithms

Dept. Mech. Engg., RVR & JCCE,
Gunrtur, Andra Pradesh,India

Y. Kiran
Dept. Mech. Engg., KHIT,

Gunrtur, Andra Pradesh,India

Vellure, Tamil Nadu, India
V. Rajendra

Dept. Mech. Engg., CSU, Melbourne, Australia

Genetic algorithms play a significant role, as search
techniques for handling complex spaces, in many
fields such as artificial intelligence, engineering,
robotic, etc. Genetic algorithms are based on the
underlying genetic process in biological organisms
and on the natural evolution principles of populations.
These algorithms process a population of

mosomes, which represent search space solutions,
with three operations: selection, crossover and

Under its initial formulation, the search space
solutions are coded using the binary alphabet.
However, the good properties related with these

ithms do not stem from the use of this alphabet;
other coding types have been considered for the
representation issue, such as real coding, which would
seem particularly natural when tackling optimization
problems of parameters with variables in continuous
domains. In this paper we review the features of real-
coded genetic algorithms. Different models of genetic
operators and some mechanisms available for
studying the behavior of this type of genetic

s, real coded genetic

Genetic algorithms (GAs) are general purpose search
algorithms which use principles inspired by natural
genetic populations to evolve solutions to problems.

The basic idea is to maintain a population of
chromosomes, which represent candidate solutions to
the concrete problem that evolves over time through a
process of competition and controlled variation. Each
chromosome in the population has an associated
fitness to determine which chromosomes are used to
form new ones in the competition process, which is
called selection. The new ones are created using
genetic operators such as crossover and mutation.
GAs has had a great measure of success in search and
optimization problems. The reason for a great part of
their success is their ability to exploit the information
accumulated about an initially unknown search space
in order to bias subsequent searches into useful
subspaces, i.e., their adaptation. This is their
feature, particularly in large, complex, and poorly
understood search spaces, where classical search tools
(enumerative, heuristic, :::) are inappropriate, offering
a valid approach to problems requiring efficient and
effective search techniques. Fixe
coded strings for the representation of the solutions
have dominated GA research since there are
theoretical results that show them to be the most
appropriate ones and as they are amenable to simple
implementation. But the GA’s good pro
stem from the use of bit strings (29;22). For this
reason, the path has been lain toward the use of non
binary representations more adequate for each
particular application problem. One of the most
important ones is the real number represent
which would seem particularly natural when
optimization problems with variables in continuous

Dec 2017 Page: 217

| www.ijtsrd.com | Volume - 2 | Issue – 1

Scientific
(IJTSRD)

International Open Access Journal

Algorithms

Y. Kiran
Dept. Mech. Engg., KHIT,

Gunrtur, Andra Pradesh,India

V. Rajendra
Dept. Mech. Engg., CSU, Melbourne, Australia

The basic idea is to maintain a population of
chromosomes, which represent candidate solutions to
the concrete problem that evolves over time through a
process of competition and controlled variation. Each
chromosome in the population has an associated

ness to determine which chromosomes are used to
form new ones in the competition process, which is
called selection. The new ones are created using
genetic operators such as crossover and mutation.
GAs has had a great measure of success in search and

ization problems. The reason for a great part of
their success is their ability to exploit the information
accumulated about an initially unknown search space
in order to bias subsequent searches into useful
subspaces, i.e., their adaptation. This is their key
feature, particularly in large, complex, and poorly
understood search spaces, where classical search tools
(enumerative, heuristic, :::) are inappropriate, offering
a valid approach to problems requiring efficient and
effective search techniques. Fixed-length and binary
coded strings for the representation of the solutions
have dominated GA research since there are
theoretical results that show them to be the most
appropriate ones and as they are amenable to simple
implementation. But the GA’s good properties do not
stem from the use of bit strings (29;22). For this
reason, the path has been lain toward the use of non-
binary representations more adequate for each
particular application problem. One of the most
important ones is the real number representation,
which would seem particularly natural when
optimization problems with variables in continuous

