The Trigonometry Multiple Dimension Inverse Formul(aa)e

Dhrumant Natvarbhai Gajjar
Vishwakarma Government Engineering College, Chandkheda, Ahmedabad, Gujarat, India

Abstract

In trigonometry 2 dimensional formulae is present in present scenario, but what about formulae required to calculate 3 dimensional or 4 dimensional or more than its multiple dimensional trigonometry structure? There is need to be introduced multi-dimensional structure formulae to derive more accurate and precise result in mathematics. Here by introducing some basic structure of formulae, new multidimensional mathematic structure has been derived and help to convert its more complex structure calculation in to simple small precise calculation of structure.

How to cite this paper: Dhrumant Natvarbhai Gajjar "The Trigonometry Multiple Dimension Inverse Formul(aa)e" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-6 | Issue-7, December 2022,
 pp.380-382, URL: www.ijtsrd.com/papers/ijtsrd52340.pdf

Copyright © 2022 by author (s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the
 terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

Let's have a overview on sine and sine inverse functions:
sine function, i.e., sine: $\mathrm{R} \rightarrow[-1,1]$
$f: X \rightarrow Y$ such that $f(x)=y$ is one-one and onto, then we can define a unique function $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that $g(y)=x$, where $x \in X$ and $y=f(x), y \in Y$. Here, the domain of $g=$ range of f and the range of $g=$ domain of f.

The function g is called the inverse of f and is denoted by $\mathrm{f}-1$. Further, g is also one-one and onto and inverse of g is f. Thus, $g^{-1}=\left(f^{-1}\right)^{-1}=f$. We also
have $\left(f^{-1}\right.$ of $)(x)=f^{-1}(f(x))=f^{-1}(y)=x$ and $\left(f o f^{-}\right.$ $\left.{ }^{1}\right)(y)=f\left(f^{-1}(y)\right)=f(x)=y$ Since the domain of sine function is the set of all real numbers and range is the closed interval $[-1,1]$.
If $y=f(x)$ is an invertible function, then $x=f^{-1}(y)$. Thus, the graph of $\sin ^{-1}$ function can be obtained from the graph of original function by interchanging x and y axes, i.e., if (a, b) is a point on the graph of sine function, then (b, a) becomes the corresponding point on the graph of INVERSE TRIGONOMETRIC FUNCTIONS of sine function.

Figure (i)

Thus, the graph of the function $\mathrm{y}=\sin -1 \mathrm{x}$ can be obtained from the graph of $y=\sin x$ by interchanging x and y axes. The graphs of $y=\sin x$ and $y=\sin ^{-1} x$ is as given in Fig (i), (ii). The dark portion of the graph of $y=\sin ^{-1} \mathrm{x}$ represents the principal value
branch. (ii) It can be shown that the graph of an inverse function can be obtained from the corresponding graph of original function as a mirror image (i.e., reflection) along the line $\mathrm{y}=\mathrm{x}$.

Figure (ii)

Now, let's an overview on different dimensional formulae structure:

2-Dimensional structure

> IF, $\mathrm{x}=1$, and $\mathrm{y}=\sin ^{-1}(\mathrm{x})$, then for 2-Dimensional structure,
$\mathrm{Y}=\sin ^{-1}(\mathrm{x})$,
$Y=\sin ^{-1}(1)=90^{\circ}$

$>\mathrm{IF}, \mathrm{x}=0.5$, and $\mathrm{y}=\sin ^{-1}(\mathrm{x})$, then for $2-$ Dimensional structure,
$Y=\sin ^{-1}(\mathrm{x})$,
$\mathrm{Y}=\sin ^{-1}(0.5)=30^{\circ}$

> 3-Dimensional structure

- IF, $\mathrm{x}=1$, and $\mathrm{z}=\sin ^{-2}(\mathrm{x})$, then for 3-Dimensional structure,
$\mathrm{Z}=\sin ^{-2}(\mathrm{x})$,
$\mathrm{Z}=\sin ^{-2}(1)=60^{\circ}$

$>\mathrm{IF}, \mathrm{x}=0.5$, and $\mathrm{z}=\sin ^{-2}(\mathrm{x})$, then for 3Dimensional structure,
$\mathrm{Z}=\sin ^{-2}(\mathrm{x})$,
$\mathrm{Z}=\sin ^{-2}(0.5)=20^{\circ}$

