Slightly Normal Topological Spaces of the First Kind and the Second Kind and the Third Kind

S. K. Biswas, S. Majumdar, N. Akhter
Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh

Abstract

In this paper further new generalizations of normal spaces have been made. These have been called slightly normal spaces of the first kind, the second kind and the third kind respectively. A number of important properties of these spaces have been proved.

KEYWORDS: Slightly normal spaces, open set, closed set, finite collection, countable collection, quotient space

How to cite this paper: S. K. Biswas |S. Majumdar |N. Akhter "Slightly Normal Topological Spaces of the First Kind and the Second Kind and the Third Kind" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470,
 Volume-6 | Issue-7, December 2022, pp.796-801, URL: www.ijtsrd.com/papers/ijtsrd52435.pdf

Copyright © 2022 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the
 terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

1. INTRODUCTION

This is the sixth in a series of our papers. The first, the second, the third, the fourth and the fifth such papers has appeared in 2018([9],[10],[11]), 2020[8] and in 2021[7].Two types of generalizations of normal spaces different from those considered in the last paper 2021[7] have been defined in this paper. A topological space X in which a particular pair of disjoint closed subsets can be separated by disjoint open sets will be called a slightly normal space of the first kind. Generalizing this concept, we shall call a topological space X a slightly normal space of the second kind (third kind) if there is a finite (countable) collection of mutually disjoint closed subsets in X, for which each pair can be separated by disjoint open sets. We have studied these classes closely, and established a number of important properties of these spaces which resemble those of normal spaces.
We have used the terminology and definitions of text book of S. Majumdar and N. Akhter [1], Munkres [2], Dugundji [3], Simmons [4], Kelley [5] and HockingYoung [6].

We now define slightly normal spaces of the first kind and proceed to study them.
2. Slightly Normal Spaces of the First Kind

Definition 2.1: A topological space X will be called slightly normal of the first kind (s. n. f. k.) if there exist two disjoint nontrivial closed sets $\mathrm{F}_{1}, \mathrm{~F}_{2}$ in X such that F_{1} and F_{2} can be separated by disjoint open sets. This space will be denoted by ($\mathbf{X} ; \mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}}$).
Example 2.1: Every normal space is slightly normal space of the first kind.
Example 2.2: Let $X=\mathbb{R}, \mathfrak{Y}=\left\langle\mathbb{R}, \emptyset, \mathbb{Q}, \mathbb{Q}^{c},(2,3)\right\rangle$
\mathbb{Q} and \mathbb{Q}^{c} are closed sets in X and these being open also can be separated by disjoint open sets. However, $\mathbb{Q} \cap(2,3)$ and $\mathbb{Q}^{e} \cap(2,3)$ are two disjoint closed sets which can't be separated by disjoint open sets. Thus (X, \mathfrak{F}) is s. n. f. k. but not normal. Here $X=\left(X ; \mathbb{Q} \mathbb{Q}^{c}\right)$.

Example \quad| 2.3: |
| :--- |
| $X=\mathbb{R}, \widetilde{\Im}=\left\langle\mathbb{R}, \emptyset,(1,4),(1,4)^{\circ},(5,7)^{\circ}\right\rangle$ |\quad Let

Then the disjoint closed sets $(1,4)$ and $(1,4)^{c}$ can be separated by disjoint open sets, but $(1,4)$ and $(5,7)$ are disjoint closed sets and these can't be separated by disjoint open sets. Thus ($\boldsymbol{X}, \boldsymbol{7}$) is s. n. f. k. but not normal. Here $X=\left(X,(1,4),(1,4)^{c}\right)$.

Comment 2.1: It is easy to see that there are infinitely many s. n. f. k. which are not normal.

