
  

@ IJTSRD  |  Available Online @ www.ijtsrd.com

 
 
 
 

                              ISSN No: 2456 

International
Research

 

 

Tackling Real
 

M. Nishidhar Babu 
Dept. Mech. Engg., RVR & JCCE, 

Gunrtur, Andra Pradesh,India
 

A. Ramesh 
Dept. Mech. Engg., VIT, Vellure, Tamil Nadu, India

 
ABSTRACT 
 
Genetic algorithms play a significant role, as search 
techniques for handling complex spaces, in many
fields such as artificial intelligence, engineering, 
robotic, etc. Genetic algorithms are based on the 
underlying genetic process in biological organisms 
and on the natural evolution principles of populations. 
These algorithms process a population of 
chromosomes, which represent search space solutions, 
with three operations: selection, crossover and 
mutation. 
 
Under its initial formulation, the search space 
solutions are coded using the binary alphabet. 
However, the good properties related with these 
algorithms do not stem from the use of this alphabet; 
other coding types have been considered for the 
representation issue, such as real coding, which would 
seem particularly natural when tackling optimization 
problems of parameters with variables in continuous
domains. In this paper we review the features of real
coded genetic algorithms. Different models of genetic 
operators and some mechanisms available for 
studying the behavior of this type of genetic 
algorithms are revised and compared. 
 
Keywords: Genetic algorithms, real coded genetic 
algorithm 
 
INTRODUCTION 

Genetic algorithms (GAs) are general purpose search 
algorithms which use principles inspired by natural 
genetic populations to evolve solutions to problems. 
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Genetic algorithms play a significant role, as search 
techniques for handling complex spaces, in many 
fields such as artificial intelligence, engineering, 
robotic, etc. Genetic algorithms are based on the 
underlying genetic process in biological organisms 
and on the natural evolution principles of populations. 
These algorithms process a population of 

mosomes, which represent search space solutions, 
with three operations: selection, crossover and 

Under its initial formulation, the search space 
solutions are coded using the binary alphabet. 
However, the good properties related with these 

ithms do not stem from the use of this alphabet; 
other coding types have been considered for the 
representation issue, such as real coding, which would 
seem particularly natural when tackling optimization 
problems of parameters with variables in continuous 
domains. In this paper we review the features of real-
coded genetic algorithms. Different models of genetic 
operators and some mechanisms available for 
studying the behavior of this type of genetic 

s, real coded genetic 

Genetic algorithms (GAs) are general purpose search 
algorithms which use principles inspired by natural 
genetic populations to evolve solutions to problems.  

 

 

The basic idea is to maintain a population of 
chromosomes, which represent candidate solutions to 
the concrete problem that evolves over time through a 
process of competition and controlled variation. Each 
chromosome in the population has an associated 
fitness to determine which chromosomes are used to 
form new ones in the competition process, which is 
called selection. The new ones are created using 
genetic operators such as crossover and mutation. 
GAs has had a great measure of success in search and 
optimization problems. The reason for a great part of 
their success is their ability to exploit the information 
accumulated about an initially unknown search space 
in order to bias subsequent searches into useful 
subspaces, i.e., their adaptation. This is their
feature, particularly in large, complex, and poorly 
understood search spaces, where classical search tools 
(enumerative, heuristic, :::) are inappropriate, offering 
a valid approach to problems requiring efficient and 
effective search techniques. Fixe
coded strings for the representation of the solutions 
have dominated GA research since there are 
theoretical results that show them to be the most 
appropriate ones and as they are amenable to simple 
implementation. But the GA’s good pro
stem from the use of bit strings (29;22). For this 
reason, the path has been lain toward the use of non
binary representations more adequate for each 
particular application problem. One of the most 
important ones is the real number represent
which would seem particularly natural when 
optimization problems with variables in continuous 
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The basic idea is to maintain a population of 
chromosomes, which represent candidate solutions to 
the concrete problem that evolves over time through a 
process of competition and controlled variation. Each 
chromosome in the population has an associated 

ness to determine which chromosomes are used to 
form new ones in the competition process, which is 
called selection. The new ones are created using 
genetic operators such as crossover and mutation. 
GAs has had a great measure of success in search and 

