Modeling \& Analysis of Elevated Water Tanks using Response Spectrum Method by Staad Pro. Software

Shubham Jain ${ }^{1}$, Afzal Khan ${ }^{2}$
${ }^{1}$ M Tech Scholar, ${ }^{2}$ Professor,
${ }^{1,2}$ Department of Civil Engineering, Millennium Institute of Technology\& Science, Bhopal, Madhya Pradesh, India

ABSTRACT

In this, we have used STAAD. Pro V8i software which is based on the application of Finite Element Method. This software is a widely used in the field of structural design and analysis. Then Models are analyzed for dead load, water load and seismic load. Dead load was designed according to IS: 875-1987(Part 1), Seismic load was designed using response spectrum method for earthquake zone III of India using IS: 1903-2002. Study on the modeling and analysis of water tanks Understand the design procedure for liquid storing structures in accordance with the IScodes \& Gain knowledge about the analysis viewpoint for economical and safe water tank design. Study the behavior of Moment, shear force, axial load on column, water pressure on walls, volume of steel and volume of concrete seismic zone and various loading conditions.

INTRODUCTION

Water tanks are very important components of lifeline. They are very much critical elements in community water supply, firefighting systems and in many industrial facilities for storage of water. A RCC concrete tank is a useful structure which is meant for the storage of water, for swimming bath, sewage sedimentation and for such similar purposes. RCC overhead water tanks are used to store and supply safe drinking water. With the rapid speed of urbanization, demand for drinking water has

How to cite this paper: Shubham Jain | Afzal Khan "Modeling \& Analysis of Elevated Water Tanks using Response Spectrum Method by Staad Pro. Software" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470,
 Volume-7 | Issue-1, February 2023, pp.474-477, URL: www.ijtsrd.com/papers/ijtsrd52722.pdf

Copyright © 2023 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the
 terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

RESULTS

COMPARISON BETWEEN RECTANGULAR AND CIRCULAR WATER TANK ON FOLLOWING BASIS
MOMENT
Table 1 Maximum moment on Rectangular Water Tank

			Horizontal	Vertical	Horizontal	Moment		
	Node	L/C	FxkN	FykN	FzkN	Mx N-m	My N-m	Mz N-m
Max Fx	1	3 DEAD	0.233	217.15	0.233	231.894	0	-231.89
Min Fx	8	3 DEAD	-0.233	217.15	-0.233	-231.89	0	231.893

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

Max Fy	5	5WATER LOAD	0	370.66	0.005	26.193	0	0
Min Fy	1	3 DEAD	0.233	217.15	0.233	231.894	0	-231.89
Max Fz	1	3 DEAD	0.233	217.15	0.233	231.894	0	-231.89
Min Fz	8	3 DEAD	-0.233	217.15	-0.233	-231.89	0	231.893
Max Mx	1	3 DEAD	0.233	217.15	0.233	231.894	0	-231.89
Min Mx	3	3 DEAD	0.233	217.15	-0.233	-231.89	0	-231.89
Max My	2	5 WATER LOAD	-0.005	370.66	0	0	0	26.193
Min My	4	5 WATER LOAD	0	370.66	-0.005	-26.193	0	0
Max Mz	6	3 DEAD	-0.233	217.15	0.233	231.894	0	231.893
Min Mz	1	3 DEAD	0.233	217.15	0.233	231.894	0	-231.89

Table 2 Maximum moment on Circular elevated water tank

			Horizontal	Vertical	Horizontal	Moment		
	Node	L/C	FxkN	FykN	FrkN	Mx N-m	My N-m	Mr N-m
Max Fx	4	13	14.562	321.522	0.843	952.338	260.746	-25356.7
Min Fx	4	15	-14.482	174.021	-1.347	-1463.04	-260.744	25275.72
Max Fy	6	4	1.922	850.522	-6.565	-13377	2.38	-1920.49
Min Fy	1	1 EQX	-4.794	-49.243	-0.047	-554.279	-169.437	11433.02
Max Fz	8	18	-1.347	174.021	14.482	25275.72	-260.744	1463.038
Min Fz	8	7	1.153	625.125	-18.94	-33025.8	211.828	-1230.13
Max Mx	8	18	-1.347	174.021	14.482	25275.72	-260.744	1463.038
Min Mx	8	7	1.153	625.125	-18.94	-33025.8	211.828	-1230.13
Max My	8	12	0.843	321.522	-14.562	-25356.7	260.746	-952.338
Min My	4	15	-14.482	174.021	-1.347	-1463.04	-260.744	25275.72
Max Mz	4	15	-14.482	174.021	-1.347	-1463.04	-260.744	25275.72
Min Mz	4	13	14.562	321.522	0.843	952.338	260.746	-25356.7

四 Fie Edt Vien Toch Select Pesuls Report Mode Wnodow Hols

Fig 1 Maximum Bending Moment on Circular elevated water tank

Fig 2 Maximum Bending Moment on rectangular elevated water tank

Conclusion-

> There is major difference in steel used. Steel for circular water tank is 1977.8 Kg and for Rectangular tank is 2428.0 kg . It causes more expenses compare to circular water tank.
> There are more chances of corner failure in Rectangular water tank. Also, may cause leakage from corner.

