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ABSTRACT 

In this study, the time evolution of a single optical soliton and a 

head-on collision of two well-separated optical solitons both in the 

presence and absence of fiber loss are consecutively simulated and 

investigated for the effects of an applied external forcing. The 

propagation of optical solitons in nonlinear dispersive optical fiber 

is modelled by one dimensional forced nonlinear Schrödinger 

(fNLS) equation with the forcing being a time-invariant space-

dependent complex Gaussian function. The fNLS equation is 

approximated by Crank-Nicolson implicit scheme for its one- and 

two-soliton solutions. The solutions are numerically implemented 

and simulated in Python 3. In both cases of one and two solitons 

regardless of whether there is any fiber loss, the external forcing is 

observed to enforce the generation of a stationary soliton 

overlapping the forcing function along its spatial coordinate. 
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1. INTRODUCTION 

The one-dimensional cubic nonlinear 

Schrödinger (NLS) equation is given by 

    
 

 
             (1)  

where  (   ) is a complex wave function, 

      and   is an arbitrary nonzero real 

parameter. 

The NLS equation describes electromagnetic 

phenomena in nonlinear dispersive optical media 

[1]. It models the propagation of optical pulses in 

nonlinear optics. Thus, it is used in the 

construction of fibre-optic communication 

systems.  

In optical fiber, light pulses experience group 

velocity dispersion (GVD) due to chromatic 

dispersion and self-phase modulation (SPM) due to 

the Kerr effect. Optical solitons are formed from the 

balancing of the effects of GVD and SPM. Optical 

solitons can propagate undistorted over long 

distances and they preserve after collisions with 

other solitons which make them ideal for long-haul 

fiber optic communication systems.  

 

The existence of optical solitons in optical fiber was 

first predicted in 1973 as a solution to the nonlinear 

Schrodinger equation (NLS) [2] and was 

experimentally verified in 1980 [3]. Since then, the 

forcing problems for the NLS equation have been 

less investigated. It is the objective of this study to 

numerically simulate the effects of a spatial forcing, 

namely a complex Gaussian function, on the optical 

solitons of the NLS equation with and without fiber 

loss. 

The NLS equation is an integrable partial 

differential equation which was first analytically 

solved by the inverse scattering transform (IST) in 

1972 [4]. To obtain forced  

Nonlinear Schrödinger (fNLS) Equation, making the 

NLS equation into a nonhomogeneous partial 

differential equation by including a forcing term to 

the right-hand side, turns the NLS equation into a 

non-integrable system and the number of 

conservation laws are no longer infinite [5-6]. 

Furthermore, the equation loses group symmetries 

due to forcing. The traditional group-theoretical 
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approach can no longer generate analytical solutions 

which arises a need for a numerical algorithm to 

approximate the fNLS equation. For that reason, an 

unconditionally stable finite difference method, 

Crank-Nicolson implicit scheme [7] is employed to 

approximate the fNLS equation to find its soliton 

solutions numerically. 

2. Nonlinear Schrödinger Equation 

The parameters in equation (1), namely 
 

 
 and   

can be almost arbitrarily chosen to set up the 

suitable variation of the equation for the purpose 

of a certain study via the scale transformations. 

The value of the arbitrary real parameter,  , in 

equation (1) determines the likelihood of whether 

any solitons will be generated [8], as such when   

≪ 1, the nonlinear part of the equation is 

neglectable and the GVD will overpower the 

nonlinearity and the solution will just disperse 

without any nonlinear behaviour, when   ≫ 1, 

the SPM will be more evident than dispersion and 

the solution will „break‟ and lastly when   ≈ 1, 

then the effects of GVD and SPM will balance 

each other and there may be found soliton 

solutions. Hence, to be able to obtain soliton 

solutions,   in equation (1) is set to 1. The 

coefficient before the second linear term is set to 

1 as well to obtain one of the fundamental 

variations of the NLS equations. 

On the other hand, due to forcing, a soliton 

splitting is anticipated. To make any soliton 

splitting possible and so to obtain bright solitons 

along with the common effect that the initial 

profile will evolve into a number of solitons and a 

dispersive tail [9], the sign before the nonlinear 

term in equation (1) is set to a plus sign. The 

variant of the NLS that is used in this study is 

therefore given by 

                   (2) 

with the following initial and boundary conditions 

 (   )   ( )  (    )     (    )    (3) 

By introducing the forcing term f into the NLS 

equation, the fNLS equation is settled as 

                   (4) 

where f is a space-wise function, f=f(x). 