ization problems. The reason for a great part of 
their success is their ability to exploit the information 
accumulated about an initially unknown search space 
in order to bias subsequent searches into useful 
subspaces, i.e., their adaptation. This is their key 
feature, particularly in large, complex, and poorly 
understood search spaces, where classical search tools 
(enumerative, heuristic, :::) are inappropriate, offering 
a valid approach to problems requiring efficient and 
effective search techniques. Fixed-length and binary 
coded strings for the representation of the solutions 
have dominated GA research since there are 
theoretical results that show them to be the most 
appropriate ones and as they are amenable to simple 
implementation. But the GA’s good properties do not 
stem from the use of bit strings (29;22). For this 
reason, the path has been lain toward the use of non-
binary representations more adequate for each 
particular application problem. One of the most 
important ones is the real number representation, 
which would seem particularly natural when 
optimization problems with variables in continuous 
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search spaces are tackled. So a chromosome is a 
vector of floating point numbers whose size is kept 
the same as the length of the vector, which is the 
solution to the problem. GAs based on real number 
representation is called real-coded GAs (RCGAs). 
The use of real coding initially appears in specific 
applications, such as in (23) for chemo metric 
problems, and in (26) for the use of met operators in 
order to find the most adequate parameters for a 
standard GA. Subsequently, RCGAs have been 
mainly used for numerical optimization on continuous 
domains (30; 26; 22; 30). Until 1991 specific 
theoretical studies about RCGA operation weren’t 
done and so the use of these algorithms was 
controversial; researchers familiar with fundamental 
GA theory didn’t understand the great success of 
RCGAs since this suggested that binary coding should 
be more effective than coding based on large 
alphabets. Later, tools for the theoretical treatment of 
RCGAs were proposed (see(30; 22; 20)) and so their 
power was corroborated. Other evolution algorithms 
based on real coding are the Evolution Strategies 
(ES). The similarity between RCGAs and ES allows 
some of their genetic operators to be exchanged (see 
(28)). The main objective of this paper is to deal with 
the RCGAs. To do that, first we study the binary 
coding and its advantages and drawbacks. Then we 
study the main issues related with RCGAs and the 
tools for the analysis of the RCGAs. 

We need to highlight that this paper is advisable and 
interesting for people working on GAs and people that 
need a power search procedure for problems with 
large, complex, and poorly understood search spaces. 
RCGAs demonstrate to be ones of the most 
appropriate search methods on problems with these 
features where continuous variables are implied. We 
set up the paper as follows. In Section 2 we attempt to 
describe the principal aspects of GAs, thinking of 
people that are not familiarized with them. Then, in 
Section 3 we expose the particular features of binary-
coded GAs (BCGAs) and show the reasons argued for 
preferring binary alphabet, which has been the most 
used through GA history. We also point out the 
principal problems that appear when BCGAs are 
applied. In Section 4 we attempt the RCGAs, we 
expose their advantages, we present and compare the 
crossover and mutation operators proposed for these 
algorithms in the literature, we deal with the 
application of RCGAs for handling convex spaces, 
and finally, we treat the hybridization of RCGAs with 
other search methods. In Section 5 we report tools that 

allow the behavior of RCGAs to be studied from a 
theoretical point of view. In Section 6 some 
conclusions are pointed out. 
 
REAL CODED GENETIC ALGORITHM(RCGA) 

We have already noted the complicated proceed=ss of 
encoding and decoding used in binary GA.in real 
coded GA ,the design variables represented as floating 
point numbers. If a problem has n design variables, 
then the design vector can be represented exactly in 
the same form as used for gradient-based method. 

X={x1,x2,x3,…,xn} 
 
Note that the binary GA, the design vector was 
represented by a string and the elements x1,x2,x3,….xn 
were each represented as binary substrings of m bits 
each. In real GA, we use n floating point numbers 
while in binary GA, we use m * n bits to represents 
the design vector. The real GA can use single- or 
double-precision arithmetic depending on the 
computer. Since real GA is search algorithm which 
starts from a population of values, like for binary GA, 
these move limits have the form xi

l≤ xi ≤ xi
U,i =1 to n. 

