# **Effect of Process Variables on Yarn Quality in High-Speed Combers**

A. Muralikrishnan

Lecturer, Department of Textile Technology, P. A. C. Ramasamyraja Polytechnic College, Rajapalayam, Tamil Nadu, India

#### ABSTRACT

In yarn manufacturing process, the comber plays a major role in improving the quality of raw materials by removing short fibres, impurities, neps and hooks . It improves the important yarn characteristics like evenness, strength and appearance. The quality of combed yarn depends on many factors such as raw material, lap preparation methods, factors associated with machine, machine setting and ambient conditions [1]. In combing machine, higher speed is the basic criteria for high productivity. Therefore, in order to achieve high speed and stable operation of modern combers, it is required to optimize the drive mechanism especially in nipper drive, detaching roller drive and unicomb drive. The effect of various process variables on yarn quality was studied.

**KEYWORDS:** comber, Feed per nip, Lap, hi speed combers

of Trend in Scientific **Development** 

**INTRODUCTION:** 

In yarn manufacturing process, the comber plays a effect of process variables on yarn quality in high major role in improving the quality of raw materials by removing short fibres, impurities, neps and hooks. It improves the important yarn characteristics like evenness, strength and appearance. The quality of combed yarn depends on many factors such as raw material, lap preparation methods, factors associated with machine, machine setting and ambient conditions [1]. In combing machine, higher speed is the basic criteria for high productivity. Therefore, in order to achieve high speed and stable operation of modern combers, it is required to optimize the drive mechanism especially in nipper drive, detaching roller drive and unicomb drive. The speed of modern comber is 200% higher than old combers and reached up to 600 nips per minute. While increasing machine speed, there should not be any compromise on quality of output material as it is increasing day by day. High speed combers can meet the spinning process of lap weight to 80 g/m which is 33% higher than lap weight processed at old combers. This paper reveals the

How to cite this paper: Muralikrishnan "Effect of Process Variables on Yarn Quality in High-Combers" Published

Speed International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-6 Issue-6. October 2022, pp.1584-1588.



URL:

www.ijtsrd.com/papers/ijtsrd52084.pdf

Copyright © 2022 by author (s) and International Journal of Trend in Scientific Research and Development

Journal. This is an **Open** Access article distributed under the



terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

speed combers.

#### Materials:

100% MCU-5 cotton variety was selected for this trial. Fibre properties are measured in USTER HVI 1000 tester are listed in: 2.5% Span length -29mm; SFI-6.5; Uniformity ratio - 0.46; Strength -23 grams/tex; Fineness-4.2 and blend ratio – 100%.

#### Methodology

Productivity and quality are critical terms in spinning industry which are influenced by many factors such as material, machine setting and machine technology. In this paper, machine parameters such as machine speed, feed per nip, noil% and top comb depth were considered to study the effect of above such parameters on yarn quality. Further practical trials are conducted with various mixing to assess the performance. It was found that the above changes have significant influence on production and quality of output material. LMW LK64 high speed comber was chosen for this trial. The process parameters for various trials are listed in Table 1.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

| Sample No | <b>Comber speed</b> | Feed/Nip | Type of feed | Noil% | Top comb depth |
|-----------|---------------------|----------|--------------|-------|----------------|
| 1         | 350                 | 5.2      | Forward      | 15    | +0.5           |
| 2         | 400                 | 5.2      | Forward      | 15    | +0.5           |
| 3         | 450                 | 5.2      | Forward      | 15    | +0.5           |
| 4         | 450                 | 5.2      | Forward      | 20    | +1             |
| 5         | 450                 | 5.2      | Forward      | 20    | +0.5           |
| 6         | 450                 | 5.9      | Forward      | 20    | +0.5           |
| 7         | 450                 | 5.9      | Forward      | 15    | +0.5           |

**Table 1: Process parameters of various trial** 

#### **Preparation of samples:**

The prepared cotton mixing was processed through blowroom, carding, drawframe and unilap machines and comber laps were prepared. Ideal spinning preparatory machinery sequence with ideal process parameters were followed during sample preparation. The Prepared comber laps were processed through high speed modern combers with different process parameters. The combed slivers were processed through finisher drawframe, speedframe and ring frame with/without compact system to produce yarn samples. The details of process parameters and production details of different trials conducted at different category of combers are shown in Table 2.