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 218

search spaces are tackled. So a chromosome is a
vector of floating point numbers whose size is kept
the same as the length of the vector, which is the
solution to the problem. GAs based on real number
representation is called real-coded GAs (RCGAs).
The use of real coding initially appears in specific
applications, such as in (23) for chemo metric
problems, and in (26) for the use of met operators in
order to find the most adequate parameters for a
standard GA. Subsequently, RCGAs have been
mainly used for numerical optimization on continuous
domains (30; 26; 22; 30). Until 1991 specific
theoretical studies about RCGA operation weren’t
done and so the use of these algorithms was
controversial; researchers familiar with fundamental
GA theory didn’t understand the great success of
RCGAs since this suggested that binary coding should
be more effective than coding based on large
alphabets. Later, tools for the theoretical treatment of
RCGAs were proposed (see(30; 22; 20)) and so their
power was corroborated. Other evolution algorithms
based on real coding are the Evolution Strategies
(ES). The similarity between RCGAs and ES allows
some of their genetic operators to be exchanged (see
(28)). The main objective of this paper is to deal with
the RCGAs. To do that, first we study the binary
coding and its advantages and drawbacks. Then we
study the main issues related with RCGAs and the
tools for the analysis of the RCGAs.

We need to highlight that this paper is advisable and
interesting for people working on GAs and people that
need a power search procedure for problems with
large, complex, and poorly understood search spaces.
RCGAs demonstrate to be ones of the most
appropriate search methods on problems with these
features where continuous variables are implied. We
set up the paper as follows. In Section 2 we attempt to
describe the principal aspects of GAs, thinking of
people that are not familiarized with them. Then, in
Section 3 we expose the particular features of binary-
coded GAs (BCGAs) and show the reasons argued for
preferring binary alphabet, which has been the most
used through GA history. We also point out the
principal problems that appear when BCGAs are
applied. In Section 4 we attempt the RCGAs, we
expose their advantages, we present and compare the
crossover and mutation operators proposed for these
algorithms in the literature, we deal with the
application of RCGAs for handling convex spaces,
and finally, we treat the hybridization of RCGAs with
other search methods. In Section 5 we report tools that

allow the behavior of RCGAs to be studied from a
theoretical point of view. In Section 6 some
conclusions are pointed out.

REAL CODED GENETIC ALGORITHM(RCGA)

We have already noted the complicated proceed=ss of
encoding and decoding used in binary GA.in real
coded GA ,the design variables represented as floating
point numbers. If a problem has n design variables,
then the design vector can be represented exactly in
the same form as used for gradient-based method.

X={x1,x2,x3,…,xn}

Note that the binary GA, the design vector was
represented by a string and the elements x1,x2,x3,….xn
were each represented as binary substrings of m bits
each. In real GA, we use n floating point numbers
while in binary GA, we use m * n bits to represents
the design vector. The real GA can use single- or
double-precision arithmetic depending on the
computer. Since real GA is search algorithm which
starts from a population of values, like for binary GA,
these move limits have the form xi

l≤ xi ≤ xi
U,i =1 to n.

The fitness value of the function is calculated using

f(x) = f(x1 ,x2 ,x3,……,xn).

Real GA therefore saves us from the complexity of
using the encoding and decoding operations of binary
GA.

Starting population

The starting population is created by taking a floating
point number within the design space for each
variable. Thus, the starting population with all design
variables lying between 1 and 10 may be expressed in
the form using random numbers with up to eight
decimal places.

Member 1 :
2.34527849 1.34272192 1.23972398… 7.23582302
x11 x12 x13 x1n

Member 2 :
7.54989200 3.04011890 2.18998363…
5.82990872
x21x22 x23 x2n

:
:
:

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 219

Member N :
9.82019902 4.02384002 5.77810282… 0.12927494
xN1 xN2 xN3 xNn

The initial population is therefore a matrix of real
numbers of size N*note that random sampling can
also be enhanced by uniform sampling to make sure
that all parts of the design space are adequately
sampled. In addition, a complement approach could
be used by subtracting the population of each design
variable from its upper bound.

Just as in binary GA, it is advantageous to have a
larger initial population compared to the population
value used in the GA generations. Thus, if we start
with a population of 1.2 N-2 N, the N best points can
be selected for further operations such as
reproduction, crossover rand mutation operations.
However, in real GA, some of those operations need
to be defined in a new manner compared to binary
GA.

Reproduction

Roulette wheel selection can be used for real GA. The
fitness function and cumulative probability can then
be calculated in exactly the same manner as for binary
GA. Just as in binary GA, we can select the mating
pool members as 1,3,2,1 and3 .the mates can then be
paired as (1,3) and(2,1) assuming 80 per cent
crossover. The only difference in the reproduction
operations for real GA is that string i is replaced by
design variable i which is the design vector
{xi1,xi2,xi3,…xin}.we also see that scaling correction
and tournament selection can be applied to real GA
.the reproduction operator does not create any new
points.