4-Dimensional structure

$>$ IF, $\mathrm{x}=1$, and w or $4 \mathrm{~d}=\sin ^{-3}(\mathrm{x})$, then for 4Dimensional structure,
W or $4 \mathrm{~d}=\sin ^{-3}(\mathrm{x})$,
W or $4 \mathrm{~d}=\sin ^{-3}(1)=45^{\circ}$

$>$ IF, $\mathrm{x}=0.5$, and w or $4 \mathrm{~d}=\sin ^{-3}(\mathrm{x})$, then for $4-$ Dimensional structure,
W or $4 \mathrm{~d}=\sin ^{-3}(\mathrm{x})$,
W or $4 \mathrm{~d}=\sin ^{-3}(0.5)=15^{\circ}$

5-Dimensional structure

$\mathrm{IF}, \mathrm{x}=1$, and v or $5 \mathrm{~d}=\sin ^{-4}(\mathrm{x})$, then for 5 Dimensional structure,
V or $5 d=\sin ^{-4}(x)$,
V or $5 \mathrm{~d}=\sin ^{-4}(1)=36^{\circ}$

IF, $x=0.5$, and v or $5 d=\sin ^{-4}(x)$, then for 5 Dimensional structure,
V or $5 d=\sin ^{-4}(x)$,
V or $5 \mathrm{~d}=\sin ^{-4}(0.5)=15^{\circ}$

6-Dimensional structure
$>\mathrm{IF}, \mathrm{x}=1$, and u or $6 \mathrm{~d}=\sin ^{-5}(\mathrm{x})$, then for 6 Dimensional structure,
u or $6 d=\sin ^{-5}(x)$,
u or $6 d=\sin ^{-5}(1)=30^{\circ}$

$>$ IF, $\mathrm{x}=0.5$, and u or $6 \mathrm{~d}=\sin ^{-5}(\mathrm{x})$, then for 6 Dimensional structure,
u or $6 d=\sin ^{-5}(x)$,
u or $6 d=\sin ^{-5}(0.5)=10^{\circ}$

7-Dimensional structure

$>\mathrm{IF}, \mathrm{x}=1$, and t or $7 \mathrm{~d}=\sin ^{-6}(\mathrm{x})$, then for 7Dimensional structure,
t or $7 \mathrm{~d}=\sin ^{-6}(\mathrm{x})$,
t or $7 d=\sin ^{-6}(1)=25.7^{\circ}$

$>$ IF, $\mathrm{x}=0.5$, and t or $7 \mathrm{~d}=\sin ^{-6}(\mathrm{x})$, then for 7 Dimensional structure, t or $7 \mathrm{~d}=\sin ^{-6}(\mathrm{x})$, t or $7 \mathrm{~d}=\sin ^{-6}(0.5)=8.5^{\circ}$

Sin inverse table according to multiple Dimensions:

Sin inverse $\mathrm{x}($ value $)$	Name of Axis	Angle at $\mathrm{x}=1$	Angle at $\mathrm{x}=0.5$	Angle at $\mathrm{x}=0$
$\operatorname{Sin}^{-1} \mathrm{x}$	Y	90	30	0
$\operatorname{Sin}^{-2} \mathrm{x}$	Z	60	20	0
$\operatorname{Sin}^{-3} \mathrm{x}$	W or 4d	45	15	0
$\operatorname{Sin}^{-4} \mathrm{x}$	V or 5d	36	12	0
$\operatorname{Sin}^{-5} \mathrm{x}$	U or 6d	30	10	0
$\operatorname{Sin}^{-6} \mathrm{x}$	T or 7d	25.7	8.5	0
and 50, on counting $8 \mathrm{~d}, 9 \mathrm{~d}, 10 \mathrm{~d}, 11 \mathrm{~d} \ldots .$.				

Conclusion:

In nut shell, by introducing multiple dimensional formulae, Ease in understanding of multidimensional complex structure of any shape of object's formation, break up points, strength, maintenance, integration and derivative functions, and behavior against different environment of different industrial or nonindustrial parameters of measurement.

References:

[1] CBSE, BOOK, 11'TH STD MATHAMATICS