In circular column the ring beam is not straight and hence there is much moment seen comparison to straight ring beam on Rectangular water tank.

REFERENCES

[1] Ajagbe. W. O, Adedokun. S. I. and Oyesile W.B. (2013): "Comparative Study on the Design of Elevated Rectangular and Circular Concrete Water Tanks", ISSN: 2278-067X Volume 1, Issue 1 (May 2012).
[2] HalilSezena, Ramazan Livaoglub, Adem Dogangunc (2008), "Dynamic analysis and seismic performance
[3] Harshal Nikhade (2013): "Dynamic Analysis Of Circular Water Tank And Study Of Relevant Codal Provision", ISSN 2229-5518, Volume 4, Issue 11, November-2013.
[4] Hassan Jasim Mohammed, "Economical design of water concrete tanks" Europeans Journal Publication, Vol 49 NO. 4 (2011), Pp 510-520.
[5] Hocine Hammoum, Karima Bouzelha, Drifa

Slimani (2014), "Seismic risk of RC water storage elevated tanks: Case study", Handbook of Materials Failure Analysis with Case Studies from the Chemicals, Concrete and Power Industries 2016, Pages 187-216
[6] IS 13920: 1993 Code of practice - Ductile detailing of reinforced concrete structures subjected to seismic forces.
[7] IS 1893 (PartI): 2002 Criteria for Earthquake Resistant Design of Structures, IS: 1893-1984 "Criteria for Earthquake Resistant Design of Structures".
[8] IS 3370: 1967 (PartI,II,III,IV) Code of Practice for Concrete Structures for the Storage of Liquids.
[9] R. V. R. K. Prasad and Akshaya B. Kamdi (2012): "Effect Of Revision Of IS 3370 On Water Storage Tank", ISSN: 2248-9622, Vol. 2, Issue 5, September- October 2012.
[10] Reshma, Arunima V(2017) Seismic Analysis Of Multi Storied Irregular Building Using Flat Slab And Grid Slab In Zone III \& V Volume: 04 Issue: 06 | June - 2017
[11] S. A. Barakat, S. Altoubat, "Optimization of Elevated Water Tank" The International Journal Of Science \& Technology Volume 2 Issue 7 July 2009
[12] S. C. Dutta, C.V.R. Murthy (2000), "Assessing
the seismic torsional vulnerability of elevated tanks with RC frame- type staging", Soil dynamics and earthquake engineering, Volume 19, Issue 3, April 2000.
[13] S. Siddiqui, B. K. Singh and P. Thakur, "Performance based Seismic Analysis on RCC Framed Elevated Circular Tanks with Flat and Domical Bases", Indian Journal of Science and Technology, Volume 9, August 2016
[14] S. Wankhede, P. J. Salunke, N. G. Gore, "Cost Optimization of Elevated Circular Water Storage Tank", The International Journal Of Engineering And Science, Volume 4, Issue 2015
[15] Sekhar Chandra Dutta, Somnath Dutta, Rana Roy (2009), "Dynamic behavior of RC elevated tanks with soil- structure interaction", Elsevier/Engineering Structures 31 (2009) 2617-2629
[16] Slater, W.M. (1985) "Concrete Water Tanks in Ontario". Canadian Journal of Civil Engineering, Toronto.
[17] SoheilSoroushnia, Sh. TavousiTafreshi, F. Omidinasab, N. Beheshtian, SajadSoroushnia (2011), "Seismic Performance of RC Elevated Water Tanks with Frame Staging and Exhibition Damage Pattern", The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction
[18] Sudhir K. Jain, Sajjad Sameer U (1994), "A review of requirements in Indian codes for aseismic design of elevated water tanks", Journal of Structural Engineering, Vol 20, Pp 119-128.
[19] V. Varur, S. B. Vankudre, P. Prabhavati., "Optimization of Water Tank" The International Journal Of Science \& Technology, Volume 2 Issue 7 July-2014