Theorem 2.1: Every normal space is slightly normal space of the first kind but the converse is not true in general.
Proof: Let X be a normal space. Let F_{1}, F_{2} be two disjoint nontrivial closed sets in X . Now, since X is normal, there exist disjoint open sets G_{1}, G_{2} in X such that $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$. Therefore X is slightly normal space of the first kind.
To see that the converse is always not true,
let $\begin{gathered}X=\{a, b, c, d, e\}, \mathcal{I}=\{X, \Phi,\{a, b\},\{a, b, e\},\{e\}, \\ \{a, b, c, d\},\{b, c, d, e\},\{b\},\{b, e\},\{b, c, d\}\}\end{gathered}$.
Then (X, \mathfrak{I}) is a topological space in which the closed sets of $\quad \mathrm{X} \quad$ are $\mathrm{X}, \Phi,\{c, d, e\},\{e\},\{a, b, c, d\},\{c, d\},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}\},\{\mathrm{a}$, $\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}\}$.
The closed sets $\{a, b, c, d\}$ and $\{\mathrm{e}\}$ can be separated by $\{a, b, c, d\}$ and $\{\mathrm{e}\}$, but the closed sets $\{c, d, e\}$ and $\{\mathrm{a}\}$ cannot be separated by disjoint open sets. Thus (X, \mathfrak{I}) is slightly normal space of the first kind but not normal.
Theorem 2.2: A topological space X is slightly normal space of the first kind if and only if there exist two disjoint nontrivial closed sets $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and an open set G such that $F_{1} \subseteq G \subseteq \bar{G} \subseteq F_{2}{ }^{c}$.
Proof: First, suppose that X is slightly normal space of the first kind. Then there exist disjoint nontrivial closed sets $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and open sets G, H in X such that $F_{1} \subseteq G$ and $\quad F_{2} \subseteq H \quad$ and $G \cap H=\phi$. It follows that $G \subseteq H^{c} \subseteq F_{2}{ }^{c}$. Hence $G \subseteq \bar{G} \subseteq H^{c} \subseteq F_{2}{ }^{c}$. Thus, $F_{1} \subseteq G \subseteq \bar{G} \subseteq F_{2}{ }^{c}$.
Conversely, suppose that there exist disjoint nontrivial closed sets $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and an open set G in X such that $F_{1} \subseteq G \subseteq \bar{G} \subseteq F_{2}{ }^{c}$. Here $F_{1} \subseteq G$ and $F_{2} \subseteq \bar{G}^{c}$. Let $\bar{G}^{c}=H$. Then H is open, $F_{2} \subseteq H$ and $G \cap H=\phi$. Hence X is slightly normal space of the first kind.

Theorem 2.3: Let $\left\{X_{i}\right\}_{i \in I}$ be a non-empty family of topological spaces, and let $\mathrm{X}=\prod_{i \in I} X_{i}$ be the product space. If each X_{i} is slightly normal of the first kind, then X is slightly normal of the first kind.
Proof: Since each X_{i} is slightly normal of the first kind, there exist for each i , two nontrivial closed sets $\mathrm{F}_{\mathrm{i}}, \mathrm{H}_{\mathrm{i}}$ and two open sets $\mathrm{U}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}$ in X_{i} such that $F_{i} \subseteq U_{i}, H_{i} \subseteq V_{i}, F_{i} \cap H_{i}=\phi, U_{i} \cap V_{i}=\phi$.
Let $\mathrm{F}=\prod_{i \in I} F_{i}, \mathrm{H}=\prod_{i \in I} H_{i}$. Then F and H are closed sets in X. Clearly, $F \cap H=\phi$. Let $U=\prod_{i \in I} U_{i}$, $V=\prod_{i \in I} V_{i}$. Then, U and V are open sets in X , and $F \subseteq U, H \subseteq V$ and $U \cap V=\phi$. Therefore, X is slightly normal space of the first kind.
Theorem 2.4: Every open and one-one image of a slightly normal space of the first kind is slightly normal space of the first kind.
Proof: Let X be a slightly normal space of the first kind and Y a topological space and let $f: X \rightarrow Y$ be an open and onto mapping. Since X is slightly normal space of the first kind, there exist disjoint nontrivial closed sets F_{1}, F_{2} and disjoint open sets G_{1}, G_{2} in X such that $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$. Since f is open, $f\left(F_{1}^{c}\right)$ and $f\left(F_{2}^{c}\right)$ are open in Y . So $\left(f\left(F_{1}^{c}\right)\right)^{c}$ and $\left(f\left(F_{2}^{c}\right)\right)^{c}$ are closed in Y.