The fitness value of the function is calculated using  
 
f(x) = f(x1 ,x2 ,x3,……,xn). 
 
Real GA therefore saves us from the complexity of 
using the encoding and decoding operations of binary 
GA. 
 
Starting population 

The starting population is created by taking a floating 
point number within the design space for each 
variable. Thus, the starting population with all design 
variables lying between 1 and 10 may be expressed in 
the form using random numbers with up to eight 
decimal places. 

Member 1 : 
2.34527849 1.34272192  1.23972398…    7.23582302 
x11 x12  x13 x1n 

 
Member 2 : 
7.54989200   3.04011890  2.18998363…   
5.82990872 
x21x22 x23                 x2n 

: 
: 
: 
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Member N : 
9.82019902  4.02384002  5.77810282…   0.12927494 
xN1  xN2 xN3 xNn 

 
The initial population is therefore a matrix of real 
numbers of size N*note that random sampling can 
also be enhanced by uniform sampling to make sure 
that all parts of the design space are adequately 
sampled. In addition, a complement approach could 
be used by subtracting the population of each design 
variable from its upper bound. 
 
Just as in binary GA, it is advantageous to have a 
larger initial population compared to the population 
value used in the GA generations. Thus, if we start 
with a population of 1.2 N-2 N, the N best points can 
be selected for further operations such as 
reproduction, crossover rand mutation operations. 
However, in real GA, some of those operations need 
to be defined in a new manner compared to binary 
GA. 
 
Reproduction 

Roulette wheel selection can be used for real GA. The 
fitness function and cumulative probability can then 
be calculated in exactly the same manner as for binary 
GA. Just as in binary GA, we can select the mating 
pool members as 1,3,2,1 and3 .the mates can then be 
paired as (1,3) and(2,1) assuming 80 per cent 
crossover. The only difference in the reproduction 
operations for real GA is that string i is replaced by 
design variable i which is the design vector 
{xi1,xi2,xi3,…xin}.we also see that scaling correction 
and tournament selection can be applied to real GA 
.the reproduction operator does not create any new 
points. 

Crossover 

The crossover operator used for real GA is different 
from that used binary GA. A simple approach we may 
follow is to take two sites along the parent as the 
crossover site and then exchange the variables inside 
the crossover sites. For example, if there are two six-
variables parents as given below  

Father ={xf1,xf2,xf3,xf4,xf5,xf6}, 
Mother={xm1,xm2,xm3,xm4,xm5,xm6}, 
We select two crossover sites randomly and get 1 and 
3.the children are then as shown in the following. 
Father = { xf1, xf2, xf3, xf4, xf5, xf6}, 
Mother= { xm1, xm2, xm3, xm4, xm5, xm6}, 

The above strategy well with binary GA where the 
variables are coded strings, however in real GA the 
swapping of design variables does not introduced any 
new information. We need a method to create new 
design variables .one approach for creating new 
design variables is to use the blending method and 
define the children. 
 
x(1)

new =βxmn + (1 –β)xfn , 
x(2)

new = βxfn + (1 – β)xmn 
 
In the above ,β ϵ (0,1),xmn is the nth design variable in 
the mother design vector and xfn is the nth design 
variable in the father design vector .the limiting case 
occurs when β =0 =x(1)

new= xfn,x
(2)

new=xmn and when 
β=0.5,the two children are the average of the two-
parent design variables and are essentially identical 
twins.in general ,it is a good idea to take a random 
number βϵ(0,1) and find the values of the two 
children. This method is also called the blending 
method since it combines information from both 
children. This method is also called the blending 
method since combines information from both parents 
to get the children and therefore simulates nature. 
However, the blending method described in now 
interpolates between the parent values and is not 
capable of extrapolating into the design space. 
 
