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ABSTRACT 

Numerical solution of fractional Lane-Emden equation which is 

the nonlinear singular initial value problem in astrophysics has 

been proposed by fractional order of Rationalized Haar operational 

matrices based on collocation method. The advantage of our 

technique is that the computational speed is high due to using the 

RH operational matrices and the convergence rate is exponential. 

We investigate two examples to test the accuracy, speed and 

efficiency of this new method in which these evaluations 

confirmed our claim. 
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INTRODUCTION 

Fractional differential equations are generalizations 

of classical differential equations, which are 

obtained by replacing integer-order derivatives by 

fractional ones. Their advantages comparing with 

integer-order partial differential equations are the 

capability of simulating natural physical process 

and dynamic system more accurately. Furthermore, 

the fractional order models of real systems are 

regularly more adequate than usually used integer 

order models [1]. 

The ordinary Lane-Emden equation describes the 

temperature variation of a spherical gas cloud under 

the mutual attraction of its molecules and published 

by Lane [2] and further explored in detail by 

Emden [3]. 

Lane-Emden equation is a second-order ordinary 

differential equation with an arbitrary index, known 

as the polytropic index, that deals with the issue of 

energy transport, through the transfer of material 

between different levels of the star [4]. 

 

The ordinary Lane-Emden does not describe the 

dynamics of systems in complex media accurately. 

Also, the memory effects are better described 

within the fractional derivatives, therefore the 

fractional Lane-Emden equations extract hidden 

aspects of the complex phenomena and it can 

describe the parameters better and more accurately 

[5]. 

In this paper, we study the Caputo fractional 

derivative of Lane-Emden type equation as [6]: 

  
  ( )  

 

    
  
 
 ( )   (   )   ( )     

             (1) 

with initial conditions 

 ( )       ( )       (2) 

where             and   
    

 
 refer to 

the Caputo fractional derivative of order     with 

respect to  , and parameters     and   is constant, 

 (   ) is a nonlinear function of  ,   and  ( ) is a 

continuous real valued function in      ). 
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The single standard and general solution algorithm 

for problems regarding fractional calculus has not 

yet been constituted and finding affirmative, 

accurate, stable and credible solution methods along 

with fast time computation order is beneficial. 

For the solution of nonlinear and singular fractional 

Lane-Emden equations which are difficult to solve 

there are many numerical and analytical methods 

such as, differential transform method [6], 

collocation technique [7], finite difference 

algorithm[8], Homotopy analysis approximation [9], 

reproducing kernel method [10], hybrid wavelet 

method [11], Legendre wavelets spectral technique 

[12], coupling of wavelets and Laplace transform 

[13], spectral Legendre’s derivative algorithms [14], 

discontinuous finite element approximation [15] and 

Galerkin operational matrices [16].  

In this paper, RH collocation method based on 

fractional order of operational matrices is developed 

to obtain solutions of singular fractional Lane–

Emden type equations. The properties of the RH 

orthogonal functions are used to convert the 

problem into a system of algebraic equations which 

can be solved by suitable algorithms with 

exponential convergence rate.  

The organization of the rest of this paper is as 

follows: In Section 2, we describe a short 

introduction to the basic definitions of the fractional 

calculus and Rationalized Haar properties which 

drive some tools for developing our method. In 

Section 3, we summarize the application of the RH 

operational matrices collocation method for solving 

the model equation. In Section 4, the proposed 

method is applied to some types of fractional Lane-

Emden equations, and comparisons are made with 

the existing analytic solutions that were reported in 

other published works in the literature. The 

conclusions are described in the final section. 

Basic definitions 

A. Definitions of fractional derivatives and 

integrals 

In this section, we start with recalling the essentials 

of the fractional calculus [1].  

Definition 1. For   to be the smallest integer that 

exceeds  , Caputo’s time-fractional derivative 

operator of order     is defined as: 

 
   
  ( )  {

  
     

  ( )         

  
  ( )         

 (3) 

where 

  
  ( )  
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∫ (   )   
 

 
 ( )           (4) 

Some of the most important properties of operator 

  
    

  is as follows: 

  
 (  )  
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where   and   are constants. 