Now, $\quad F_{1}^{c} \cup F_{2}^{c}=\mathrm{X} \quad$ and \quad so $f\left(F_{1}^{c} \cup F_{2}^{c}\right)=\mathrm{Y}$, i.e., $f\left(F_{1}^{c}\right) \cup f\left(F_{2}^{c}\right)=\mathrm{Y}$.

Hence
$\left(f\left(F_{1}^{c}\right)\right)^{c} \cap\left(f\left(F_{2}^{c}\right)\right)^{c}=\Phi . \quad$ Let $y \in\left(f\left(F_{1}^{c}\right)\right)^{c}$.
Then $y \notin f\left(F_{1}^{c}\right)$ i.e., for every $x \in F_{1}^{c}, f(x) \neq y$. Hence there exists $x_{1} \in F_{1}$ such that $f\left(x_{1}\right)=y$, since f is onto. Thus $y \in f\left(F_{1}\right)$. Hence $\left(f\left(F_{1}^{c}\right)\right)^{c} \subseteq f\left(F_{1}\right)$. Similarly, $\left(f\left(F_{2}^{c}\right)\right)^{c} \subseteq f\left(F_{2}\right)$.

Now, $f\left(F_{1}\right) \subseteq f\left(G_{1}\right), f\left(F_{2}\right) \subseteq f\left(G_{2}\right), \mathrm{f}$ being open and one-one, $f\left(G_{1}\right), f\left(G_{2}\right)$ are open and disjoint in Y . Thus for the disjoint nontrivial closed sets $\left(f\left(F_{1}^{c}\right)\right)^{c},\left(f\left(F_{2}^{c}\right)\right)^{c}$ in Y and there exist disjoint open sets $f\left(G_{1}\right), f\left(G_{2}\right)$ in $\quad \mathrm{Y} \quad$ such that $\left(f\left(F_{1}^{c}\right)\right)^{c} \subseteq f\left(G_{1}\right)$ and $\left(f\left(F_{2}^{c}\right)\right)^{c} \subseteq f\left(G_{2}\right)$.Hence Y is slightly normal space of the first kind.

Corollary 2.1: Every quotient space of a slightly normal space of the first kind is slightly normal space of the first kind.

Proof: Let X be a slightly normal space of the first kind and R is an equivalence relation on X . Since the projection map $\mathrm{p}: \mathrm{X} \rightarrow \frac{X}{R}$ is open and onto, the corollary then follows from the above Theorem 2.4.
Theorem 2.5: Let X be a slightly normal space of the first kind and Y is a subspace of X . Then Y is a slightly normal space of the first kind.
Proof: Since X is slightly normal space of the first kind, there exist disjoint nontrivial closed sets F_{1}, F_{2} and disjoint open sets G_{1}, G_{2} in X such that $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$. Let $H_{1}=Y \cap F_{1}$ and $H_{2}=Y \cap F_{2}$. Then H_{1}, H_{2} are closed in Y and $H_{1} \cap H_{2}=\Phi$. Also let $V_{1}=Y \cap G_{1}, \quad V_{2}=Y \cap G_{2} . \quad$ Then $V_{1} \cap V_{2}=\Phi$ and $H_{1} \subseteq V_{1}, H_{2} \subseteq V_{2}$. Hence Y is slightly normal space of the first kind.

Remark 2.1: The corresponding theorem does not hold for normal spaces. The validity of the proof in Theorem 2.5 above depends on the separablity of a particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of Munkres [12]).
Comment 2.1: A continuous image of a slightly normal space of the first kind need not be slightly normal space of the first kind.
For if $\left(X, T_{1}\right)$ is a slightly normal space of the first kind) and (X, T_{2}) a space with the indiscrete topology, then the identity map $1_{x}: X \rightarrow X$ is continuous and onto. But $\left(X, T_{2}\right)$ is not slightly normal space of the first kind.