| Card Sliver Hank        | C60- 0.11 Ne |
|-------------------------|--------------|
| Precomber Drawframe     | SB2          |
| No. Of Doubling         | C50          |
| Total Draft             | 5.23         |
| Lap Former - No Of Ends | E32-22       |
| Total Draft             | 1.5          |
| Lap Weight              | 74 g/m       |
| Drawing Speed (MPM)     | 350          |
| Speed Frame- Hank       | 68i -1.0 Ne  |
| TM Developme            | nt1.22       |
| Ring Frame - Count      | 40 Ne 8      |
|                         |              |

| Table 2: Det | ails of varie | ous process |
|--------------|---------------|-------------|
|--------------|---------------|-------------|

# TESTS

#### Fibres

The fibres from comber lap, sliver and noil were tested for nep count, length, 5% span length, SFC and maturity ratio in Uster AFIS Pro instrument. The noil% was measured by the following method. The machine was run at slow speed to clean the circular comb. The comber noil collection box, the suction pipe and the top comb were cleaned. The machine was allowed to run at operating speed for a period of 15 seconds. The comber noil and sliver were collected.

Noil % = 
$$\frac{Weight of noil}{Weight of noil + weight of sliver} \times 100$$

#### Yarns

The yarn evenness and imperfections were evaluated on Uster Evenness Tester 4 with 400 m/min speed and 1 min testing time at -50%, +50% and +200% sensitivity levels for thin places, thick places and neps respectively. Also -40%, +35% and +140% sensitivity levels were used for higher sensitivity faults. Further yarn samples were also tested for classimat faults in Uster classimat tester where total classimat faults, 16 class, 10 class, 7 class, long thick and long thin faults were measured.

## **RESULTS AND DISCUSSION**

#### **Fibre and sliver Properties**

Table 3 shows that the short fibre removal efficiency and nep removal efficiency of all the samples.

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470



The nep removal efficiency and short fibre removal efficiency of sliver sample 2 is higher than the sample 1 and 3. While increasing the machine speed from 350 to 400 npm, the short fibre removal and nep removal efficiency initially increases to certain extent and then decreases while increasing machine speed to 450 npm. But the results at 450 npm is still higher than at 350 npm. Hence, considering the production, the optimized machine speed was identified as 450 npm. NRE and SRE of sample 4 is better than all the samples due to extraction of higher noil% and increased top comb depth. In sample 7, While increasing feed per nip to 5.9mm, the NRE and SRE were found decreased when compared to sample 4. This may be due to higher amount of feeding. Subsequently, increasing noil% increases the NRE and SRE in sample 6 when compared to sample 7.

| TEST PARTICULARS         |                             | SAMPLE        | 1    |      | SAMPLE 2      | SAMPLE 3 |      |               |  |
|--------------------------|-----------------------------|---------------|------|------|---------------|----------|------|---------------|--|
| NEP RESULTS              | LAP                         | CAN<br>SLIVER | NOIL | LAP  | CAN<br>SLIVER | NOIL     | LAP  | CAN<br>SLIVER |  |
| TOTAL NEP CNT(CNT/G)     | 112                         | 35            | 543  | 123  | 20            | 438      | 73   | 18            |  |
| TOTAL NEP MEAN SIZE(µm)  | 637                         | 627           | 673  | 656  | 628           | 680      | 714  | 626           |  |
| FIBER NEP CNT(CNT/G)     | 103                         | 33            | 485  | 107  | 19            | 381      | 54   | 15            |  |
| FIBER NEP MEAN SIZE(µm)  | 621                         | 612           | 641  | 610  | 620           | 638      | 624  | 590           |  |
| SCNEP COUNT(CNT/G)       | 10                          | 2             | 58   | 16   | 1             | 58       | 19   | 2             |  |
| SCNEP MEAN SIZE(µm)      | 802                         | 858           | 932  | 929  | 875           | 952      | 953  | 875           |  |
| LENGTH RESULTS           |                             |               |      |      |               |          |      |               |  |
| L(w) (MM)                | 25.9                        | 26.4          | 11.9 | 25.9 | 26.9          | 12.6     | 27.2 | 27.2          |  |
| L(w) CV%                 | 38.7                        | 35.8          | 57.1 | 38   | 34.8          | 54.7     | 34.1 | 33.5          |  |
| SFC(w) (%<12.7 mm)       | 9.3                         | 5.2           | 60   | 8.7  | 4             | 55       | 6.1  | 4.1           |  |
| UQL(w) [MM]              | 32.4                        | 32.3          | 15   | 32.2 | 32.7          | 15.9     | 33.2 | 33            |  |
| L(n) [MM]                | 20.4                        | 22.4          | 8.7  | 20.6 | 23.2          | 9.3      | 22.4 | 23.5          |  |
| L(n) [CV%]               | 52.3                        | 42.4          | 61.3 | 50.6 | 40.2          | 59.7     | 45.9 | 39.9          |  |
| SFC(n) [%<12.7 mm]       | 26.1                        | 13.8          | 79.5 | 24.4 | 10.7          | 75.2     | 18.8 | 11.4          |  |
| 5% L(n) [MM]             | 37.6                        | 38.1          | 18.9 | 37.3 | 38.7          | 19.7     | 38.1 | 38.3          |  |
| FINENESS [mtex]          | 163                         | 168           | 147  | 163  | 171           | 148      | 165  | 170           |  |
| MATURITY RATIO           | 0.91                        | 0.95          | 0.72 | 0.91 | 0.96          | 0.73     | 0.94 | 0.97          |  |
| IFC [%]                  | 5.5                         | 4.1           | 14.5 | 5.7  | 3.8           | 13.5     | 4.7  | 3.7           |  |
| Nep removal efficiency % | o removal efficiency % 68.8 |               |      | 83.7 |               |          | 75.3 |               |  |
| Short fibre removal %    |                             |               | 47.1 |      | 56.1          |          |      | 39.4          |  |