B. Rationalized Haar functions  

The orthogonal set of RH functions is a group of 

square waves with magnitude of    in some 

intervals and zeros elsewhere [17]. The RH 

functions is defined on the interval       ) by: 

  ( )   {

           
 

    
 

     

           

, (6) 

where 

   
   

  
       

 

 
    (7) 

The value of   is defined by two parameters   and 

  as: 

                                      
(8) 

  ( ) is defined for       and is given by: 

  ( )            (9) 

We can expand any function  ( )        ) in first 

  terms of RH functions as: 

 ( )  ∑   
   
     ( )   

   ( )  (10) 

where 

                 

The RH functions coefficient vector   and RH 

functions vector   ( ) are defined as: 

               ]   (11) 

  ( )     ( )   ( )       ( )]
   (12) 

The matrix      can be expressed as: 

     *  (
 

  
)    (

 

  
)      (

    

  
)+  (13) 

C. Rationalized Haar operational matrices of 

fractional order integration 

The integration of the   ( ) defined in Eq. (12) is 

given by: 

∫   
 

 
( )      ( )  (14) 

where        is the     operational matrix for 

integration and is given in [18] as: 
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where      ],    *
 

 
+. 

Also, we obtain the Rationalized Haar operational 

matrix of the fractional order integration 

(  
   )( )    ] as: 

(  
   )( )      

   ( )  (16) 

where 

    
       

     
    (17) 

where 
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With    (   )
          (   )   . 

Theorem. 1 Assume that  ( )( ) is continuous and 

bounded on (   ), then there is [20] : 

         (   ) | ( )( )|     (19) 

Then, the error norm at  th level of resolution 

satisfies the following inequality: 

   
  ( )    

   ( )    
 

    
 

 (   ) (   )

 

√    (   )
  (20) 

where   
   ( ) is the following approximation of 

  
  ( ), 

  
   ( )  ∑   

   
     ( )  (21) 

and 

  ( )    (∫  
  

 
( )  )

 

 
  (22) 

Implementation of Rationalize Haar operational 

matrices for solving the model 

To solve Eq. (1) with boundary conditions in Eq. 

(2) we let: 

  ( )  ∑   
   
     ( )   

   ( )  (23) 

where 

                                       
(24) 

Using Eqs. (14) and (23) we get: 

  ( )       ( )     (25) 

and 

 ( )     ∫   
 

 
( )              ( )  

      (26) 

Also by using Eq.(5), for            , we 

have   
       

 
  

    

 (   )
   
     

 
   , 

and using Eqs.(26), (3) we have: 
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Using Eqs. (1), (27) and (28) we get: 

   (   )  ( )  
 

    
(   (   )  ( )  

     

 (   )
)   (        ( )      )   ( )  (29) 

The residual     ( ) for Eq. (1) can be written as: 

    ( )  

   (   )  ( )  
 

    
(   (   )  ( )  
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)

 

  (        ( )      )   ( ) (  ) 

The equations for obtaining the coefficients    

arises from equalizing     ( ) to zero at   RH 

collocation points defined by: 

   
    

  
                (31) 

By substitution collocation points                

in     ( ) and equalizing to zero we have: 

    (  )                  (32) 

Eq. (32) gives   nonlinear algebraic equations 

which can be solved for the unknown coefficients 

               by using the well-known 

Newton’s method. Consequently,  ( ) given in Eq. 

(1) can be calculated. 

Numerical results and illustrative examples 

In this section, we solve the model numerically by 

the proposed method and show the efficiency of the 

method with the numerical results of two examples.  

Example 1. We consider the following fractional 

equation which has been solved in [6],[7]: 

  
  ( )  

 

    
  
  ( )  

 

    
 ( )   ( )  (33) 

with initial conditions 
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where  ( )      (  (
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The exact solution to this problem for         
    and     is      .  
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Table 1 shows the comparison of the  ( ) between 

numerical solutions obtained by the method 

proposed in this letter for              and their 

absolute errors with respect to the exact solution. 

Fig. 1. shows the numerical and analytic graph of 

solution of Eq.(33 ) for     . 
The graph of absolute errors for      at RH 

collocation points    
    

  
             is shown 

in Fig. 2. 

Example 2. Consider to the following equation [6], 

[7]: 

  
  ( )  

 

    
  
  ( )  

 

    
 ( )   ( )  (35) 

with initial conditions 

 ( )       ( )     (36) 

where  ( )      ( (
  

 
 
 (   )   (   )

 (   ) (   )
)  

  (
  

 
 
 (   )   (   )

 (   ) (   )
))  The exact solution to 

this problem for           and     is 

     . 
In table 2, we report the absolute errors with respect 

to the exact solution for different values  . 