Theorem 2.6: Each compact Hausdorff space is slightly normal space of the first kind.
Proof: Let X be a compact Hausdorff space and let A, B be two disjoint closed subsets of X . Let $x \in A$ and $y \in B$. Then $x \neq y$. Since X is Hausdorff, there exist disjoint open sets G_{y} and H_{y} such that $x \in G_{y}$ and $y \in H_{y}$. Obviously $\left\{H_{y}: y \in B\right\}$ is an open cover of B.
Since B is a closed subset of X, B is compact. So there exists a finite sub-cover $\left\{H_{y_{1}}, H_{y_{2}}, \ldots, H_{y_{m}}\right\}$ of B. Let $H_{x}=H_{y_{1}} \cup H_{y_{2}} \cup \ldots \cup H_{y_{m}}$ and $G_{x}=G_{y_{1}} \cap G_{y_{2}} \cap \ldots \cap G_{y_{m}}$. Then $B \subseteq H_{x}, x \in G_{x}$ and $H_{x} \cap G_{x}=\phi$. So for each $x \in A$ there exist two disjoint open sets G_{x} and H_{x} of X such that
$x \in G_{x}$ and $B \subseteq H_{x}$. Hence $\left\{G_{x}: x \in A\right\}$ is an open cover of A. Since A is a closed subset of X, A is compact. So there exists a finite sub$\operatorname{cover}\left\{G_{x_{1}}, G_{x_{2}}, \ldots, G_{x_{n}}\right\}$ of this cover A. Let $G=G_{x_{1}} \cup G_{x_{2}} \cup \ldots \cup G_{x_{n}}$ and $H=H_{x_{1}} \cap H_{x_{2}} \cap \ldots \cap H_{x_{n}}$. Then G, H are open sets of X and $A \subseteq G, B \subseteq H$ and $G \cap H=\phi$.

Theorem 2.7: Every metric space is slightly normal space of the first kind.
Proof: Since every metric space is normal, therefore it is slightly normal space of the first kind.

We now define slightly normal spaces of the second kind and proceed to study them.

3. Slightly Normal Spaces of the Second Kind

Definition 3.1: A topological space X will be called slightly normal of the second kind (s. n. s. k) if there exists a finite collection \mathcal{F} of pairwise disjoint nontrivial closed sets in X such that, for each pair F_{1}, F_{2} in $\mathcal{F}, \mathrm{F}_{1}$ and F_{2} can be separated by disjoint open sets in X . This space will be denoted by $(\mathbf{X}, \mathcal{F})$.

$$
\begin{aligned}
& \text { Example } \\
& X=\mathbb{R}, \mathfrak{F}=\left\{\begin{array}{c}
\text { 3.1: } \\
\mathbb{R}, \emptyset, \mathbb{Q}, \mathbb{Q}^{c},(1,2),(1,2)^{c}, \\
(3,4),(3,4)^{c}, \cdots,(15,16),(15,16)^{c}
\end{array}\right\rangle
\end{aligned}
$$

$\operatorname{Let} \mathcal{F}=\{(1,2),(3,4),(5,6), \cdots,(15,16)\}$. Then \mathcal{F} is a finite collection of pair wise disjoint nontrivial closed sets in X such that, for each distinct pair $\mathrm{F}_{1}, \mathrm{~F}_{2}$ in \mathcal{F}, F_{1} and F_{2} can be separated by disjoint open sets, since each of these is open as well. Thus ($\boldsymbol{X}, \mathfrak{F}$) is s. n. s.k.
However X is not normal since $\mathbb{Q} \cap(1,2)$ and $\mathbb{Q}^{C} \cap(1,2)$ can't be separated by disjoint open sets.
Here $X=(X ;(1,2),(3,4),(5,6), \cdots,(15,16)]$.
Comment 3.1: Obviously an infinite number of such examples can be constructed.
Theorem 3.1: A topological space X is slightly normal space of the second kind if and only if there exists a finite collection \mathcal{F} of pairwise disjoint nontrivial closed sets $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and an open set G such that $F_{1} \subseteq G \subseteq \bar{G} \subseteq F_{2}{ }^{c}$.
Proof: First, suppose that X is slightly normal space of the second kind. Then there exists a finite collection \mathcal{F} of pairwise disjoint nontrivial closed sets such that for each pair $\mathrm{F}_{1}, \mathrm{~F}_{2}$ in \mathcal{F}, there exist open sets G, H in X such that $F_{1} \subseteq G$ and $F_{2} \subseteq H$ and $G \cap H=\phi$. It follows that $G \subseteq H^{c} \subseteq F_{2}{ }^{c}$. Hence $G \subseteq \bar{G} \subseteq H^{c} \subseteq F_{2}{ }^{c}$. Thus, $F_{1} \subseteq G \subseteq \bar{G} \subseteq F_{2}{ }^{c}$.