### Table 3: Nep and Shor fibre removal efficiency of various samples

### International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

| TEST PARTICULARS         | SAMPLE 4 |               |         |         | SAMPLE 6      |      | SAMPLE 7 |               |      |
|--------------------------|----------|---------------|---------|---------|---------------|------|----------|---------------|------|
| NEP RESULTS              | LA<br>P  | CAN<br>SLIVER | Noil    | LAP     | CAN<br>SLIVER | Noil | LAP      | CAN<br>SLIVER | Noil |
| TOTAL NEP CNT(CNT/G)     | 87       | 11            | 371     | 79      | 14            | 370  | 107      | 28            | 615  |
| TOTAL NEP MEAN SIZE(µm)  | 657      | 574           | 674     | 677     | 582           | 674  | 697      | 640           | 692  |
| FIBER NEP CNT(CNT/G)     | 72       | 11            | 305     | 64      | 14            | 316  | 92       | 25            | 535  |
| FIBER NEP MEAN SIZE(µm)  | 621      | 566           | 635     | 627     | 582           | 631  | 635      | 618           | 653  |
| SCNEP COUNT(CNT/G)       | 15       | 1             | 66      | 15      | 0             | 54   | 15       | 3             | 80   |
| SCNEP MEAN SIZE(µm)      | 880      | 650           | 859     | 866     | 0             | 925  | 1037     | 811           | 948  |
| LENGTH RESULTS           |          |               |         |         |               |      |          |               |      |
| L(w) (MM)                | 26.5     | 27.7          | 13.8    | 26.8    | 27.6          | 13.4 | 26.8     | 27            | 12.1 |
| L(w) CV%                 | 35.2     | 32            | 59      | 34.3    | 32.1          | 56.8 | 35.5     | 33.8          | 60.4 |
| SFC(w) (%<12.7 mm)       | 7.3      | 3.1           | 51.5    | 6.4     | 3.1           | 51.5 | 6.9      | 4.7           | 60.2 |
| UQL(w) [MM]              | 32.7     | 33.2          | 17.9    | 32.9    | 32.9          | 17.2 | 32.8     | 32.8          | 15.2 |
| L(n) [MM]                | 21.5     | 24.3          | 9.7     | 22.1    | 24.2          | 9.7  | 21.8     | 23.1          | 8.6  |
| L(n) [CV%]               | 47.9     | 37.7          | 64.8    | 46.1    | 37.4          | 62.5 | 47.8     | 41            | 63.8 |
| SFC(n) [%<12.7 mm]       | 21.6     | 8.8           | 74      | 19.4    | 8.8           | 73.4 | 20.9     | 12.9          | 80.1 |
| 5% L(n) [MM]             | 37.4     | 38.8          | 22.5    | 37.5    | 38.4          | 21.8 | 37.9     | 38.1          | 19.4 |
| FINENESS [mtex]          | 163      | 170           | 145     | 163     | 170           | 147  | 163      | 168           | 144  |
| MATURITY RATIO           | 0.92     | 0.97          | 0.75    | 0.93    | 0.97          | 0.76 | 0.93     | 0.96          | 0.73 |
| IFC [%]                  | 5.4      | 3.8           | 12.8    | 4.7     | 4.1           | 11.5 | 4.9      | 4.1           | 13.7 |
| Nep removal efficiency % | 1 8      | 87.4          | ational | 82.3    |               |      | 73.8     |               |      |
| Short fibre removal %    | 10       | 59.3          |         | cientii | 54.6          | 3    | 38.3     |               |      |

