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ABSTRACT 

In 1943, Hugo Hadwiger showed that any graph that contains no K4-

minors is 3colorable. He considers any graph which has no Kk+1-

minors is k-colorable. Based on Naserasr, Wang and Zhu’s 

definitions of the circular chromatic number for a signed graph, 

particular generalized versions of Hadwiger’s conjecture that might 

be valid in a class of sign graphs are formalized. We prove in this 

paper that, if the signed graph G−σ has no (Kk+1,−)-minor, it means 

that χc(G−σ) ≤ 3. 
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1. INTRODUCTION  

In the literature, Hadwiger’s conjecture has been 

considered as one of the more interesting conjectures 

in graph theory. It always tends to expand the four 

color theorem. The conjecture asserts that all graphs 

without Kk+1-minor are k-colorables. Thus, the 3 ≥ k 

case in this conjecture is quite straightforward. 

However, the situation where k = 4 implies the four-

color theorem. Therefore, if k + 1 implies k, then the 

problems with the conjecture increase by only k. For 

this reason, in 1979, Catlin introduced a strong 

variant on the k = 3 case that we reformulate, making 

use of notions of a signed graph and a circular 

coloring. We therefore say that a signed graph (G,σ) 

has a minor (H,π) if an isomorphic graph (H,π) can be 

obtained from a subgraph of (G,σ) by the following 

steps: deleting vertices or edges, contracting a 

positive edge and switching. 

Theorem 1.1 [2] Assume that a signed graph G− does 

not have (K4,−)-minor, then χc(G+) ≤ 

3. 

B. Gerard, P. Seymour et al [6] have strengthened 

Catlin’s result. The Catlin theorem 1.1 gives a 

generalization of the result of B. Gerard and P. 

Seymour [6] below: Suppose a graph G does not  

 

contain any K4-minors, then G is 3-colorable. This 

outcome, called conjecture, is more solid than the 

famous Hadwiger conjecture. We call that the Odd-

Hadwiger conjecture. Its use in this work is 

reformulated as follows. 

Conjecture 1.2 Assume that a signed graph G−does 

not have (Kk+1,−)-minor, then χc(G+) ≤ k 

Hadwiger [5] and Dirac [3] have demonstrated 

individually that, if k = 4, the Conjecture 1.2 is 

correct. In the case of k = 5, Wagner [11] proved that 

this conjecture refconj1 is similar to the Four- color 

theorem. Haken and Appel proved it [1] in 1977 with 

computer assistance. In the case k = 6, Robertson et al 

[9] as a proof of the Hadwiger’s conjecture. They also 

reduced it to the four color theorem. 

In view of all of the above, for the sake of 

generalization, we can ask the following problem: 

Problem 1.3 Assume that a signed graph G− does not 

have (Kk+1,−)-minor, which value is k such that 

χc(G,−σ) ≤ k? 

In this paper, an answer to this question is 

considerably simpler and will necessarily be a direct 
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extension of the original proof by Catlin [2], B. 

Gerard, P. Seymour et al [6]. 

2. Notion of signed graphs and its minors 

A signed graph (G,σ) is defined as a graph G 

equipped with a signature σ: E(G) →{+1,−1} through 

which every edge is either negative (assigned sign -) 

or positive (otherwise, assigned sign+). These are 

binary models where we characterized the edges as 

either attractive (or even) or repulsive (or odd). In the 

following, we will write (G,σ) = Gσ 

A subgraph (H,σE(H)) of Gσ is immediately considered 

to be a signed graph. (H,σE(H)) is a subgraph of the 

graph of Gσ. A sign applied to a particular e edge in 

(H,σE(H)) is the same as that applied to that e in Gσ. 

Finally, the subgraph G has no restrictions. It may 

contain multiple loops and edges, as well as half and 

loose edges with, respectively, one or more ends 

(these edges are not reported). For example, consider 

that X is a cycle, the result of the product of the signs 

on the edges is the sign of X. A subgraph (H,σE(H)) of 

Gσ is a signed graph resulting from removing vertices 

and edges. 

A Gσ-signed graph allows a (H,σE(H)) if a signed graph 

isomorphic to (H,σE(H)) which can be derived from a 

subgraph of Gσ by contracting the edge identifies its 

endpoints in a new vertex. (G,σ) will have a minor Kk 

if there is a succession of vertex deletions and edge 

contractions resulting from Kk. 

The subgraphs H and H
′ 
of disjoint vertices of the 

signed graph Gσ are said to be adjacent if there exists 

an edge of Gσ with one extremity inside V (H) and the 

other inside V (H
′
). Otherwise, both H and H

′ 
are not 

considered. 