Conversely, suppose that there exists a finite collection \mathcal{F} of pairwise disjoint nontrivial closed sets such that for each pair $\mathrm{F}_{1}, \mathrm{~F}_{2}$ in \mathcal{F}, there exist an open set G in X such that $F_{1} \subseteq G \subseteq \bar{G} \subseteq F_{2}{ }^{c}$. Here $F_{1} \subseteq G$ and $F_{2} \subseteq \bar{G}^{c}$. Let $\bar{G}^{c}=H$. Then H is open, $F_{2} \subseteq H$ and $G \cap H=\phi$. Hence X is slightly normal space of the second kind.
Theorem 3.2: Let $\left\{X_{i}\right\}_{i \in I}$ be a non-empty family of topological spaces, and let $\mathrm{X}=\prod_{i \in I} X_{i}$ be the product space. If each X_{i} is slightly normal of the second kind, then X is slightly normal of the second kind.

Proof: Since each X_{i} is slightly normal of the second kind, there exists for each i, a finite collection \mathcal{F} of pairwise disjoint nontrivial closed sets such that for each pair $\mathrm{F}_{\mathrm{i}}, \mathrm{H}_{\mathrm{i}}$ in \mathcal{F}, there exist open sets $\mathrm{U}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}$ in X_{i} such that $F_{i} \subseteq U_{i}, \quad H_{i} \subseteq V_{i}, \quad F_{i} \cap H_{i}=\phi$, $U_{i} \cap V_{i}=\phi$.

Let $\mathrm{F}=\prod_{i \in I} F_{i}, \mathrm{H}=\prod_{i \in I} H_{i}$. Then F and H are closed sets in X. Clearly, $F \cap H=\phi$. Let $U=\prod_{i \in I} U_{i}$, $V=\prod_{i \in I} V_{i}$. Then, U and V are open sets in X , and $F \subseteq U, H \subseteq V$ and $U \cap V=\phi$. Therefore, X is slightly normal space of the second kind.

Theorem 3.3: Every open and one-one image of a slightly normal space of the second kind is slightly normal space of the second kind.
Proof: The proof of the Theorem 3.3 of the above is almost similar to the proof of the Theorem 2.4.
Corollary 3.1: Every quotient space of a slightly normal space of the second kind is slightly normal space of the second kind.
Proof: The proof of the Corollary 3.1 follows from the proof of the Corollary 2.1.
Theorem 3.4: Let X be a slightly normal space of the second kind and Y is a subspace of X . Then Y is a slightly normal space of the second kind.
Proof: The proof of the Theorem 3.4 is most similar to the proof of the Theorem 2.5 .

Remark 3.1: The corresponding theorem does not hold for normal spaces. The validity of the proof in Theorem 3.4 above depends on the separablity of a particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of Munkres [12]).

Comment 3.1: A continuous image of a slightly normal space of the second kind need not be slightly normal space of the second kind.
For if $\left(X, T_{1}\right)$ is a slightly normal space of the second kind and $\left(X, T_{2}\right)$ a space with the indiscrete topology, then the identity map $1_{x}: X \rightarrow X$ is continuous and onto. But $\left(X, T_{2}\right)$ is not slightly normal space of the second kind.
Theorem 3.5: Each compact Hausdorff space is slightly normal space of the second kind.
Proof: The proof of the Theorem 3.5 of the above is almost similar to the proof of the Theorem 2.6.

We now define slightly normal spaces of the third kind and proceed to study them.

4. Slightly Normal Spaces of the Third Kind

Definition 4.1: A topological space X will be called slightly normal of the third kind (s. n. t. k) if there exists a countable collection \mathcal{G} of pairwise disjoint nontrivial closed sets in X such that, for each pair F_{1}, F_{2} in \mathcal{C}, F_{1} and F_{2} can be separated by disjoint open sets in X . This space will be denoted by $(\mathbf{X}, \boldsymbol{C})$.