# Research and Table 4: Test results of yarn samples

|                    |        | SAM    | PLE 1  |        |        | SAM    | SAMPLE 3 |        |        |        |
|--------------------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|
| TEST<br>PARAMETERS | LR6/S  |        | K441   |        | LR6/S  |        | K441     |        | LR6/S  |        |
|                    | СОР    | CONE   | COP    | CONE   | СОР    | CONE   | COP      | CONE   | СОР    | CONE   |
| COUNT              | 40.6   | 41.0   | 40.4   | 40.1   | 42.0   | 40.5   | 39.9     | 40.2   | 39.1   | 39.9   |
| STRENGTH           | 71.3   | 67.2   | 84.2   | 84.4   | 63.7   | 67.7   | 81.8     | 86.3   | 76.1   | 72.1   |
| CSP                | 2897.0 | 2752.0 | 3396.0 | 3380.0 | 2674.0 | 2740.0 | 3263.0   | 3465.0 | 2978.0 | 2880.0 |
| U%                 | 9.9    | 10.0   | 9.8    | 10.0   | 10.1   | 10.0   | 9.4      | 9.7    | 9.6    | 9.9    |
| CVm                | 12.5   | 12.6   | 12.4   | 12.6   | 12.8   | 12.6   | 11.9     | 12.2   | 12.1   | 12.5   |
| THIN -40%          | 1059.0 | 1156.0 | 937.0  | 1119.0 | 1183.0 | 1075.0 | 781.9    | 927.9  | 35.4   | 49.6   |
| THIN -50%          | 63.4   | 74.2   | 48.0   | 71.7   | 73.9   | 63.3   | 34.5     | 39.6   | 0.3    | 0.8    |
| THICK +35%         | 1.0    | 0.8    | 1.6    | 3.8    | 1.1    | 0.8    | 0.1      | 0.4    | 251.9  | 310.8  |
| THICK +50%         | 248.1  | 280.0  | 268.1  | 332.9  | 315.5  | 288.3  | 204.1    | 239.6  | 28.8   | 23.8   |
| NEPS +140%         | 22.0   | 28.8   | 33.1   | 33.3   | 36.6   | 30.8   | 21.3     | 22.9   | 342.6  | 581.3  |
| NEPS +200%         | 319.3  | 566.7  | 281.3  | 415.0  | 428.5  | 476.3  | 195.3    | 267.1  | 91.3   | 101.3  |
| NEPS +280%         | 68.0   | 90.8   | 70.4   | 90.4   | 109.6  | 83.8   | 46.0     | 65.8   | 105.0  | 85.0   |
| Н                  | 4.5    | 5.9    | 3.3    | 4.3    | 4.6    | 6.0    | 3.3      | 3.9    | 4.5    | 6.0    |
| SH                 | 1.0    | 1.4    | 0.7    | 1.0    | 1.0    | 1.4    | 0.7      | 0.9    | 1.0    | 1.4    |
| Total IPI          | 630.8  | 920.9  | 597.4  | 819.6  | 817.9  | 827.9  | 433.9    | 546.3  | 120.4  | 125.9  |
| Higher sensitivity | 91.0   | 120.4  | 105.1  | 127.5  | 147.3  | 115.4  | 67.4     | 89.1   | 699.5  | 977.1  |