Crossover

The crossover operator used for real GA is different
from that used binary GA. A simple approach we may
follow is to take two sites along the parent as the
crossover site and then exchange the variables inside
the crossover sites. For example, if there are two six-
variables parents as given below

Father ={xf1,xf2,xf3,xf4,xf5,xf6},
Mother={xm1,xm2,xm3,xm4,xm5,xm6},
We select two crossover sites randomly and get 1 and
3.the children are then as shown in the following.
Father = { xf1, xf2, xf3, xf4, xf5, xf6},
Mother= { xm1, xm2, xm3, xm4, xm5, xm6},

The above strategy well with binary GA where the
variables are coded strings, however in real GA the
swapping of design variables does not introduced any
new information. We need a method to create new
design variables .one approach for creating new
design variables is to use the blending method and
define the children.

x(1)

new =βxmn + (1 –β)xfn ,
x(2)

new = βxfn + (1 – β)xmn

In the above ,β ϵ (0,1),xmn is the nth design variable in
the mother design vector and xfn is the nth design
variable in the father design vector .the limiting case
occurs when β =0 =x(1)

new= xfn,x
(2)

new=xmn and when
β=0.5,the two children are the average of the two-
parent design variables and are essentially identical
twins.in general ,it is a good idea to take a random
number βϵ(0,1) and find the values of the two
children. This method is also called the blending
method since it combines information from both
children. This method is also called the blending
method since combines information from both parents
to get the children and therefore simulates nature.
However, the blending method described in now
interpolates between the parent values and is not
capable of extrapolating into the design space.

Blending approaches to crossover which extrapolate
have also been proposed by some researchers. One
such approach is called the linear crossover where
there children are created using two parents as
follows:
x(1)

new= 0.5xmn+0.5fn,
x(2)

new=1.5xmn-0.5xfn,
X(3)

new=-0.5xmn+1.5xfn,

Here the first child is interpolated while the second
and third children are extrapolated. A problem with
extrapolation is that sometimes a child may go outside
the bounds of the design variable. In such a case, the
child is not selected. The best two children among the
three are selected for further operations. as an
example, consider xmn=1,xfn=2.Then,the children are
given by x(1)

new=1.5, x(2)
new=0.5, x(3)

new =2.5.thus we
see that the linear crossover both interpolates and
extrapolates using the parent values .

A further generalization of the concept of the linear
crossover in needed to ensure that more than three
children can be created in case more than one need to
be discarded because they lie outside the move limits

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 220

for the design variable .we can define any number of
children of two parents using heuristic crossover.
xnew = β(x mn-x fn) +x mn.

This approach allows generation of children both
inside and outside the parent range depending on the
value of the random number β ϵ (0, 1). Heuristic
crossover also introduces an element of randomness
in the crossover process which is absent in linear
crossover.

As an example of implementing the two-point
heuristic crossover consider the two-point design
vectors, shown below:
Father= {2.762, 4.384, 1.236, 0.524},
Mother= {7.310, 8.236, 5.426, 4.316},

Here each design variable has abound of (0, 10) as the
lower and upper limit. Using a random number
generator, we pick two crossing sites, 2 and 3. Again,
we generate three random numbers β ϵ (0, 1) and get
0.1783, 0.8264 and 0.3123, using these values and
heuristic crossover, we get three children:

x(1)

new =0.1783(8.236-4.384)+8.236=8.9228,
x(2)

new =0.8264(8.236-4.384)+8.236=38.0745,
x(3)

new = 0.3123(8.236-4.384)+8.236=9.4389.
The second child is outside the movie limit of the
design variable and is not selected, we then take the
other two values to farm the children:
Father= {2.762, 4.384, 1.236, 0.524},
Mother= {7.310, 8.236, 5.426, 4.316},

The tow point heuristic crossover is good approach to
use for real coded GA and is recommended for
applications.

