
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 7 Issue 4, July-August 2023 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD58607 | Volume – 7 | Issue – 4 | Jul-Aug 2023 Page 40

NextJs File-Based Routing - A Review

Krutika Patil

Master of Science in Computer Science the University of Texas at Dallas, Tracy, CA, USA

ABSTRACT

Next Js is quickly gaining popularity as a full-stack React Js
framework and a React framework for Production. Next Js helps us
build efficient websites with solid Search Engine Optimization.
Next.js, developed by Vercel, has become a popular framework for
developing React applications. It provides useful features such as
server-side rendering, static site generation, and an intuitive file-
based routing system, revolutionizing how developers construct their
applications. This paper delves into the intricacies of the file-based
routing system in Next.js, discussing its principles, benefits, potential
issues, and use cases bolstered by tangible coding examples.

KEYWORDS: NextJs, file-based routing, full-stack, web development,

react-router, reactJs, javascript

How to cite this paper: Krutika Patil
"NextJs File-Based Routing - A Review"
Published in
International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN:
2456-6470,
Volume-7 | Issue-4,
August 2023, pp.40-42, URL:
www.ijtsrd.com/papers/ijtsrd58607.pdf

Copyright © 2023 by author (s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an
Open Access article
distributed under the
terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

INTRODUCTION

As per the NextJs official website, it is a full-stack
React and React framework for Production. Let's dive
into what each of these statements means. NextJs
brings a few key features—file-based routing, server-
side rendering, API integration, and static site
generation. In a contemporary Js framework like
React, we must add a dependency like 'react-router' to
get routing capability. NextJs supports this out-of-the-
box, eliminating the need for a routing package.
NextJs also has a strong ability of "server-side
rendering.” The pages are rendered at the server and
not the client, so the initial load is quick without
needing a loading state before the render. The ability
to generate content on the server also helps with better
Search Engine Optimization since the Search engine
crawlers see the content that the users see on the page.
Since all the content gets pre-rendered on the server, it
is beneficial to Optimize Search Engines (SSO).
NextJs also offers API integration out-of-the-box,
which helps integrate the backend services efficiently.
Due to these critical features, NextJs is a full-stack
React framework. Also, the attributes we discussed
are crucial to building a Production-ready React

application. Hence, NextJs is also a React framework
for Production. Next.js introduces a file-based routing
system that leverages the file system to create
application routes. In contrast to traditional routing
systems where routes need to be defined manually,
Next.js automatically routes files under the pages
directory, significantly simplifying the routing
process.

The file-based routing system deviates from most
client-side routing libraries like react-router, which
need an explicit definition of each route. Instead, it
uses a convention-over-configuration paradigm,
automatically establishing routes based on the file
structure. Let us now discuss the important key feature
of NextJs (file-based routing).

A. Nested Routes

Consider a freshly created Next Js project. The
project structure consists of a “pages” folder at the
root, as shown in Figure 1 below. The contents of
this folder will decide the routing of the application.
We will have an “index.js” file at the root of this
folder. This file renders the contents at the “/“ path.

IJTSRD58607

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD58607 | Volume – 7 | Issue – 4 | Jul-Aug 2023 Page 41

Figure 1: NextJs pages folder

To render the next route segment, we can in 2 ways:
1. Create a new folder with the name of the path

segment and name the script inside “index.js.”
For example, if we would like to create a path
“/clients/," we can create a folder named "clients"
and then create a script inside this folder with the
name "index.js.”

Figure 2: NextJs nested routes structure using

folders

2. Create “clients.js” in the pages folder.

Figure 3: NextJs nested routes structure using

file

Using both ways, we can render the content at
"/clients.” One advantage of the first method is that if
we have nested routes for "/clients," we can create
those. For example, if we need to render the content
at "/clients/client," we can create a folder inside the
"clients" folder with the name "client" and then have
a "index.js" file inside the "client" folder.

Having nested routes is not possible with the second
way.