To represent fibre loss, a linear damping term is 

introduced to equation (4) to obtain the variant of 

the fNLS equation with fibre loss as 

                
    

 
   (5) 

where  
   

 
 accounts for the linear damping of 

strength    . 

3. Finite Difference Schemes 

For discretization, a rectangular mesh on [  ,   ] 

× [0, t] is constructed. 

{(     )                        

  } 

where      and      are the sizes of the 

spatial and temporal steps, respectively. 

Crank-Nicolson implicit schemes for equations (2), 

(4) and (5) are derived via Taylor series expansion. 

The truncation error of the schemes is of second 

order in both space and time, ( ((  ) )  

 ((  ) )). 

3.1. Crank-Nicolson Implicit Scheme for the 

fNLS Equation 

The formulation of Crank-Nicolson implicit scheme 

for equation (4) is given by, 

 
  

      
 

  
 

[    
     

      
      

       
        

   ]

 (  ) 
 

 (    
 )

 
(
   

    
   

 
)     ( )

 

where   
  is the value of u at the jth grid point at the 

nth time-step and 

                

with the boundary conditions, 

  
      

          

the initial condition for one soliton, 

   
   ( )       

and the initial condition for two solitons, 

   
   ( )    ( )       

Rearranging equation (6) for the time steps of n and 

n+1 being on the opposite sides of the equation 

gives 

(   )(  
   )  

 

 
[    

        
   ]    (    

 )
 
  

   

 (   )  
  

 

 
[    

      
 ]   *(    

 )
 
  

     + ( )
  

where  

  
   

(  ) 
    

   

 
  

Left-hand side of equation (7) can be represented 

by a tridiagonal matrix M acting on a vector of 

    , namely  

       ( ) 

where the matrix M is given by 
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 (9) 

Assigning an iterative function F to the right-hand side of equation (7) as  

   (   )  
  

 

 
(    

      
 )    (|  

 |)
 
  

       (10) 

and by assigning the vectors,      

[
 
 
 
 
 
 
 
 
  

 
 
 

  

 
 
 

  ]
 
 
 
 
 
 
 
 
   

and   

[
 
 
 
 
 
 
 
 
  

 
 
 

  

 
 
 

  ]
 
 
 
 
 
 
 
 

,  

equation (7) can be written in the matrix form as 

         (  ) 

After implementing the initial and boundary conditions as 

   
   ( )   

      
    

      
  

 

 
(  

    
 )    (   

  )   
        

      
  

 

 
(    

    
 )    (   

  )   
        

equation (11) is solved for      by Gaussian elimination [10] and iteration and direct calculations for each 

time step. 

The finite difference scheme was implemented as a Python 3 algorithm. The program has two main user 

defined functions. The first function constructs the tridiagonal matrix and the vectors and then determines Fj 

and solves for uj using Gaussian elimination [11] while the second function solves the equation for      by 

direct calculations by time stepping for each space node. 

3.2 Crank-Nicolson Implicit Scheme for the fNLS Equation with Fiber Loss 

As for equation (5), the finite difference scheme is given by 
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Separating the terms of n and n+1 gives 

(   )  
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   (13) 

Where 
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(  ) 
    

   

 
       

  

 
 

Equation (12) is rearranged to be written in the same matrix form as in equation (11), where M is given by 

[
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and the iterative functions of vector F for equation (11) for the fNLS equation with fibre loss are given by 
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(    

    
 )    (   

  )   
         

the solutions are obtained by utilizing the same initial and boundary conditions and the Python algorithm as 

in section (3.1). 

4. Simulation Results 

The forcing function is chosen to be a complex Gaussian function of space only as 

   ( )      (  )  (15) 

where         are real parameters that determine the amplitude and the width of the forcing, respectively. 

Exact soliton solutions of equation (1) for one and two solitons are given in equation (16) and (17), 

respectively [12]. 

 (   )  √    *
 

 
(   (

 

 
    ) )+     [√ (    )] (16)  

 (   )  √    
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(     (

 

 
  

    ) )+      √  (      )  √    
 *

 

 
(     (

 

 
  

    ) )+      √  (   

   )  (17) 

The solutions in equation (16) and (17) represent optical solitons that travel at a speed of cm whose 

amplitude are determined by the real parameters wm, where m=1, 2. The solutions will be used to set the 

initial profiles for the numerical solutions, namely  ( )      ( ). 

The boundary conditions,  (    )     (    )   , are chosen in a way that       and xL and xR are 

large enough so that the solitons never get close to the boundaries during the computer runs. 