3. Circular coloring Signed graphs and Minors 

In the recent literature, many authors study the 

concept of coloring of signed graphs. Zaslavsky, in 

1980s, studied vertex coloring of signed graphs (see 

[15]). He defines the coloring of a signed graph Gσ as 

a function g: V (G) → {±k,...,0} so that, for every 

edge e = xy in G, g(x)    σeg(y). 

The idea and the way to color such a signed graph are 

quite simple. First of all, use signed colors in such a 

way that the vertices can be changed. Second, 

consider it so that the normal rule of coloring the 

adjacent vertices in various colors will be followed so 

long the connecting edge will be positive. 

Notice that the coloring that contains 2k+1 labels 

drawn from the whole set {−k,...,0,...,k} is called a k 

coloring of signed graphs. On the other hand, the one 

containing the labels 2k of the set {−k,...,0,...,k} is 

called a k-coloring without zero. Considering a signed 

graph G, according to Zaslavsky in [15], a proper 

vertex coloring of G, or just a coloration is such an 

application f: V (G) → Z that for each edge e = uv of 

G the color σ(u) is distinct from the color σ(e)f(v), 

where σ(e) denotes the sign of e. 

Called star chromatic number, in 1988 Vince 

introduced a circular chromatic number χc(G) of a 

graph G, see [10]. 

He generalized this concept naturally to the chromatic 

number of a graph. The notion of  ”circular chromatic 

number” was several studied in [14] and the 

preceding definition has been given in [12]. 

A circular chromatic number χc(G) of a signed graph 

Gσ is the smallest ratio  for which one (p,q)-

coloring of (G,σ) exists. 

In the literature, one of the most important results of 

the circular chromatic number is: for any graph G, 

χ(G) − 1 < χc(G) ≤ χ(G) and thus χ(G) = ⌈χc(G)⌉. 
Notice that Xuding Zhu, in 2001 and 2006, studied 

this circular chromatic number of graphs, see [12, 

13]. 

In 2018, authors Kang and Steffen came up with the 

idea of introducing the idea of the circular coloring of 

the signed graphs [7]. 

To have ”antipodal ” points is a different definition of 

the concept from the one we would use in this paper. 

Both definitions use points in a circle as colors. The 

discrete version in [7] is using Zk as the colors. 

The elements of Zk can be considered as uniformly 

spread out points on the circle). In [7], a diameter of a 

steady state circle is chosen. The antipode to a point 

will be obtained by rotating the circle around the 

designated diameter. The colors are not symmetrical 

in such a coloring. 

Indeed, having each two extremities of the diameter 

chosen, his antipodal value is itself. This definition in 

the article [7] extends further the signed graph 

coloring which admits 0. Zaslavsky being the one 

who brought the notion of opposition to the coloring 

without 0. This notion states that 0 is a special color, 

whose antipode is itself 0. In what follows, we 

consider specialty in a particular color as an unwanted 

characteristic. An element which is circular should be 

rotation invariant. In this respect, the circular graph 

coloring described in this article extends the circular 

coloring of signed graphs more precisely. 

Consider (H,σE(H)) a signed graph where V (H) = {Vi} 

with i ∈ [k]. A model (H,σE(H)) in a signed graph Gσ is 

a collection of connected subgraphs with disjoint 

vertices Hi with i in[k] such that for i    j ∈{1,2,...,k} 

where ViVj ∈ E(G), there is an edge of which one ends 

in Hi and the other ends in Hj. Reversing the 
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contraction, we can see that Gσ has a (H,σE(H))-minor 

if and only if there is a model of (H,σE(H)) within Gσ. 

Therefore Gσ has a Kk if and only if there is a 

substructure (i.e. a model of Kk). 

Notation 3.1  

1. Kk is a complete graph with k vertices. 

2. G+ is a signed graph in which all edges have 

positive values. 

3. G− is a signed graph in which all edges have 

negative values. 

4. Kk ≤ G to mean G contains Kk. 

5. Kk ≤m G to signify G having a Kk-minor. 

6. Kk ≤t G to mean G contains a subdivision of Kk. 

7. δG(X) means that all edges have precisely one 

extremity in X. 

 
Figure 1: Examples of signed graphs:  blue 

line and  dote red line 

The main focus of our paper is on identifying Kk-

minors in the signed graphs. The following lemma 

gives a more concrete definition of a Kk-minor; the 

result is well known so we will skip the simple proof. 

Lemma 3.2 Consider the signed graph Gσ. Gσ has a 

Kk-minor if, and only if, by writing V (Kk) = {v1,...,vk}, 

there exists disjoint nonempty subsets V1,...,Vk of V 

(G) such that G[Vi] is connected for all i with e(Vi,Vj) 

> 0 at each time vivj ∈ E(Kk). 

