
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 6 Issue 7, November-December 2022 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD52530 | Volume – 6 | Issue – 7 | November-December 2022 Page 1021

Redux State Management System - A Comprehensive Review

Krutika Patil

Master of Science in Computer Science, The University of Texas at Dallas, Tracy, CA, USA

ABSTRACT

Reactivity is a common trait of JavaScript applications and comes
with efficient state management. Any JavaScript application has
multiple ways of managing state; for example, in React, we can use
"useState” and “useReducer" Hooks. However, another third-party
library called Redux has grown in popularity to be an efficient state
management tool in JavaScript applications. This paper makes an in-
depth review of the Redux state management system. It is famously
used with React as a state-management tool and by other JavaScript
frameworks as well. Redux is most suitable for applications with
frequent updates to the state since Redux has better efficiency in a
flux-like setup than React's Context API.

KEYWORDS: ReactJs, Redux, state management, web development,

JavaScript frameworks, React context, cross-component state, app-

wide state, local state

How to cite this paper: Krutika Patil
"Redux State Management System - A
Comprehensive Review" Published in
International Journal
of Trend in
Scientific Research
and Development
(ijtsrd), ISSN: 2456-
6470, Volume-6 |
Issue-7, December
2022, pp.1021-
1027, URL:
www.ijtsrd.com/papers/ijtsrd52530.pdf

Copyright © 2022 by author (s) and
International Journal of Trend in
Scientific Research
and Development
Journal. This is an
Open Access article distributed under
the terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

INTRODUCTION
Redux is a third-party JavaScript library. It has
quickly gained recognition in the front-end world as
the most efficient state-management system in an
application with frequent state updates. It is a state-
management system for cross-component and app-
wide states. To understand the concept of various
states, let us classify the different types of states.

There are three states in a JavaScript application.

Figure 1: Classification of States in a

JavaScript application

� Local state - a state limited to a single
component. For example, listening to a click event

for a button or a user input for a text field. Usually
handled in React applications by the “useState” or
the “useReducer” hook.

� Cross-component state - a state that affects
multiple components. For example, opening and
closing a modal overlay. In the case of a cross-
component state, multiple components share the
state. We achieve this state management using
prop chains and prop drilling.

� App-wide state - affects the entire application or,
at least, most components. One example of this
could be the authentication status. Whether
authenticated or not, the components might choose
to hide, show, or update the content they render.
We can use prop drilling and prop chains to
achieve this state management.

In the case of Cross-component and App-wide
states, the "prop-drilling" and "prop-chaining" can
get cumbersome since the props get passed around
component hierarchies which might increase the
chances of introducing defects in the logic. We can
instead use the Redux library to manage the state
for us in these cases. Redux maintains a central data
store that the components can subscribe to and then

IJTSRD52530

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD52530 | Volume – 6 | Issue – 7 | November-December 2022 Page 1022

dispatch specific actions if the state needs to be
updated.

These concepts are depicted diagrammatically in
Figure 1.

CORE CONCEPTS OF REDUX

A. Central Data Store

Figure 2: Core Concepts of Redux

Redux has a single central data store.

Components can subscribe to a store to get any
updates to the state or a part of the state. The
components would also need a way to change the
state. One important thing is that components never
directly change or mutate a store. Instead, we use the
Reducer function.

B. Reducers

A reducer is a programming concept. It is a function
that is responsible for mutating or updating the store.
A reducer is a pure function, meaning it should always
produce the same output for the same input. We
should not add side-effect logic (API calls or reading
and writing to local storage) in the reducer functions.
The components must use the reducers if they need to
change or update the store. A reducer function always
needs to be triggered by a component—for example,
clicking a button or a user input on a text field. Hence,
we need a way for components to do that. The concept
of actions comes into play here.

C. Actions

The components dispatch or trigger actions, and the
actions are JavaScript objects which include the
description of the action and optionally contain a
payload. The components dispatch these actions
that contain a description of the intended action.
The redux then forwards these actions to the
reducer. The reducer reads the action description
that describes the action and updates or mutates the
state accordingly. We need to note here that
components DO NOT directly update the store.
Instead, the components dispatch actions, which get
forwarded to the reducers. The reducer then spits a

new state that replaces the existing state in the
central data store. When the central state updates,
the components that have subscribed to the store
receive notifications instantly so that the
components can update their UI. Figure 2 above
describes in detail the concepts we discussed in this
section.