4.1. Simulation Results for Single Optical Soliton 

One-soliton solution of the fNLS equation without fibre loss, equation (4), is simulated by taking the 

parameters as  

                                

                   (18) 

the initial condition as 

 ( )  √          ( ) 

and so, the forcing function as 

   ( )        (  )  (19) 
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The simulations obtained are given in Figure 1. 

 

 

 

Figure 1: Single soliton of the fNLS equation 

without fibre loss 

One-soliton solution of the fNLS equation under 

fibre loss is simulated by introducing a damping 

factor of        to equation (5). All the other 

parameters and the initial condition are kept the 

same as in equations (18). 

The simulations obtained are given in Figure 2. 
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Figure 2: Single soliton of the fNLS equation 

with fibre loss 

4.2. Results for Collision of Two Optical 

Solitons 

The collision of two optical solitons of the fNLS 

equation that are approaching each other from 

opposite directions under no fibre loss is simulated 

with the parameters taken as 

                        
                            
        (20) 

the initial condition g(x) as 

 ( )   ( )   ( )  √ [ (     )     ( )  

 (      )     (      )] (21) 

where  

 ( )   √  (     )     ( ) ( )  

√  (      )     (      )  

and so, the forcing function as 

   ( )        (  )  (22) 

The simulations obtained are given in Figure 3.
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Figure 3: Collision of two solitons of the fNLS 

equation without fibre loss 

The collision of two optical solitons of the fNLS 

equation under fibre loss is simulated by keeping all 

the parameters the same as in equations (20) but 

adding a fibre loss factor of        to equation 

(5).  

The simulations obtained are given in Figure 4. 
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Figure 4: Collision of two solitons of the fNLS 

equation with fibre loss 

5. Conclusions 

In this study we investigated the numerical 

simulations of the propagation of optical solitons in 

optical fibre under an external spatial forcing. We 

performed simulations of two sample scenarios to 

observe the effects of the forcing on bright optical 

solitons. Firstly, we have focussed on the 

propagation of a single optical soliton and we 

continued with the simulation of a head-on collision 

of two identical solitons under the same sample 

forcing of a complex Gaussian function. We have 

repeated the simulations under fibre loss to broaden 

our investigation.  

For the single soliton simulations, we chose our 

initial profile that is not given by a superposition of 

multiple solitons. We observed that forcing made 

the initial profile evolved into two separated 

solitons one being stationary at the same x-

coordinate of the peak of the forcing, and the other 

one travelling in the same direction of the initial 

soliton and a dispersive tail travelling in the 

opposite direction (Figure 1). The moving soliton 

was narrower than the initial profile while the 

stationary soliton was wider and shorter. When the 

fibre loss introduced, both of the resultant solitons 

have lost power and so their amplitudes decreased 

considerably (Figure 2). 

As the two solitons collided, they underwent a 

fairly complicated interaction, whereby a tall spike 

was formed. The process was then reversed, 

whereby the solitons separated by generating a 

stationary soliton in the middle where the forcing 

was applied (Figure 3). Interestingly, unlike the 

single soliton case, a new soliton wasn‟t created 

from each initial soliton, instead, there was only 

one soliton generated. The newly generated soliton 

was not a superposition of two different solitons 

generated from each initial soliton. We can prove 

that in two ways, firstly, we would expect the 

amplitude of the stationary soliton to be doubled if 

it was a superposition of two new solitons but it is 

not any larger than the amplitude of the stationary 

soliton generated in the single soliton case. And if it 

was a superposition of two small solitons that were 

split from the initial solitons, we would expect to 

see two peaks instead of one because of the 

nonlinearity.  

When the fibre loss was introduced, the stationary 

and the moving solitons had smaller amplitudes 

over time as a consequence of loss of energy and 

momentum (power/amplitude) (Figure 4). 

Additionally, the change in the amplitude of the 

optical solitons of both the NLS and fNLS 

equations as the solitons evolve over time is 
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governed by the sum of the effects of the two terms, 

namely the nonlinear term which causes breaking 

of and the dispersive term which causes widening 

and spreading of the solitons [13]. It was concluded 

that a spatial forcing regardless of whether there‟s 

fibre loss, will not hinder the balance between SPM 

and GVD, otherwise they would vanish in time. 

The simulated result of the external spatial forcing 

generating a stationary solution in optical fibre may 

presumably find a use in a future technology where 

solitons are needed to be positionally restricted. 
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