|                    | SAMPLE 4 |        | SAMPLE 5 |        | SAM    | PLE 6  | SAMPLE 7 |        |
|--------------------|----------|--------|----------|--------|--------|--------|----------|--------|
| TEST PARAMETERS    | K441     |        | LR6/S    |        | K441   |        | K441     |        |
|                    | COP      | CONE   | COP      | CONE   | COP    | CONE   | COP      | CONE   |
| COUNT              | 40.3     | 40.7   | 39.7     | 39.7   | 40.3   | 40.4   | 40.3     | 40.4   |
| STRENGTH           | 82.4     | 84.9   | 75.4     | 73.6   | 82.2   | 82.9   | 83.3     | 83.1   |
| CSP                | 3322.0   | 3451.0 | 2990.0   | 2919.0 | 3315.0 | 3354.0 | 3357.0   | 3356.0 |
| U%                 | 9.4      | 9.5    | 9.6      | 10.1   | 9.4    | 9.6    | 9.8      | 10.0   |
| CVm                | 11.8     | 11.9   | 12.1     | 12.7   | 11.8   | 12.1   | 12.4     | 12.6   |
| THIN -40%          | 30.3     | 22.5   | 39.9     | 69.2   | 28.8   | 33.3   | 45.0     | 56.7   |
| THIN -50%          | 0.1      | 0.8    | 0.0      | 0.0    | 0.3    | 0.0    | 0.3      | 1.7    |
| THICK +35%         | 189.0    | 195.0  | 218.1    | 303.3  | 208.1  | 208.8  | 333.0    | 345.8  |
| THICK +50%         | 18.3     | 17.5   | 20.9     | 26.3   | 22.4   | 23.8   | 50.2     | 39.2   |
| NEPS +140%         | 174.8    | 230.8  | 278.5    | 536.3  | 217.8  | 283.2  | 411.9    | 539.2  |
| NEPS +200%         | 40.1     | 50.8   | 65.0     | 95.8   | 57.2   | 70.4   | 119.3    | 125.4  |
| NEPS +280%         | 11.1     | 14.2   | 20.7     | 17.9   | 14.3   | 15.4   | 38.1     | 35.4   |
| Н                  | 3.3      | 4.0    | 4.5      | 5.9    | 3.3    | 4.1    | 3.5      | 4.3    |
| SH                 | 0.7      | 1.0    | 1.0      | 1.4    | 0.7    | 1.0    | 0.8      | 1.0    |
| Total IPI          | 58.5     | 69.1   | 85.9     | 122.1  | 79.9   | 94.2   | 169.8    | 166.3  |
| Higher sensitivity | 374.9    | 440.0  | 517.3    | 857.5  | 440.2  | 507.4  | 783.0    | 920.4  |

International Journal of Trend in Scientific Research and Development @ www.ijtsrd.com eISSN: 2456-6470

#### **Yarn Properties**

# CONCLUSION

There is no significant difference noticed in Nep removal efficiency and short fibre removal unevenness% of all the yarn samples and lies in the efficiency increases while increasing machine range of 9.5 to 10%. Total IPI in cop level of sample arch arspeed.

2 is 30% higher in ring yarn and 27% lower in lop > Yarn IPI level increases with machine speed, feed compact yarn when compared to sample 1. This is per nip and lower noil%. due to the increase of machine speed from 350 to 400

npm. Even though the sample 6 is having 5.9mm feed, Total IPI in cop of sample 6 is 6% lower when compared to sample 5. While reducing noil% of sample 6 to 15%, the IPI in cop is raised to 100%. This was due to less short fibre extraction.

In case of higher sensitivity faults, there is a raising trend noticed while increasing the speed and feed per nip. The strength of compact yarn is higher than the strength of ring yarn. This is due to better consolidation of fibres in the compacting zone. But there is no significant different noticed in the samples due to change in the process variables of comber.

In classimat fault, there is no significant difference between sample 1 and sample 2. i.e. there is no much difference between yarn samples taken at 350 npm and 400 npm.

- There is no significant difference noticed in yarn strength in all the trials.
- The higher sensitivity and classimat faults are having significant difference while increasing machine speed, feed per nip and lower noil%.

#### REFERENCES

- S. Subramanian and N. Gobi, Effect of process [1] parameters at comber on yarn and fabric properties, Indian Journal of Fibre and Textile Research, Vol.29, June 2004, pp.196-199.
- R. Chattopadhyay and R. Ghosh, Studies on [2] mass distribution profile of detached fibres in a comber, Indian Journal of Fibre and Textile Research, Vol.28, December 2003, pp.393-398.
- K. P. Chellamani, D. Chattopadhyay and V [3] Thanabal, Influence of wire point density in cards and combers on neps in sliver and yarn quality, Indian Journal of Fibre and Textile Research, Vol.28, March 2003, pp.9-15.