Lemma 3.3 Consider the signed graph Gσ. Gσ has Kk-

minor if, and only if, there are disjoint signed trees 

with vertices (T1,...,Tk) in Gσ and some set V (G) ⊇ X 

such that: 1. for every i ∈{1,...,n} δG(X) ⊇ E(Ti) ; 

2. ∀(1 ≤ i < j ≤ k), ∃(uv) ∈ E(G) − δG(X) where u ∈ V 

(Ti), v ∈ V (Tj). 

Theorem 3.4 Assume that a signed graph G− does not 

have (Kk+1,−)-minor, then χc(G−σ) ≤ 3 

4. Main theorem and some results 

In this section, we first prove two useful lemmas 4.1 

and 4.2 and theorem 4.3. We then conclude the 

section with the proof of Theorem 3.4. 

A vertex at the top of a graph is one adjacent to all the 

others. When v was a vertex on graph G and G−v has 

Kk-minor, obviously G also has Kk+1-minor. Similar 

results for signed graphs are less obvious. 

Lemma 4.1 Consider Gσ is a signed graph, v a vertex 

of Gσ, and be H = G−v. When (H,σ) has Kk-minor, Gσ 

has Kk+1-minor. 

Proof. By the lemma 3.3, there exist disjoint signed 

trees at vertices (T1,...,Tk) in Gσ, and a set X ⊆ V (G) 

such that : 

1. for each i ∈{1,...,n} δG(X) ⊇ E(Ti); 

2. ∀(1 ≤ i < j ≤ k), ∃(uv) ∈ E(G) − δG(X) with u ∈ V 

(Ti) and v ∈ V (Tj). 

Let us consider i,j distinct. By (2), we cannot have X 

⊇ V (Ti) and V (Tj) − X = ∅. Therefore, replacing X by 

V (H)−X, we can assume V (Ti)−X = ∅, ∀i ∈ 1,...,k. 

Let Tk+1 be the signed tree in Gσ consisting of the 

single vertex v. Now through the lemma 3.3, Gσ has a 

Kk+1-minor. 

Lemma 4.2 Consider Gσ and (Kk,π) as signed graphs, 

where V (Kk) = {v1,...,vk}. Let (Kk,π) be a minor of Gσ, 

and have this be proved by the disjoint nonempty 

subsets V1,...,Vk from Lemma‘ 3.2. Assume that no 

proper sub-graph of Gσ contains (Kk,π) as a minor. 

Then 

1. Each G[Vi] is minimally connected, i.e., a signed 

tree 

2. Whenever vivj ∈ E(Kk), we have e(Vi,Vj) = 1. 

3. Whenever vivj ∈/ E(Kk) then e(Vi,Vj) = 0. 

4. For every leaf w of a signed tree G[Vi] of size 

larger than 1, we can find some j    i such that 

e({w},Vj) > 0 5. G[Vi] has at most d(vi) leaves 

5. V1,...,Vk cover V (G). 

Proof. If the first assertion were false, then we would 

be able to delete an edge of Vi to get a proper sub-

graph G
1

σ of Gσ, where G
1
[Vi] is still connected, thus 

the same sub-sets V1,...,Vk would testify that the 

proper subgraph G
1

σ has a Kk-minor. 

If the second assertion were false, so there would be 

at least two edges from some Vi to some Vj, and if we 

remove one of them, we get a proper subgraph G
2

σ of 

Gσ, where G[Vi] = G
2
Vi] for each i, and there is still 

an edge in G
2

σ from Vi to Vj every time vivj ∈ E(Kk). So 

the same subsets V1,...,Vk would testify that the proper 

sub-graph G
2

σ has a Kk-minor. 

If the third assertion were false, then we might find 

vivj ∈/ E(H) with an edge between Vi and Vj. Deleting 

this edge gives a suitable sub-graph G
3

σ of Gσ, where 

G[Vi] = G
3
[Vi] for each i. So the same subsets V1,...,Vk 

would testify that the proper sub-graph G
2

σ has a Kk-

minor. 

If the fourth statement were false, then we can delete 

w to obtain a signed tree G[Vi]−w = G[Vi \ w]. This is 

always non-empty and connected, and there is always 
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an edge in the proper subgraph G
4 
= G − w of Gσ from 

Vi \{w} to Vj whenever vivj ∈ E(Kk). Thus, the subsets 

V 1,...,Vi \{w},...,Vk would show that the proper 

subgraph G
4 

= G − w has a Kk-minor. 