Blending approaches to crossover which extrapolate 
have also been proposed by some researchers. One 
such approach is called the linear crossover where 
there children are created using two parents as 
follows: 
x(1)

new= 0.5xmn+0.5fn, 
x(2)

new=1.5xmn-0.5xfn, 
X(3)

new=-0.5xmn+1.5xfn, 
 
Here the first child is interpolated while the second 
and third children are extrapolated. A problem with 
extrapolation is that sometimes a child may go outside 
the bounds of the design variable. In such a case, the 
child is not selected. The best two children among the 
three are selected for further operations. as an 
example, consider xmn=1,xfn=2.Then,the children are 
given by x(1)

new=1.5, x(2)
new=0.5, x(3)

new =2.5.thus we 
see that the linear crossover both interpolates and 
extrapolates using the parent values . 
 
A further generalization of the concept of the linear 
crossover in needed to ensure that more than three 
children can be created in case more than one need to 
be discarded because they lie outside the move limits 
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for the design variable .we can define any number of 
children of two parents using heuristic crossover. 
xnew = β(x mn-x fn) +x mn. 
 
This approach allows generation of children both 
inside and outside the parent range depending on the 
value of the random number β ϵ (0, 1). Heuristic 
crossover also introduces an element of randomness 
in the crossover process which is absent in linear 
crossover. 
 
As an example of implementing the two-point 
heuristic crossover consider the two-point design 
vectors, shown below: 
Father= {2.762, 4.384, 1.236, 0.524}, 
Mother= {7.310, 8.236, 5.426, 4.316}, 
 
Here each design variable has abound of (0, 10) as the 
lower and upper limit. Using a random number 
generator, we pick two crossing sites, 2 and 3. Again, 
we generate three random numbers β ϵ (0, 1) and get 
0.1783, 0.8264 and 0.3123, using these values and 
heuristic crossover, we get three children: 
 
x(1)

new =0.1783(8.236-4.384)+8.236=8.9228, 
x(2)

new =0.8264(8.236-4.384)+8.236=38.0745, 
x(3)

new = 0.3123(8.236-4.384)+8.236=9.4389. 
The second child is outside the movie limit of the 
design variable and is not selected, we then take the 
other two values to farm the children: 
Father= {2.762, 4.384, 1.236, 0.524}, 
Mother= {7.310, 8.236, 5.426, 4.316}, 
 
The tow point heuristic crossover is good approach to 
use for real coded GA and is recommended for 
applications. 
 
Mutation 
As binary GA, mutation is needed in real GA to 
ensure that the algorithm does get stuck or coverage 
to a local minimum. To apply mutation with 
probability pm. We change n× N× pm design variables 
in a random manner .recall that n× N is the number of 
real numbers in the population .as an example, 
consider design vectors of size n =6 and N=10 to 
make up the population. Taking a mutation 
probability ,pm=0.05,we need to change three design 
variables , that is (6×10×0.05=3).to do this, we 
randomly select three variables from the population 
and replace them by a random number lying between 
the move limits corresponding to these variables.  

In summary, we point out that many problems 
involving a low level of discretization can be solved 
using binary GA, even when the variables are real. 
However, as the desired accuracy of the optimal point 
increases, real GA becomes advantageous in terms of 
storage requirements. Recent research literature shows 
a growing popularity of real GA over binary GA. 
 
PRESSURE VESSEL PROBLEM 

The Problem is to design a compressed air storage 
tank with a working pressure of 1000 psi and a 
minimum volume of 750 ft3. The schematic of a 
pressure vessel is shown in Fig.7.1. The cylindrical 
pressure vessel is capped at both ends by 
hemispherical heads. Using rolled steel plate (SAEJ 
2340 TYPE 830 R), the shell is to be made in two 
halves that are joined by two longitudinal welds to 
form a cylinder. Each head is forged and then welded 
to the shell. Let the design variables be denoted by the 
vector  

X=[x1, x2, x3, x4] 
 
Where  
x1 is the spherical head thickness, x2 is the shell 
thickness, x3and x4 are the radius and length of the 
shell, respectively.  
The objective in this Project is to minimize the 
manufacturing cost of the pressure vessel. The 
manufacturing cost of the pressure vessel is a 
combination of material cost, welding cost and 
forming cost. That can be refer in Sandgren (1990) for 
more details on how cost is determined. 
The constraints are set in accordance with respective 
ASME codes.  Here the main objective is to reduce 
the cost by reducing weight of Pressure Vessel. So the 
objective function  
 