In Fig. 3, the graph of  ( ) for      and exact 

solution is plotted. 

The          and          are used to 

explore the dependence of errors on the parameters 

 . Fig. 4 displays the logarithmic scale of error 

versus   for   =                  at RH 

collocation points. Since in this semi-log 

representation the error variations are 

approximately linear versus  , we observe that the 

values of error decay exponentially. 

Example 3.Consider to the following equation 

[21]: 

  
   ( )  

  

  
  
  ( )             (37) 

with initial conditions 

 ( )       ( )     (38) 

The exact solution to this problem is   
   

   
. 

Table 3 displays the max absolute errors with 

respect to the exact solution for different values of 

    at RH collocation points. 

We can see clearly that better accuracy can be 

achieved by increasing the values of   and the 

values of error decrease when the values of   

converge to  . Fig. 5 shows the approximate 

solution obtained by present method for      for 

different values of  . 

Example 4.Consider to the following equation 

[21]: 

  
   ( )  

  

  
  
  ( )    ( )           (39) 

with initial conditions 

 ( )       ( )     (40) 

The exact solution to this problem is  
   

   
 

   

     
 

   

      
. 

Fig. 6 displays the behavior of the solution at 

                  for     . Fig. 7 displays the 

logarithmic scale of error versus   for   = 

           at RH collocation points. 

Conclusion 

RH operational matrices have been successfully employed to obtain accurate numerical solutions of 

fractional Lane–Emden type equations with linear and nonlinear terms, with fast convergence rate. The 

comparison between numerical and analytic methods has been made and it can be clearly seen from absolute 

errors in tables 1,2 and 3 that the numerical results of the suggested method converges to the exact solution 

by increasing the values of  . In addition, the properties of the RH functions have been used to convert the 

problem into a system of algebraic equations which can be conveniently solved by suitable algorithms. 

Table 1 Absolute errors with respect to the exact solution for              for Example 1 

  \  0.2 0.4 0.6 0.8 1 

8 1.165e-3 1.863e-3 1.793e-3 1.539e-3 1.161e-3 

16 2.105e-4 2.256e-4 2.098e-4 1.759e-4 1.303e-4 

32 1.017e-6 1.377e-6 1.437e-6 1.292e-6 1.004e-6 

64 1.872e-8 1.997e-8 1.840e-8 1.526e-8 1.118e-8 

Table 2. Absolute errors with respect to the exact solution for              for Example 2. 

  \  0.2 0.4 0.6 0.8 1 

8 1.719e-3 1.924e-3 1.840e-3 1.572e-3 1.182e-3 

16 2.174e-4 2.317e-4 2.145e-4 1.794e-4 1.326e-4 

32 1.110e-6 1.443e-6 1.483e-6 1.324e-6 1.024e-6 

64 1.922e-8 2.038e-8 1.869e-8 1.547e-8 1.131e-8 
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Table 3. Max absolute errors with respect to the exact solution for              for different 

values of   at RH collocation points for Example 3. 

  \  0.25 0.5 0.75 0.85 1 

8 2.004e-3 1.735e-3 1.254e-3 1.193e-3 1.126e-3 

16 4.019e-4 3.758e-4 3.024e-4 1.994e-4 1.728e-4 

32 3.128e-6 2.854e-6 2.019e-6 1.917e-6 1.520e-6 

64 2.954e-8 2.158e-8 1.978e-8 1.287e-8 1.015e-8 
 

 
Fig. 1. Numerical (solid circle) and analytic (solid line) graph of solution of Example. 1, for     . 

 

Fig. 2. Absolute errors at RH collocation points    
    

  
            , for Example. 1, for     . 
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Fig. 3. Numerical (solid circle) and analytic (solid line) graph of solution of Example. 2, for K=32. 

 
Fig. 4. Plot of the logarithmic scale of    and   - Error versus  , for Example 2. 

 
Fig. 5. Approximation of the solution for different values of   for      for Example 3. 
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Fig. 6. Approximation of the solution for different values of   for      for Example 4. 

 
Fig. 7. Plot of the logarithmic scale of    and   - Error versus  , for for Example 4. 
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