Example

4.1:

Let $X=\mathbb{R}, \mathfrak{F}=\left\{\begin{array}{c}\left.\mathbb{R}, \emptyset_{,}, \mathbb{Q}, \mathbb{Q}\right\} \cup \\ \left\{(n, n+\mathbb{1}),(n, n+\mathbb{1})^{c} \mid n \in \mathbb{N}\right\}\end{array}\right\}$
Let $\mathcal{C}=\{(n, n+1) \mid n \in \mathbb{N}\}$. Then $(\mathbf{X}, \boldsymbol{C})$ is clearly s . n. t. k. But X is not normal since $\mathbb{Q} \cap(1,2)$ and $\mathbb{Q}^{\prime} \cap(1,2)$ are disjoint closed sets which can't be separated by disjoint open sets.

Example

Let
$X=\mathbb{C}, \Im=$
$\left\{\left\{\left\{\left.\left\{D_{n}=\left\{z \in \mathbb{C}| | z-n \left\lvert\,<\frac{1}{3}\right.\right\}, D_{n}^{c}\right\} \right\rvert\, n \in \mathbb{N}\right\}, \mathbb{Q}^{c}\right\} \cup\right.$

Let $\mathcal{C}=\left\{D_{n} \mid n \in \mathbb{N}\right\}$. Then \mathcal{C} is a countable collection of pair wise disjoint closed sets such that, for each pair $D_{n_{1}}$ and $D_{n_{2}}\left(n_{1} \neq n_{2}\right)$ can be separated by disjoint open sets since each D_{n} is both open and closed. Hence X is s. n. t. k. However X is not normal since $\mathbb{Q} \cap \mathrm{D}_{1}$ and $\mathbb{Q}^{e} \cap D_{1}$ are disjoint closed sets which can't be separated by disjoint open sets.

Theorem 4.1: A topological space X is slightly normal space of the third kind if and only if there exists a countable collection \mathcal{C} of pairwise disjoint nontrivial closed sets $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and an open set G such that $F_{1} \subseteq G \subseteq \bar{G} \subseteq F_{2}{ }^{c}$.

Proof: First, suppose that X is slightly normal space of the third kind. Then there exists a countable collection \mathcal{C} of pairwise disjoint nontrivial closed sets such that for each pair $\mathrm{F}_{1}, \mathrm{~F}_{2}$ in \mathcal{C}, there exist open sets G, H in X such that $F_{1} \subseteq G$ and $F_{2} \subseteq H$ and $G \cap H=\phi$. It follows that $G \subseteq H^{c} \subseteq F_{2}{ }^{c}$. Hence $G \subseteq \bar{G} \subseteq H^{c} \subseteq F_{2}{ }^{c}$. Thus, $F_{1} \subseteq G \subseteq \bar{G} \subseteq F_{2}{ }^{c}$.

Conversely, suppose that there exists a countable collection \mathcal{C} of pairwise disjoint nontrivial closed sets such that for each pair F_{1}, F_{2} in \mathcal{C}, there exist an open set G in X such that $F_{1} \subseteq G \subseteq \bar{G} \subseteq F_{2}{ }^{c}$. Here $F_{1} \subseteq G$ and $F_{2} \subseteq \bar{G}^{c}$. Let $\bar{G}^{c}=H$. Then H is open, $F_{2} \subseteq H$ and $G \cap H=\phi$. Hence X is slightly normal space of the third kind.
Theorem 4.2: Let $\left\{X_{i}\right\}_{i \in I}$ be a non-empty family of topological spaces, and let $\mathrm{X}=\prod_{i \in I} X_{i}$ be the product space. If each X_{i} is slightly normal of the third kind, then X is slightly normal of the third kind.

Proof: Since each X_{i} is slightly normal of the third kind, there exists for each i , a countable collection \mathcal{C} of pairwise disjoint nontrivial closed sets such that for each pair $\mathrm{F}_{\mathrm{i}}, \mathrm{H}_{\mathrm{i}}$ in \mathcal{E}, there exist open sets $\mathrm{U}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}$ in X_{i} such that $F_{i} \subseteq U_{i}, H_{i} \subseteq V_{i}$, $F_{i} \cap H_{i}=\phi, U_{i} \cap V_{i}=\phi$.