BASIC REDUX EXAMPLE IN JAVASCRIPT

A. Setting up the central data store

Consider the below script in Figure 3.

Figure 3 Basic redux script in JavaScript

Let us see the core concepts of Redux discussed in
the previous section in action using the example
above in Figure 3. First off, we import redux using
the statement below in Figure 4.

Figure 4 System to import redux in a

JavaScript application

The require("redux") expression returns a redux
const that will be our Hook to the central data store.

Next, let us create the central store on which the
redux state management functionality depends. We
can create a store using the statement below in
Figure 5.

Figure 5: Syntax to create a central data store

in a JavaScript application

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD52530 | Volume – 6 | Issue – 7 | November-December 2022 Page 1023

The function legacy_createStore returns a store
object. The components subscribe to this store. It also
takes in an argument which is our reducer. The
reducer function mutates the store by spitting out a
new state snapshot that replaces the previous one.
Hence, this becomes the input to the
legacy_createStore function.

Next, let us look at the way to create a reducer.
Consider the code below in Figure 6. A reducer is a
JavaScript function. It takes in two arguments: state
and action. The state is the current state snapshot and
is forwarded to the reducer by redux. The second
argument, "action”, is passed to the reducer by the
components. This argument action contains a property
type that describes the type of action. Based on the
type of action, a particular state snapshot gets returned
by the reducer. This state snapshot replaces the
existing state in the central store.

Figure 6 A typical redux reducer function

Components can subscribe to the store using the
function below in Figure 7.

Figure 7 Subscriber function to a Redux store

In the example above in Figure 7, the subscriber is a
function that executes the logic to get the updates
from the store using the store.getState(). As the state
in the central store changes, the components
subscribed to the store get notified instantly to update
the UI.

The components can update the state by dispatching
specific actions using the logic in Figure 8.

Figure 8 Logic to dispatch a Redux action

We dispatch the action to increment the flag state in
the above code. The dispatch function takes in an
argument that is a JavaScript object and contains the
type property. This property describes the type of
action. We may also send a payload if we update the
state to a specific value.

Figure 9 A Redux Reducer function in

JavaScript

The dispatched action is forwarded to the reducer
function by redux. An example of that is depicted
above in Figure 9.

We dispatch three actions in our script.
� store.dispatch({type: 'increment'});

� store.dispatch({type: 'increment'});

� store.dispatch({type: 'increment', payload: 50});

Hence, our output would be as depicted in Figure 10.
The first output is for the action increment that
increases the flag value to 1 from its initial value of 0.
The second output is for the dispatched action
decrement that decrements the flag value to 0 from 1.
Furthermore, the third value is due to the action
"incrementBy", which also contained a payload of 50.
The action increments the flag by 50 from 0.

Figure 10 Output of the script depicted in Figure

3

USING REDUX IN A REACT APPLICATION

Consider a simple react project below in Figure 11. It
prints out the value of the flag that is initially 0. There
are four buttons to perform various operations that we
will cover soon.

Figure 11 A simple React App

Let us now install redux into the application. To do
that, we need to get the reduxjs/toolkit, a third-party
package that makes working with redux very easy.
The command to install redux is depicted below in
Figure 12.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD52530 | Volume – 6 | Issue – 7 | November-December 2022 Page 1024

Figure 12 Command to install reduxjs/toolkit

library in a React Application.

Next, we will install react-redux, another package
that gives us access to libraries responsible for
dispatching actions and subscribing to a store. The
syntax is depicted below in Figure 13.

Figure 13 Command to install react-redux in a

React Application.

Once done, let us go ahead and create our central store
that stores the state. A vital feature given by the redux
toolkit is that we can have slices of the state. We can
split the state into two slices for our current React
application in Figure 11. A UI Slice manages the state
to display or hide the flag; a Flag Slice could maintain
the flag state.

Let us start by creating the UI Slice. We must import
the createSlice library from the redux toolkit to create
our slice script. Figure 14 depicts the syntax.