B. Dynamic Routes

There are instances where we would like to render the
routes dynamically. For example: suppose we have a
structure like "/clients/1" where we display the
client's details with id as 1; we wouldn't know
beforehand all the possible values of the client to
create those paths/ files. In such a case, NextJs offers
a key feature in files-based routing known as
"dynamic routes." Inside the "clients" folder, we can
have a file named "[id].js." Please note the syntax.
The keyword "id" is surrounded by square brackets,
meaning the value of "id" will be determined
dynamically. There is also another way to do this. We
can create a new folder inside the "clients" folder
with the name "[id]" and have an "index.js" file
inside it.

Figure 4: NextJs pages folder

The result of this method would also lead to us being
able to render the content at "clients/[id]." On the [id]
javascript page, we will be able to retrieve the value
of “id” using the next js package "next/router."
Using the code below in Figure 4:

Figure 5: Using “next/router’ to access the

dynamic route query param

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD58607 | Volume – 7 | Issue – 4 | Jul-Aug 2023 Page 42

We import the “use router" library from the
"next/router” package. Then, implementing the
function "userRouter" gives us the router object. The
"query" object inside the "router" object contains the
keys to all the dynamic ids passed along the route. In
this case, it will be the "id."

C. Catch-all Routes

For catch-all routes, Next.js allows using
[[...param]]. It will match /blob/a, /blog/a/b,
/blog/a/b/c, etc.

Figure 6: Catch-all route

We will be able to access the route segments using the
'next/router' package again, as depicted in the below
code:

Figure 7: Retrieving all path segments of a

catch-all route using ‘next/router’

D. Benefits

NextJs file-based routing offers several benefits:
Simplicity and Predictability: The automatic routing
system significantly simplifies the routing process,
making it predictable and intuitive. Developers can
easily predict the URL structure of their application
based on the file structure.

Code Splitting and Prefetching: Next.js automatically
splits your code into separate bundles, so each page
only loads what's necessary. It also prefetches link
data on hover, enabling instant page transitions.

Dynamic and Catch-All Routes: Next.js supports
dynamic routes, generating routes based on data.
Catch-all routes enable matching paths that can have
an arbitrary number of segments.

E. USE CASES

1. Blog or Documentation Site: With dynamic
routes, you can easily set up a blog or

documentation site where each post or document
is a separate page.

2. E-commerce Site: You can use file-based routing
to create product pages with dynamic routes,
where the URL contains the product id or name.

CONCLUSION

Next.js's file-based routing is a game-changer,
introducing a simple, intuitive routing system that
offers developers significant flexibility in structuring
their applications. Its ability to automatically route,
split code, and prefetch data lead to performance
benefits and faster development times. Whether you're
creating a blog, an e-commerce site, or any other web
application, Next.js's file-based routing can be a
powerful tool to enhance your development process.

While this paper aimed to explore the core concepts of
file-based routing in Next.js, we recommended further
digging into the Next.js documentation to explore
progressive ideas such as API routes, custom servers,
and middleware, as they offer further opportunities for
optimization and control in your applications.

Despite its many benefits, it's important to note that
Next.js's file-based routing might only fit some use
cases, particularly applications that require a more
flexible or complex routing logic. As with any
technology decision, it's crucial to carefully consider
the trade-offs and ensure it aligns well with your
project's requirements.

REFERENCES

[1] Krutika Patil, Sanath Dhananjayamurty Javagal,
"React state management and side-effects – A
Review of Hooks," IRJET Journal, volume 9,
2022,
https://www.irjet.net/archives/V9/i12/IRJET-
V9I1225.pdf.

[2] Krutika Patil "Redux State Management System
- A Comprehensive Review" Published in
International Journal of Trend in Scientific
Research and Development (ijtsrd), ISSN:
2456-6470, Volume-6 | Issue-7, December
2022, pp.1021-1027, URL:
https://www.ijtsrd.com/papers/ijtsrd52530.pdf.

[3] https://www.udemy.com/course/react-the-
complete-guide-incl-
redux/learn/lecture/25599228?start=405#overvi
ew

[4] https://www.udemy.com/course/nextjs-react-
the-complete-
guide/learn/lecture/25145398#overview