Mutation
As binary GA, mutation is needed in real GA to
ensure that the algorithm does get stuck or coverage
to a local minimum. To apply mutation with
probability pm. We change n× N× pm design variables
in a random manner .recall that n× N is the number of
real numbers in the population .as an example,
consider design vectors of size n =6 and N=10 to
make up the population. Taking a mutation
probability ,pm=0.05,we need to change three design
variables , that is (6×10×0.05=3).to do this, we
randomly select three variables from the population
and replace them by a random number lying between
the move limits corresponding to these variables.

In summary, we point out that many problems
involving a low level of discretization can be solved
using binary GA, even when the variables are real.
However, as the desired accuracy of the optimal point
increases, real GA becomes advantageous in terms of
storage requirements. Recent research literature shows
a growing popularity of real GA over binary GA.

PRESSURE VESSEL PROBLEM

The Problem is to design a compressed air storage
tank with a working pressure of 1000 psi and a
minimum volume of 750 ft3. The schematic of a
pressure vessel is shown in Fig.7.1. The cylindrical
pressure vessel is capped at both ends by
hemispherical heads. Using rolled steel plate (SAEJ
2340 TYPE 830 R), the shell is to be made in two
halves that are joined by two longitudinal welds to
form a cylinder. Each head is forged and then welded
to the shell. Let the design variables be denoted by the
vector

X=[x1, x2, x3, x4]

Where
x1 is the spherical head thickness, x2 is the shell
thickness, x3and x4 are the radius and length of the
shell, respectively.
The objective in this Project is to minimize the
manufacturing cost of the pressure vessel. The
manufacturing cost of the pressure vessel is a
combination of material cost, welding cost and
forming cost. That can be refer in Sandgren (1990) for
more details on how cost is determined.
The constraints are set in accordance with respective
ASME codes. Here the main objective is to reduce
the cost by reducing weight of Pressure Vessel. So the
objective function

2
14

2
423

2
1321 84.191661.37781.16224.0)(xxxxxxxxxxf

 Rx1 Radius of the shell
 Lx 2 Length of the shell

 sTx3 Thickness of the shell

 bTx4 Thickness of the dish end

Fig: 3.1: Cylindrical pressure vessel

1x R

2x L

3x Ts4x Th

1x R

2x L

3x Ts4x Th4x Th

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 221

Design constraints
The four important constraints under consideration are
1. Hoop stress≤ Allowable stress

 00193.0 411 xxxg

2. Longitudinal stress≤ Allowable stress
 000954.0 312 xxxg

3. Volume≤750×1728inch3

 0
3

4
1728750 2

2
1

3
13 xxxxg

4. Length

 024024 xxg

Variable bounds
The upper and lower bounds on two design variables
are

15025 1 x
24025 2 x

25.10625.0 3 x
25.10625.0 4 x

Note: All are in inch

RESULTS AND DISCUSSIONS

The values of best design variables and the constraints
for the 500 iteration obtained after running the
program for Real coded Genetic Algorithm written in
the C-language is given below.

Table: 5.1: Programming Results
S.No f(x)in $ X1 X2 X3 X4 g1 g2 g3 g4

1 115339.8198 6.1190 5.8798 46.4278 197.4326 5.222965 5.436842 460144.3 42.5674

2 112644.9246 6.1243 5.8850 46.4623 187.5280 5.227579 5.441793 395894.7 52.4720
.

22 115339.8198 6.1190 5.8798 46.4278 197.4326 5.22965 5.436842 406144.3 42.5674

23 103103.1814 4.3550 1.0431 86.2090 193.6479 2.691221 0.220628 5908975 463521
.

155 15161.8598 1.5539 195.28 0.775 0.894 0.760824 0.928576 27686.69 45.2360

156 13590.1317 44.167 173.78 0.537 0.894 0.361261 1.584072 27686.69 45.2360
.

1993 6064.0452 0.8121 0.3924 41.0906 190.2364 0.019067 0.00037 3670.959 49.7636

1994 6006.5315 0.8041 0.3924 41.0906 190.2364 0.01103 0.00037 3670.959 49.7636
.

3655 5985.6915 0.8014 0.3924 41.0906 190.1739 0.008309 0.00037 333.146 49.8261

3656 5946.7682 0.7959 0.3924 41.0906 190.1739 0.002848 0.00037 3339.146 49.8261
.
.