We shall use the claims above to prove the fifth 

assertion. With no loss G[Vi] has more than one 

vertex (otherwise G[Vi] has a single vertex, of degree 

zero it is not a leaf). There exists an injective function 

of the set of G[Vi] → vj, where vj is a neighbor of vi. 

This set is yielded by sending a leaf w at any fixed 

choice of j as given by the fourth claim. Since 

e({w},Vj) > 0, by the third claim vj is a neighbor of vi, 

so this function is well defined. It is an injection since 

if any two leaves w,w
′ 
are sent to the same j, then 

there are edges of w in Vj and w
′ 
in Vj. By the second 

claim, w = w
′
. 

If the sixth claim were false, then V1,...,Vk would 

testify that the proper subgraph G[V1 ∪ ... ∪ Vk] of Gσ 

has a Kk-minor. 

Now we are prepared to resolve the theorem 1.1; for 

convenience, we rephrase it here to the 

contrapositive. 

Theorem 4.3 For every signed graph G−, and when 

G− is non-circular 3-colorable, G− has a (Kk+1,−) -

minor. 

Proof. This result is true when k = 2. We suppose the 

result holds for k = n − 1 ≥ 2, and consider the case 

when k = n. Consider (G,−) as a 3-colorable non-

circular signed graph. We do not lose any generality 

by considering (G,−) as connected. So consider v ∈ V 

(G), and consider T as a signed tree with width (G,−) 

expanded by v. Now, for every i ∈ N let Vi ⊆ V (G) 

denote the collection of vertices at distance i from v in 

T and let (Hi,π) represent the subgraph of (G,−) that is 

induced from Vi. 

Consider C∗ 
= E(G) − (E(H1) − E(H2)). Since C∗ 

is a 

cut, restriction of G− to C∗ 
is circular 2-colorable. 

Then since G− is not circular 3-colorable, G − C∗ 
is 

not circular 3colorable. Then the components of G − 

C∗ 
are (H0,H1,...), so there is i ∈ N so that Hi is non 

circular 3-colorable. By induction hypothesis (Hi,π) 

has a Kk-minor. Suppose  was obtained by adding a 

vertex to (Hi,π). Notice that  is a minor of Gσ. By 

the lemma 4.1,  has Kk+1-minor, as does Gσ. 

Proof of Theorem 3.4 

Suppose G− is a signed graph with no (Kk+1,−)-minor 

such that χc(G−σ) ≥ 4. Then G− contains some 4-

contraction complete signed graph as a minor. 

Without loss of generality, we may assume that G− is 

chosen to be 4-contraction complete signed graph. By 

Theorem 4.3, (G,−) as a 3-colorable non-circular 

signed graph. We do not lose any generality by 

considering (G,−) as connected.So consider v ∈ V 

(G), and consider T as a signed tree with width (G,−) 

expanded by v. Now, for every i ∈N let Vi ⊆ V (G) 

denote the collection of vertices at distance i from v in 

T and let (Hi,π) represent the subgraph of (G,−) that is 

induced from Vi. From lemma 4.1,  has Kk+1-minor, 

as does Gσ. By the lemma 3.3, there exist disjoint 

signed trees at vertices (T1,...,Tk) in Gσ, and a set X ⊆ 

V (G) such that : 

1. for each i ∈{1,...,n} δG(X) ⊇ E(Ti); 

2. ∀(1 ≤ i < j ≤ k), ∃(uv) ∈ E(G) − δG(X) with u ∈ V 

(Ti) and v ∈ V (Tj). 

Let us consider i,j distinct. By (2), we cannot have X 

⊇ V (Ti) and V (Tj)−X = ∅. Therefore, replacing X by 

V (H) − X, we can assume V (Ti) − X = ∅, ∀i ∈ 1,...,k. 

Let Tk+1 be the signed tree in Gσ consisting of the 

single vertex v. Now through the lemma 3.3, Gσ has a 

Kk+1-minor. Consider C∗ 
= E(G) − (E(H1) − E(H2)). 

Since C∗ 
is a cut, restriction of G− to C∗ 

is circular 2-

colorable. Then since G− is not circular 3-colorable, G 

− C∗ 
is not circular 3-colorable. Then the components 

of G − C∗ 
are (H0,H1,...), so there is i ∈ N so that Hi is 

non circular 3-colorable. By induction hypothesis 

(Hi,π) has a Kk-minor. In particular, there must be two 

vertices of degree 4 which are not adjacent, and so G− 

contains two different K5 subgraphs. Since G− is 3-

connected by Theorem 4.3, it follows from lemma 4.1 

G− has Kk+1-minor, as does Gσ, a contradiction. This 

contradiction completes the proof. 
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