Figure 14 Syntax to import createSlice hook

function from reduxjs/toolkit

The createSlice is a function. It takes in an object
with the following three properties: a name property
that uniquely identifies the state slice, an initialState
property with which the state gets initialized, and the
reducers property where we can list the various
actions supported by this slice.

The logic to create a state slice looks as below in
Figure 15.

Figure 15 Logic to create a state slice to toggle

the flag visibility

Here, the reducers property is, in turn, an object with
various actions that are supported. We see that
toggleFlag modifies the state by flipping the previous
value. We notice here that the initial state is true.

Similarly, let us also create the flagSlice. We will
have three actions in the flagSlice as supported by the
reducer. The export flagSlice.reducer gives us access
to this reducer. The components use the export
"flagActions" to dispatch various actions.

Our next step is to configure these reducers in our
store. Let us create a new script file and import
configureStore from reduxjs/toolkit. The syntax is
depicted below in Figure 16.

Figure 16 Syntax to import configureStore from

reduxjs/toolkit

This function configureStore takes in an argument
which is a JavaScript object. This JavaScript object
needs to list out the reducers. We can achieve this by
adding an object with property reducers, and its value
could be another object with any key that the user
prefers and its value being a reducer. Below in Figure

17, we have configured both the reducers into the
store.

Figure 17 Configuring a Redux store in React by

combining multiple state slices.

The store needs to be made available to the entire
application. We can do this in the index.js file in the
root folder. Import the store from the store folder. We
also need to import Provider from the react-redux
library. The Provider is a React element, and by
wrapping it around our main App component, we will
make the store available to the app. The Provider
element takes in a prop, the store object imported from
the redux script. The code looks like the one below in
Figure 18.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD52530 | Volume – 6 | Issue – 7 | November-December 2022 Page 1025

Figure 18 Making the Redux store available to

the entire application

Following the above steps, we successfully set up our
React application with Redux. The following section
discusses how to dispatch an action on the store and
subscribe to the store.

B. Dispatching Actions to the central data store

The components need to import the “useDispatch”
Hook from react-redux. This Hook, when executed,
gives us a dispatch constant that we can use to trigger
our actions. The logic to import useDispatch Hook is
as below in Figure 19.

Figure 19 Syntax to import the useDispatch

Hook from react-redux library

Execute the useDispatch Hook inside the component
to retrieve a dispatch constant, as depicted in Figure
20.

Figure 20 Executing useDispatch Hook to

retrieve a dispatch constant.

Next, we would like to dispatch specific actions when
clicking the buttons. For example, the Toggle Flag
button will show or hide the flag. The Increment
button will increment the flag. The Decrement button
will decrement the flag. Furthermore, we need to
increment the flag by a certain number upon clicking
the "Increment By 10" button. For this, let us import
the actions from our reducer scripts. The syntax is
depicted below in Figure 21.

Figure 21 Importing the Reducer actions from

the Reducer scripts

Let us consider clicking on the button Toggle Flag.
We want to show or hide the flag when clicking this
button. We essentially dispatch the action
“toggleFlag" in this case which gets forwarded to the
Reducer by Redux. The syntax is depicted below in
Figure 22.

Figure 22 Dispatching a Redux Action from a

component

The function toggleFlagHandler dispatches the
toggleFlag action, and as we know, the toggleFlag
action in the uiActions reducer flips the showFlag
state.

Similarly, consider incrementing the flag by clicking
on the Increment button. The button's onClick
handler executes the incrementHandler function that
dispatches the incrementFlag action. We have
depicted the same in Figure 23.

Figure 23 Dispatching increment Flag,

decrement Flag and increment By actions

C. Subscribing to the store

The components need to import the "useSelector”
Hook from the react-redux library to get updates from
the store. The import syntax is depicted below in
Figure 24. When the central state in the store updates,
the subscribing components get updated instantly.

Figure 24 Syntax to import “useSelector” Hook

from ‘react-redux’ library

We need to execute the "useSelector" Hook inside the
components only. It takes in an argument that is a
state and returns the specific state that we need. The
logic looks like below. When we set up our store, we
added keys to the specific reducers ui and flag. Hence,
while retrieving the state, we need to use these keys to
refer to a state of our choice. We have depicted the
same in Figure 25.