10499 5940.3633 0.7959 0.3924 41.0906 189.8874 0.002848 0.00037 1819.803 50.1126

Table 5.2: Comparison of RCGA with other

Optimization Methods.
 Sandgren RVR
Method Penalty RCGA
R[inch] 47 41.0906
L[inch] 117.701 189.8874
Ts[inch] 1.125 0.7959
Th[inch] 0.625 0.3924
g1 -0.194 -0.00285
g2 -0.0283 -0.0003956
g3 -0.0510 -1849.0951
g4 0.054 -50.1126
Objective[$] 8129.800 5940.3633

Where
Penalty: Penalty Approach
RCGA : Real coded Genetic Algorithm
From above table it is clear that the Real coded GA
gives the best results hence it can have beneficially
used for evaluating the cost of the pressure vessel.

CONCLUSION AND FUTURE SCOPE

In the present work parameters such as thickness of
the shell, and dish end, length and radius of the
pressure vessel are optimized by making use of Real
coded genetic algorithm powerful non-traditional
optimization method and these results are compared
with other Optimization Methods.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 222

1. It is found that the results obtained from RCGA
are better as its search is for global optimum as
against the local optimum in traditional search
methods.

2. Sandgrenhas solved the problem using different
algorithms such as Penalty Approach, But it is
found that the results obtained by using proposed
algorithm is better optimized than any other
earlier solutions reported.

3. It can be concluded that by applying RCGA, the
optimal design parameters for the pressure vessels
are obtained and the objective minimization of
cost by reducing weight of Pressure vessel is
achieved.

4. In the present study the application of RCGA has
been shown for a Pressure vessel problem with
four variables and four design constraints.

Future Scope:

 In the proposed study the application of RCGA
can be extended for pressure vessels with more
than four variables and constraints (including
Thermal Stresses).

 The present problem can also be extended for the
use of the composite materials for weight
minimization.

REFERENCES

1) L. Zhu and J. T. Boyle, “Optimal Shapes for
Axisymmetric Pressure Vessels : A Brief,” J.
Press. Vessel Technol., vol. 122, no.November,
pp. 443–449, 2000.

2) B. Abdi, H. Mozafari, A. Ayob, and R. Kohandel,
“Optimum Size of a Ground-Based Cylindrical
Liquid Storage Tank under Stability and Strength
Constraints Using Imperialist Competitive
Algorithm,” Appl. Mech. Mater., vol. 110–116,
pp. 3415–3421, 2011.

3) R. C. Carbonari, P. a. Muñoz-Rojas, E. Q.
Andrade, G. H. Paulino, K. Nishimoto, and E. C.
N. Silva, “Design of Pressure Vessels using Shape
Optimization: An integrated approach,” Int. J.
Press. Vessel. Pip., vol. 88, no. 5–7, pp. 198–212,
2011.

4) S. H. Nasseri, Z. Alizadeh, and F. Taleshian,
“Optimized Solution of Pressure Vessel Design
Using Geometric Programming,” J. Math.
Comput. Sci., vol. 4, no. 3, pp. 344–349, 2012.

5) J. J. Proczka, K. Muralidharan, D. Villela, J. H.
Simmons, and G. Frantziskonis, “Guidelines for
The Pressure and Efficient Sizing of Pressure
Vessels for Compressed Air Energy Storage,”
Energy Convers. Manag., vol. 65, pp. 597–605,
2013.

6) S. Hassan, K. Kumar, C. D. Raj, and K. Sridhar,
“Design and Optimization of Pressure Vessel
Using Metaheuristic Approach,” Appl.Mech.
Mater., vol. 465, pp. 401–406, 2014.

7) R. Talebitooti, M. H. Shojaeefard, and S.
Yarmohammadisatri, “Shape Design Optimization
of Cylindrical Tank Using b-Spline Curves,”
Comput. Fluids, vol. 109, no. October, pp. 100–
112, 2015.

8) P. V. V Saidpatil and P. A. S. Thakare, “Design &
Weight Optimization of Pressure Vessel Due to
Thickness Using Finite Element Analysis,” Int. J.
Emerg. Eng. Res. Technol., vol. 2, no. 3, pp. 1–8,
2014.

9) K. S. Raju and S. S. Rao, “Design Optimization of
a Composite Cylindrical Pressure Vessel Using
FEA,” Int. J. Sci. Res. Publ., vol. 5, no. 12, pp.
522–530, 2015.

10) Blachut, J., Eschenauer, H.A., 2001. Emerging
Methods for Multidisciplinary Optimization.
Springer, Wien, New York.