Let $\mathrm{F}=\prod_{i \in I} F_{i}, \mathrm{H}=\prod_{i \in I} H_{i}$. Then F and H are closed sets in X. Clearly, $F \cap H=\phi . \operatorname{Let} U=\prod_{i \in I} U_{i}$, $V=\prod_{i \in I} V_{i}$. Then, U and V are open sets in X , and $F \subseteq U, H \subseteq V$ and $U \cap V=\phi$. Therefore, X is slightly normal space of the third kind.
Theorem 4.3: Every open and one-one image of a slightly normal space of the third kind is slightly normal space of the third kind.
Proof: The proof of the Theorem 4.3 is most similar to the proof of the Theorem 2.4.

Corollary 4.1: Every quotient space of a slightly normal space of the third kind is slightly normal space of the third kind.
Proof: The proof of the Corollary 4.1 of the above is almost similar to the proof of the Corollary 2.1.
Theorem 4.4: Let X be a slightly normal space of the third kind and Y is a subspace of X . Then Y is a slightly normal space of the third kind.

Proof: The proof of the Theorem 4.4 follows from the proof of the Theorem 2.5 .
Remark 4.1: The corresponding theorem does not hold for normal spaces. The validity of the proof in Theorem 4.4 above depends on the separablity of a particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of Munkres [12]).

Comment 4.1: A continuous image of a slightly normal space of the third kind need not be slightly normal space of the third kind.
For if $\left(X, T_{1}\right)$ is a slightly normal space of the third kind and $\left(X, T_{2}\right)$ a space with the indiscrete topology, then the identity map $1_{x}: X \rightarrow X$ is continuous and onto. But $\left(X, T_{2}\right)$ is not slightly normal space of the third kind.

Theorem 4.5: Each compact Hausdorff space is slightly normal space of the third kind.
Proof: The proof of the Theorem 4.5 is most similar to the proof of the Theorem 2.6.

5. References

[1] S. Majumdar and N. Akhter, Topology, Somoy Publisher, Dhaka, Bangladesh, January 2009.
[2] James R. Munkres, Topology, PrenticeHall of India Private Limited, New Delhi110001, 2008.
[3] James Dugundji, Topology, Universal Book Stall, New Delhi, 1995.
[4] G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Book Company, 1963.
[5] John L. Kelley, General Topology, D. Van Lostrand Company, 1965.
[6] J. G. Hocking and G. S. Young, Topology, Eddison-Wesley, Pub. Co., Inc, Massachusetts, U. S. A, 1961.
[7] S. K. Biswas, N. Akhter and S. Majumdar, "Nearly Normal Topological Spaces of the First kind and the Second kind", International Journal of Trend in Scientific Research and Development (ISSN: 2456-6470), Vol. 6. Issue1. 2021, P. 1244-1248.
[8] S. K. Biswas, S. Majumdar and N. Akhter, "Nearly Regular Topological Spaces of the First kind and the Second kind", International Journal of Trend in Scientific Research and Development (ISSN: 2456-6470), Vol. 5. Issue1. 2020, P. 945-948.
[9] S. K. Biswas; N. Akhter and S. Majumdar, Pseudo Regular and Pseudo Normal Topological Spaces, International Journal of Trend in Research and Development, Vol. 5. Issue. 1 (2018), 426-430.
[10] S. K. Biswas; S. Majumdar and N. Akhter, Strongly Pseudo-Regular and Strongly PseudoNormal Topological Spaces, International Journal of Trend in Research and Development, Vol. 5. Issue. 3 (2018), 459-464.
[11] S. K. Biswas, N. Akhter and S. Majumdar, Stictly Pseudo-Regular and Stictly PseudoNormal Topological Spaces, International Journal of Trend in Research and Development, vol. 5. Issue5, Sep-Oct 2018, 130-132.
[12] James R. Munkres, Topology, PrenticeHall of India Private Limited, New Delhi110001, 2008.
[13] Sanjoy Kumar Biswas and Nasima Akther, On Contra δ-Precontinuous Functions In Bitopological Spaces, Bulletin of Mathematics and Statistics Research, vol. 3. Issue. 2. 2015, p. 1-11.
[14] Sanjoy Kumar Biswas and Nasima Akther, On Various Properties of δ-Compactness in Bitopological Spaces, Journal of Mathematics and Statistical Science (ISSN 2411-2518, USA), vol. 2. Issue. 1. 2016, p. 28-40.