2
14

2
423

2
1321 84.191661.37781.16224.0)( xxxxxxxxxxf   

 Rx1  Radius of the shell 
 Lx 2  Length of the shell 

 sTx3  Thickness of the shell 

 bTx4  Thickness of the dish end 

 
Fig: 3.1: Cylindrical pressure vessel 
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Design constraints 
The four important constraints under consideration are  
1. Hoop stress≤ Allowable stress 

  00193.0 411  xxxg  
 

2. Longitudinal stress≤ Allowable stress 
  000954.0 312  xxxg  

 
3. Volume≤750×1728inch3  

  0
3

4
1728750 2

2
1

3
13  xxxxg 

 
4. Length 

  024024  xxg  
 

Variable bounds 
The upper and lower bounds on two design variables 
are 

15025 1  x  
24025 2  x  

25.10625.0 3  x  
25.10625.0 4  x  

Note: All are in inch 
 
RESULTS AND DISCUSSIONS 

The values of best design variables and the constraints 
for the 500 iteration obtained after running the 
program for Real coded Genetic Algorithm written in 
the C-language is given below.  

Table: 5.1: Programming Results 
S.No f(x)in $ X1 X2 X3 X4 g1 g2 g3 g4 

1 115339.8198 6.1190 5.8798 46.4278 197.4326 5.222965 5.436842 460144.3 42.5674 

2 112644.9246 6.1243 5.8850 46.4623 187.5280 5.227579 5.441793 395894.7 52.4720 
. . . . . . . . . . 

22 115339.8198 6.1190 5.8798 46.4278 197.4326 5.22965 5.436842 406144.3 42.5674 

23 103103.1814 4.3550 1.0431 86.2090 193.6479 2.691221 0.220628 5908975 463521 
. . . . . . . . . . 

155 15161.8598 1.5539 195.28 0.775 0.894 0.760824 0.928576 27686.69 45.2360 

156 13590.1317 44.167 173.78 0.537 0.894 0.361261 1.584072 27686.69 45.2360 
. . . . . . . . . . 

1993 6064.0452 0.8121 0.3924 41.0906 190.2364 0.019067 0.00037 3670.959 49.7636 

1994 6006.5315 0.8041 0.3924 41.0906 190.2364 0.01103 0.00037 3670.959 49.7636 
. . . . . . . . . . 

3655 5985.6915 0.8014 0.3924 41.0906 190.1739 0.008309 0.00037 333.146 49.8261 

3656 5946.7682 0.7959 0.3924 41.0906 190.1739 0.002848 0.00037 3339.146 49.8261 
. . . . . . . . . . 
. . . . . . . . . . 

10499 5940.3633 0.7959 0.3924 41.0906 189.8874 0.002848 0.00037 1819.803 50.1126 

 
Table 5.2: Comparison of RCGA with other 

Optimization Methods. 
 Sandgren RVR 
Method Penalty RCGA 
R[inch] 47 41.0906 
L[inch] 117.701 189.8874 
Ts[inch] 1.125 0.7959 
Th[inch] 0.625 0.3924 
g1 -0.194 -0.00285 
g2 -0.0283 -0.0003956 
g3 -0.0510 -1849.0951 
g4 0.054 -50.1126 
Objective[$] 8129.800 5940.3633 

 
 

Where 
Penalty: Penalty Approach 
RCGA : Real coded Genetic Algorithm 
From above table it is clear that the Real coded GA 
gives the best results hence it can have beneficially 
used for evaluating the cost of the pressure vessel. 
 
CONCLUSION AND FUTURE SCOPE 

In the present work parameters such as thickness of 
the shell, and dish end, length and radius of the 
pressure vessel are optimized by making use of Real 
coded genetic algorithm powerful non-traditional 
optimization method and these results are compared 
with other Optimization Methods. 
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1. It is found that the results obtained from RCGA 
are better as its search is for global optimum as 
against the local optimum in traditional search 
methods.  