Figure 25 Syntax to retrieve the state from the

store

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD52530 | Volume – 6 | Issue – 7 | November-December 2022 Page 1026

The retrieved state showFlag updates whenever the
state.ui.showFlag changes, thereby re-rendering the
component. The exact mechanism applies to the other

buttons that trigger their actions, resulting in reducers
performing appropriate state updates based on the
action types.

RESULTS

The initial state of the UI is depicted below in Figure

26.

Figure 26 Initial state of the UI

Below are the results on the UI due to clicking on
Increment, Decrement, Increment By 10, and
Toggle Flag buttons, respectively. These are depicted
respectively in Figure 27 - 30.

The first action triggered due to a click event on the
"Increment” button is the “incrementFlag" action.
The initial state 0 of the "flag" got updated to 1.

The second action triggered due to a click event on the
"Decrement” button is the “decrementFlag" action.
The initial state 1 of the "flag" got updated to 0.

The third action triggered due to a click event on the
"Increment By 10” button is the “incrementBy”
action. The initial state 0 of the "flag" got updated to
50.

The fourth action triggered due to a click event on the
"ToggleFlag” button is the “toggleFlag” action. With
the initial state of the “showFlag” state in the store
being “true", it was updated to “false”.

Since the components have subscribed to the store, the
updates are reflected on the UI instantaneously.

Figure 27 UI State after clicking on the

“Increment” button

Figure 28 UI State after clicking on the

“Decrement” button

Figure 29 UI State after clicking on the

“Increment By 10” button

Figure 30 UI State after clicking on the “Toggle

Flag” button

CONCLUSION

This paper attempts to dive deep into the features of
the Redux state management mechanism. We started
with understanding managing the state in an
application and looked at various aspects of Redux,
like the central data store, actions, and reducers.
Also, we discussed the subscription mechanism of
the components to the store to get instant updates. We
looked at how we can split the state into multiple
slices that serve a specific purpose. The reducers can
update the slices only, and behind the scenes, the
Redux will combine the state snapshot into the overall
state. The feature of Redux discussed in this paper
helps us de-clutter the logic into respective scripts and
helps make the code easy to maintain. The Redux
statement system can be a good option in a flux-like
system with frequent updates to the state.

REFERENCES

[1] Krutika Patil, Sanath Dhananjayamurty Javagal,
"React state management and side-effects – A
Review of Hooks", IRJET Journal, volume 9,
2022,
https://www.irjet.net/archives/V9/i12/IRJET-
V9I1225.pdf.

[2] https://www.udemy.com/course/react-the-
complete-guide-incl-
redux/learn/lecture/25599228?start=405#overvi
ew

[3] Shravan G V, Anitha Sandeep.
"COMPREHENSIVE ANALYSIS OF REACT-
REDUX DEVELOPMENT FRAMEWORK",
International Journal of Creative Research
Thoughts (IJCRT), ISSN:2320-2882, Vol.8,
Issue 4, pp.4230-4233, April 2020, URL:
http://www.ijcrt.org/IJCRT2004607

[4] Banks, Alex, and Eve Porcello. Learning React:
functional web development with React and
Redux. " O'Reilly Media, Inc.", 2017.

[5] Caspers, Matthias Kevin. "React and redux."
Rich Internet Applications w/HTML and
Javascript 11 (2017).

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD52530 | Volume – 6 | Issue – 7 | November-December 2022 Page 1027

[6] Chinnathambi, Kirupa. Learning React: A
Hands-on Guide to Building Web Applications
Using React and Redux. Addison-Wesley
Professional, 2018.

[7] McFarlane, Timo. "Managing State in React
Applications with Redux." (2019).

[8] Roldan, Carlos Santana. React Cookbook:
Create dynamic web apps with React using
Redux, Webpack, Node. js, and GraphQL.

Packt Publishing Ltd, 2018.

[9] Bugl, Daniel. Learning Redux. Packt Publishing
Ltd, 2017.

[10] Pronina, Daria, and Iryna Kyrychenko.
"Comparison of Redux and React Hooks
Methods in Terms of Performance."
Proceedings http://ceur-ws. org ISSN 1613
(2022): 0073