11) Schmitt, L.M., 2001. Theory of genetic
algorithms. Theoretical Computer Science, 259(1-
2):1-61. [doi:10. 1016/S0304-3975(00)00406-0]

12) Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983.
Optimization by simulated annealing. Science,
220(4598):671-680.
[doi:10.1126/science.220.4598.671]

13) de Vicente, J., Lanchares, J., Hermida, R., 2003.
Placement by thermodynamic simulated
annealing. Physics Letters A, 317(5-6):415-423.

14) Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang
ZHENG. “Optimal design of pressure vessel using
an improved genetic algorithm”, J Zhejiang
UnivSci A 2008 9(9):1264-1269.

15) Park JH, Hwang JH, Lee CS, Hwang W. Stacking
sequence design of composite laminates for
maximum strength using genetic algorithms.
Compos Struct 2001;52(2):217e31.

16) Soremekun G, Gu¨ rdal Z, Kassapoglou C, Toni
D. Stacking sequence blending of multiple

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 223

composite laminates using genetic algorithms.
Compos Struct 2002;56(1):53e62.

17) Lee YJ, Lin CC. Regression of the response
surface of laminated composite structures.
Compos Struct 2003;62(1):91e105.

18) Kim CU, Kang JH, Hong CS, Kim CG. Optimal
design of filament wound structures under internal
pressure based on the semi-geodesic path
algorithm. Compos Struct 2005;67(4):443e52.

19) Holland, J.H., Holyoak, K.J., Nisbett, R.E.
&Thagard, P.R. (1986). Induction. Processes of
Inference, Learning, and Discovery. The MIT
Press, Cambridge

20) EshelmanL.J.&Schaffer J.D. (1993). RealCoded
Genetic Algorithms and IntervalSchemata.
Foundation of Genetic Algorithms 2, L.Darrell
Whitley (Ed.) (Morgan Kaufmann Publishers, San
Mateo), 187–202.

21) Antonisse, J. (1989). A new interpretation of
schema notation that overturns the binary
encoding constraint. Proc. of the Third Int. Conf.
on Genetic Algorithms, J. David Schaffer (Ed.)
(Morgan Kaufmann Publishers, San Mateo), 86–
91.

22) Radcliffe N.J. (1992). NonLinear Genetic
Representations. Parallel Problem Solving from
Nature 2, R.M¨anner and B. Manderick (Ed.)
(Elsevier Science Publichers, Amsterdam), 259–
268.

23) Lucasius, C. B. &Kateman G. (1989).
Applications of genetic algorithms in
chemometrics. Proc. of the Third International
Conference on Genetic Algorithms, J. David
Schaffer (Ed.) (Morgan Kaufmann Publishers, San
Mateo), 170–176.

24) Davis, L. (1989). Adapting Operator Probabilities
in Genetic Algorithms. Proc. of the Third Int.
Conf. on Genetic Algorithms, J. David Schaffer
(Ed.) (Morgan Kaufmann Publishers, San Mateo),
61–69.

25) Davis, L. (1991). Handbook of Genetic
Algorithms. Van Nostrand Reinhold, New York.

26) Wright, A. (1991). Genetic Algorithms for Real
Parameter Optimization. Foundations of Genetic
Algorithms 1, G.J.E Rawlin (Ed.) (Morgan
Kaufmann, San Mateo), 205–218.

27) Herrera, F, HerreraViedma, E., Lozano, M.
&Verdegay, J.L. (1994). Fuzzy Tools to Improve
Genetic Algorithms. Proc. Second European
Congress on Intelligent Techniques and Soft
Computing, 1532–1539.

28) Herrera, F, Lozano, M. &Verdegay, J.L. (1995).
Tuning Fuzzy Logic Controllers by Genetic
Algorithms. International Journal of Approximate
Reasoning 12, 299–315.

29) Antonisse, J. (1989). A new interpretation of
schema notation that overturns the binary
encodingconstraint. Proc. of the Third Int. Conf.
on Genetic Algorithms, J. David Schaffer
(Ed.)(Morgan Kaufmann Publishers, San Mateo),
86–91.

30) Wright, A. (1991). Genetic Algorithms for Real
Parameter Optimization. Foundations of Genetic
Algorithms 1, G.J.E Rawlin (Ed.) (Morgan
Kaufmann, San Mateo), 205–218.