2. Sandgrenhas solved the problem using different 
algorithms such as Penalty Approach, But it is 
found that the results obtained by using proposed 
algorithm is better optimized than any other 
earlier solutions reported. 

3. It can be concluded that by applying RCGA, the 
optimal design parameters for the pressure vessels 
are obtained and the objective minimization of 
cost by reducing weight of Pressure vessel is 
achieved. 

4. In the present study the application of RCGA has 
been shown for a Pressure vessel problem with 
four variables and four design constraints. 

 
Future Scope: 

 In the proposed study the application of RCGA 
can be extended for pressure vessels with more 
than four variables and constraints (including 
Thermal Stresses). 

 The present problem can also be extended for the 
use of the composite materials for weight 
minimization. 

 
REFERENCES 

1) L. Zhu and J. T. Boyle, “Optimal Shapes for 
Axisymmetric Pressure Vessels : A Brief,” J. 
Press. Vessel Technol., vol. 122, no.November, 
pp. 443–449, 2000. 

2) B. Abdi, H. Mozafari, A. Ayob, and R. Kohandel, 
“Optimum Size of a Ground-Based Cylindrical 
Liquid Storage Tank under Stability  and Strength 
Constraints Using Imperialist Competitive 
Algorithm,” Appl. Mech. Mater., vol. 110–116, 
pp. 3415–3421, 2011. 

3) R. C. Carbonari, P. a. Muñoz-Rojas, E. Q. 
Andrade, G. H. Paulino, K. Nishimoto, and E. C. 
N. Silva, “Design of Pressure Vessels using Shape 
Optimization: An integrated approach,” Int. J. 
Press. Vessel. Pip., vol. 88, no. 5–7, pp. 198–212, 
2011. 

4) S. H. Nasseri, Z. Alizadeh, and F. Taleshian, 
“Optimized Solution of Pressure Vessel Design 
Using Geometric Programming,” J. Math. 
Comput. Sci., vol. 4, no. 3, pp. 344–349, 2012. 

5) J. J. Proczka, K. Muralidharan, D. Villela, J. H. 
Simmons, and G. Frantziskonis, “Guidelines for 
The Pressure and Efficient Sizing of Pressure 
Vessels for Compressed Air Energy Storage,” 
Energy Convers. Manag., vol. 65, pp. 597–605, 
2013. 

6) S. Hassan, K. Kumar, C. D. Raj, and K. Sridhar, 
“Design and Optimization of Pressure Vessel 
Using Metaheuristic Approach,” Appl.Mech. 
Mater., vol. 465, pp. 401–406, 2014. 

7) R. Talebitooti, M. H. Shojaeefard, and S. 
Yarmohammadisatri, “Shape Design Optimization 
of Cylindrical Tank Using b-Spline Curves,” 
Comput. Fluids, vol. 109, no. October, pp. 100–
112, 2015. 

8) P. V. V Saidpatil and P. A. S. Thakare, “Design & 
Weight Optimization of Pressure Vessel Due to 
Thickness Using Finite Element Analysis,” Int. J. 
Emerg. Eng. Res. Technol., vol. 2, no. 3, pp. 1–8, 
2014. 

9) K. S. Raju and S. S. Rao, “Design Optimization of 
a Composite Cylindrical Pressure Vessel Using 
FEA,” Int. J. Sci. Res. Publ., vol. 5, no. 12, pp. 
522–530, 2015. 

10) Blachut, J., Eschenauer, H.A., 2001. Emerging 
Methods for Multidisciplinary Optimization. 
Springer, Wien, New York. 

11) Schmitt, L.M., 2001. Theory of genetic 
algorithms. Theoretical Computer Science, 259(1-
2):1-61. [doi:10. 1016/S0304-3975(00)00406-0] 

12) Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. 
Optimization by simulated annealing. Science, 
220(4598):671-680. 
[doi:10.1126/science.220.4598.671] 

13) de Vicente, J., Lanchares, J., Hermida, R., 2003. 
Placement by thermodynamic simulated 
annealing. Physics Letters A, 317(5-6):415-423. 

14) Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang 
ZHENG. “Optimal design of pressure vessel using 
an improved genetic algorithm”, J Zhejiang 
UnivSci A 2008 9(9):1264-1269.  

15) Park JH, Hwang JH, Lee CS, Hwang W. Stacking 
sequence design of composite laminates for 
maximum strength using genetic algorithms. 
Compos Struct 2001;52(2):217e31. 

16) Soremekun G, Gu¨ rdal Z, Kassapoglou C, Toni 
D. Stacking sequence blending of multiple 



International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD  |  Available Online @ www.ijtsrd.com |  Volume – 2  |  Issue – 1  | Nov-Dec 2017    Page: 223 

composite laminates using genetic algorithms. 
Compos Struct 2002;56(1):53e62. 

17) Lee YJ, Lin CC. Regression of the response 
surface of laminated composite structures. 
Compos Struct 2003;62(1):91e105. 

18) Kim CU, Kang JH, Hong CS, Kim CG. Optimal 
design of filament wound structures under internal 
pressure based on the semi-geodesic path 
algorithm. Compos Struct 2005;67(4):443e52. 

19) Holland, J.H., Holyoak, K.J., Nisbett, R.E. 
&Thagard, P.R. (1986). Induction. Processes of 
Inference, Learning, and Discovery. The MIT 
Press, Cambridge 

20) EshelmanL.J.&Schaffer J.D. (1993). RealCoded 
Genetic Algorithms and IntervalSchemata. 
Foundation of Genetic Algorithms 2, L.Darrell 
Whitley (Ed.) (Morgan Kaufmann Publishers, San 
Mateo), 187–202. 

21) Antonisse, J. (1989). A new interpretation of 
schema notation that overturns the binary 
encoding constraint. Proc. of the Third Int. Conf. 
on Genetic Algorithms, J. David Schaffer (Ed.) 
(Morgan Kaufmann Publishers, San Mateo), 86–
91. 

22) Radcliffe N.J. (1992). NonLinear Genetic 
Representations. Parallel Problem Solving from 
Nature 2, R.M¨anner and B. Manderick (Ed.) 
(Elsevier Science Publichers, Amsterdam), 259–
268. 

23) Lucasius, C. B. &Kateman G. (1989). 
Applications of genetic algorithms in 
chemometrics. Proc. of the Third International 
Conference on Genetic Algorithms, J. David 
Schaffer (Ed.) (Morgan Kaufmann Publishers, San 
Mateo), 170–176.  

24)  Davis, L. (1989). Adapting Operator Probabilities 
in Genetic Algorithms. Proc. of the Third Int. 
Conf. on Genetic Algorithms, J. David Schaffer 
(Ed.) (Morgan Kaufmann Publishers, San Mateo), 
61–69. 

25) Davis, L. (1991). Handbook of Genetic 
Algorithms. Van Nostrand Reinhold, New York. 

26)  Wright, A. (1991). Genetic Algorithms for Real 
Parameter Optimization. Foundations of Genetic 
Algorithms 1, G.J.E Rawlin (Ed.) (Morgan 
Kaufmann, San Mateo), 205–218. 

27)  Herrera, F, HerreraViedma, E., Lozano, M. 
&Verdegay, J.L. (1994). Fuzzy Tools to Improve 
Genetic Algorithms. Proc. Second European 
Congress on Intelligent Techniques and Soft 
Computing, 1532–1539.  

28) Herrera, F, Lozano, M. &Verdegay, J.L. (1995). 
Tuning Fuzzy Logic Controllers by Genetic 
Algorithms. International Journal of Approximate 
Reasoning 12, 299–315. 

29) Antonisse, J. (1989). A new interpretation of 
schema notation that overturns the binary 
encodingconstraint. Proc. of the Third Int. Conf. 
on Genetic Algorithms, J. David Schaffer 
(Ed.)(Morgan Kaufmann Publishers, San Mateo), 
86–91. 

30) Wright, A. (1991). Genetic Algorithms for Real 
Parameter Optimization. Foundations of Genetic 
Algorithms 1, G.J.E Rawlin (Ed.) (Morgan 
Kaufmann, San Mateo), 205–218. 


